Ротор высокотемпературной турбины



Ротор высокотемпературной турбины
Ротор высокотемпературной турбины
Ротор высокотемпературной турбины

 


Владельцы патента RU 2534672:

Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (МИНПРОМТОРГ РОССИИ) (RU)

Изобретение относится к роторам высокотемпературных турбин газотурбинных двигателей авиационного и наземного применения. Ротор высокотемпературной турбины включает диски первой и второй ступени, между которыми расположен промежуточный диск с радиальными выступами. Промежуточный диск фиксируется радиальными выступами в окружном направлении относительно осевых выступов, расположенных на полотне диска первой ступени. Осевые выступы на полотне диска первой ступени выполнены таким образом, что образуют в поперечном сечении U-образный выступ. Кольцевое ребро промежуточного диска, размещенное с внутренней стороны обода диска первой ступени, выполнено с пазами. Посредством пазов воздушные полости повышенного давления сообщаются с кольцевой воздушной полостью пониженного давления, ограниченной кольцевым ребром промежуточного диска, радиальными выступами промежуточного диска, U-образным выступом и полотном диска первой ступени. Отношение длины U-образного выступа в осевом направлении к глубине канавки U-образного выступа составляет 1,1 - 2. Изобретение позволяет повысить надежность и снизить вес ротора высокотемпературной турбины. 3 ил.

 

Изобретение относится к роторам высокотемпературных турбин газотурбинных двигателей авиационного и наземного применения.

Известен ротор высокотемпературной турбины, промежуточные диски в котором зафиксированы в окружном направлении относительно закрепленных на валу фланцев с помощью выступов, выполненных на ступицах промежуточных дисков (Патент RU 2261350, F02C 7/12, F02C 7/06, 27.09.2005 г.).

Недостатком такой конструкции является ее низкая надежность, так как выполненные на ступице промежуточных дисков выступы являются концентраторами напряжений.

Наиболее близким к заявляемому является ротор высокотемпературной турбины, включающий диски первой и второй ступени, между которыми расположен промежуточный диск с радиальными выступами, фиксирующими промежуточный диск в окружном направлении относительно осевых выступов, расположенных на полотне диска первой ступени (Патент US 7905083, F02K 3/02, 15.03.2011 г.).

Недостатком известной конструкции, принятой за прототип, является ее низкая надежность вследствие повышенной температуры радиальных выступов промежуточного диска и размещенных на полотне диска первой ступени осевых выступов.

Технический результат заявленного изобретения заключается в повышении надежности и снижении веса ротора высокотемпературной турбины за счет организации эффективного охлаждения радиальных выступов промежуточного диска и осевых выступов диска первой ступени.

Указанный технический результат достигается тем, что в роторе высокотемпературной турбины, включающем диски первой и второй ступени, между которыми расположен промежуточный диск с радиальными выступами, фиксирующими промежуточный диск в окружном направлении относительно осевых выступов, расположенных на полотне диска первой ступени, осевые выступы на полотне диска первой ступени выполнены таким образом, что образуют в поперечном сечении U-образный выступ, а кольцевое ребро промежуточного диска, размещенное с внутренней стороны обода диска первой ступени, выполнено с пазами, сообщающими воздушные полости повышенного давления под замком рабочей лопатки первой ступени с кольцевой воздушной полостью пониженного давления, ограниченной кольцевым ребром промежуточного диска, радиальными выступами промежуточного диска, U-образным выступом и полотном диска первой ступени, причем U-образный выступ выполнен с соблюдением соотношения H h = 1,1 2 , где:

H - длина U-образного выступа в осевом направлении;

h - глубина канавки U-образного выступа.

Выполнение на осевом кольцевом ребре промежуточного диска, размещенного с внутренней стороны обода диска первой ступени, пазов, соединяющих воздушные полости повышенного давления под замком рабочей лопатки первой ступени с кольцевой воздушной полостью пониженного давления, ограниченной кольцевым ребром промежуточного диска, радиальными выступами промежуточного диска, полотном диска первой ступени и U-образным выступом (образованным осевыми выступами на полотне диска первой ступени), позволяет организовать охлаждение осевых и радиальных выступов воздухом, перетекающим из воздушных полостей повышенного давления под замками рабочих лопаток первой ступени в полость пониженного давления между диском первой ступени и диском второй ступени. В высокотемпературных роторах турбин, для улучшения экономичности, на охлаждение рабочей лопатки первой ступени используется охлаждающий воздух повышенного давления, а на наддув междисковой полости, на охлаждение промежуточного диска и на охлаждение рабочей лопатки второй ступени используется «более дешевый» воздух пониженного давления за промежуточной ступенью компрессора, что и позволяет использовать эту разницу давления по воздуху для дополнительного охлаждения обода и полотна диска первой ступени с осевыми выступами и обода промежуточного диска с радиальными выступами.

Улучшение охлаждения осевых и радиальных выступов позволяет, в связи с повышением прочности материалов, уменьшить количество осевых и радиальных выступов, что снижает вес ротора турбины.

Выполнение осевых выступов на полотне диска первой ступени с образованием в поперечном сечении U-образного выступа позволяет уменьшить общее количество выступов на полотне диска, что снижает вес, обеспечивает фиксацию промежуточного диска в окружном направлении как на режимах приемистости, так и на режимах сброса газа, а также позволяет повысить надежность ротора турбины за счет снижения концентрации напряжений путем увеличения величины радиусов в месте перехода от U-образного выступа к полотну диска.

Выбор соотношения H h обусловлен тем, что при H h < 1,1 ухудшается надежность ротора высокотемпературной турбины вследствие повышения концентрации напряжений, а при H h > 2 увеличивается вес диска и ротора турбины.

На фиг.1 показан продольный разрез ротора высокотемпературной турбины, на фиг.2 - элемент I с фиг.1 в увеличенном виде, на фиг.3 представлено сечение А-А с фиг.2 в увеличенном виде.

Ротор 1 высокотемпературной турбины включает диск 2 первой ступени 2 и диск 3 второй ступени, соединенные между собой болтовым соединением 4.

В междисковой полости 5 пониженного давления установлен промежуточный диск 6, фиксирующий в осевом направлении ободом 7 по замку 8 рабочую лопатку 9 первой ступени и по замку 10 рабочую лопатку 11 второй ступени.

На ободе 7 промежуточного диска 6 выполнено размещенное с внутренней стороны от обода 12 диска 2 первой ступени осевое кольцевое ребро 13, на котором выполнены пазы 14, соединяющие воздушные полости 15 повышенного давления под замками 8 рабочих лопаток 9 первой ступени с кольцевой воздушной полостью 16 пониженного давления, ограниченной кольцевым осевым ребром 13, радиальными выступами 17, размещенными на ободе 7 промежуточного диска 6, полотном 18 диска 2 первой ступени с расположенными парно осевыми выступами 19 и 20, образующими совместно U-образный в поперечном сечении выступ 21.

Полость 16 пониженного давления на выходе соединена с междисковой полостью 5 пониженного давления.

Радиальные выступы 17 промежуточного диска 6 расположены в канавке 22 между осевыми выступами 19 и 20, что позволяет фиксировать в окружном направлении промежуточный диск 6 как на режимах приемистости, так и на режимах сброса газа.

Повышенная величина радиуса R перехода от полотна 18 диска 2 к осевым выступам 19 и 20 снижает величину концентрации напряжений, а канавка 22 между выступами 19 и 20 выполнена уменьшенной глубины, что исключает влияние уменьшенного радиуса r на донышке 23 канавки 22 на концентрацию напряжений.

Позицией 24 обозначен поток воздуха пониженного давления, поступающий в полость 5 из-за промежуточной ступени компрессора (на чертежах не показана).

Позицией 25 обозначен поток охлаждающего воздуха из полостей 15 повышенного давления в междисковую полость 5 пониженного давления.

Работает данное устройство следующим образом.

При работе ротора 1 высокотемпературной турбины поток 25 воздуха охлаждает U-образный в поперечном сечении выступ 21 диска 2 первой ступени, радиальные выступы 17, полотно 18 диска 2 первой ступени со стороны промежуточного диска 6, а также и сам промежуточный диск 6.

Ротор высокотемпературной турбины, включающий диски первой и второй ступени, между которыми расположен промежуточный диск с радиальными выступами, фиксирующими промежуточный диск в окружном направлении относительно осевых выступов, расположенных на полотне диска первой ступени, отличающийся тем, что осевые выступы на полотне диска первой ступени выполнены таким образом, что образуют в поперечном сечении U-образный выступ, а кольцевое ребро промежуточного диска, размещенное с внутренней стороны обода диска первой ступени, выполнено с пазами, сообщающими воздушные полости повышенного давления под замком рабочей лопатки первой ступени с кольцевой воздушной полостью пониженного давления, ограниченной кольцевым ребром промежуточного диска, радиальными выступами промежуточного диска, U-образным выступом и полотном диска первой ступени, причем U-образный выступ выполнен с соблюдением соотношения , где:
H - длина U-образного выступа в осевом направлении;
h - глубина канавки U-образного выступа.



 

Похожие патенты:

Турбореактивный двигатель содержит впускной канал потока воздуха охлаждения диска турбины высокого давления, открывающийся в полость. Полость является по существу изолированной с входной стороны от полости, в которой циркулирует поток воздуха, отбираемый с выхода компрессора высокого давления, первым лабиринтным уплотнением и с выходной стороны от полости, сообщающейся с первичным каналом турбореактивного двигателя, вторым лабиринтным уплотнением.

Газовая турбина с ротором, в котором установлена лопатка, содержит перо с входной кромкой и выходной кромкой, расположенное вдоль продольной оси указанной лопатки от корневой части до концевой части лопатки.

Изобретение относится к газотурбинным двигателям авиационного и наземного применения и может быть использовано преимущественно в турбомашинах, на роторе которых закрепляются лопатки и средства для охлаждения и устранения деформаций и вибраций.

Изобретение относится к газотурбинным двигателям авиационного и наземного применения, преимущественно, к турбомашинам, на роторе которых закрепляются лопатки и средства для охлаждения и устранения деформаций и вибраций.

Лопатка турбины, продолжающаяся вдоль продольной оси (А), содержит крепежный участок, снабженный базовой поверхностью, платформу, соединенную как одно целое с крепежным участком, основной продолговатый корпус, охлаждающий контур и регулировочную пластину.

Двухпоточный цилиндр паротурбинной установки включает наружный и внутренний цилиндры, ротор с дисками и рабочими лопатками проточной части прямого и обратного потоков, трубопровод подвода охлаждающего пара к турбине.

Ступень турбины газотурбинного двигателя, выполненного с отверстиями отвода концентрата пыли от системы охлаждения, содержит рабочие и сопловые охлаждаемые лопатки, образующие проточную часть турбины, аппарат закрутки с отверстиями для подвода охлаждающего воздуха в систему охлаждения элементов турбины.

Турбина высокого давления газотурбинного двигателя содержит, по меньшей мере, один лопаточный роторный диск, две кольцевых радиально внешних полости. Одна из полостей расположена на входе диска и получает поток вентиляционного воздуха для лопаток диска от днища камеры сгорания.

Объектом настоящего изобретения является узел из диска турбины газотурбинного двигателя и опорной цапфы опорного подшипника. Диск турбины содержит радиальный кольцевой крепежный фланец, неподвижно соединенный с радиальной кольцевой частью цапфы при помощи болтов.

Лопатка турбины охлаждается внутренним потоком охлаждающей текучей среды, поступающей через отверстия, расположенные внизу хвостовой части лопатки. Лопатка включает в себя регулирующую пластину, снабженную отверстиями, расположенными в соответствии с отверстиями внизу хвостовой части лопатки.

Изобретение относится к роторам турбин низкого давления газотурбинных двигателей авиационного и наземного применения. Ротор турбины включает установленный на задней по потоку газа стороне обода диска лабиринт с внутренним радиальным ребром, а также установленный с передней стороны обода диска фланец. Фланец образует с ободом диска кольцевую воздушную полость, соединенную на выходе с газовой полостью, а на входе, через каналы в замковом соединении лопатки с диском, с внутренней полостью лабиринта. Лабиринт установлен на диске радиальным фланцем, соединенным с радиальным ребром упругим элементом. Внутренняя полость лабиринта соединена с каналами в замковом соединении через открытые к диску пазы в радиальном фланце лабиринта. Воздушная полость с передней стороны обода соединена с газовой полостью через фаски в замковом соединении лопатки с диском. Отношение осевой длины заднего кольцевого ребра лабиринта относительно внутреннего радиального ребра к осевой длине переднего кольцевого ребра лабиринта относительно внутреннего радиального ребра составляет 2…5. Отношение осевой длины переднего кольцевого ребра лабиринта относительно внутреннего радиального ребра к радиусу поверхности упругого элемента составляет 1,5…3. Изобретение позволяет повысить надежность ротора турбины низкого давления. 1 ил.

Осевая газовая турбина содержит ротор и статор. Статор представляет собой корпус, охватывающий ротор снаружи с образованием между ними тракта течения горячего газа, через который протекает горячий газ, полученный в камере сгорания. Ротор содержит вал с осевыми пазами, в частности, елочного типа для закрепления в них большого количества рабочих лопаток, которые размещены в виде последовательных рядов рабочих лопаток. Между соседними рядами рабочих лопаток установлены теплозащитные экраны ротора и в результате образуется внутренняя граница тракта течения горячего газа. Вал ротора выполнен с возможностью транспортирования основного потока охлаждающего воздуха в осевом направлении вдоль теплозащитных экранов ротора и нижних частей рабочих лопаток. Вал ротора снабжает рабочие лопатки охлаждающим воздухом, поступающим во внутреннюю полость рабочих лопаток. В осевой газовой турбине обеспечены герметичные каналы для охлаждающего воздуха, которые проходят в осевом направлении через вал ротора отдельно от основного потока охлаждающего воздуха и снабжают рабочие лопатки охлаждающим воздухом. Изобретение направлено на снижение уточек охлаждающего воздуха и повышение эффективности работы турбины. 12 з.п. ф-лы, 9 ил.

Рабочая лопатка газовой турбины содержит профильную часть, проходящую в продольном направлении, и хвостовик лопатки, служащий для крепления рабочей лопатки на валу ротора газовой турбины. Профильная часть рабочей лопатки выполнена с внутренними каналами охлаждения. Каналы охлаждения предпочтительно проходят вдоль продольного направления и могут быть обеспечены охлаждающим воздухом с помощью средств подачи охлаждающего воздуха, имеющихся внутри хвостовика рабочей лопатки. Хвостовик рабочей лопатки снабжен каналом, проходящим в поперечном направлении через указанный хвостовик рабочей лопатки и сообщающийся с каналами охлаждения. В канал лопатки введена вставка для установления окончательной конфигурации и характеристик соединений между каналом лопатки и каналами охлаждения. Канал лопатки представляет собой цилиндрический канал. Вставка имеет трубчатую конфигурацию так, что она полностью размещается в цилиндрическом канале. В стенке вставки имеется, по меньшей мере, одно сопло, через которое один из каналов охлаждения соединен с каналом рабочей лопатки и которое определяет массовый расход охлаждающего воздуха, поступающего в один канал охлаждения. Изобретение направлено на оптимизирование распределения и подачи охлаждающего воздуха, не жертвуя при этом простотой изготовления лопатки. 3 н. и 6 з.п. ф-лы, 8 ил.

Газовая турбина осевого типа содержит ротор с чередующимися рядами воздухоохлаждаемых рабочих лопаток и теплозащитных экранов ротора и статор с чередующимися рядами воздухоохлаждаемых направляющих лопаток и теплозащитных экранов статора, установленных в держателе направляющих лопаток. Статор коаксиально охватывает снаружи ротор с образованием между ними тракта течения горячего газа так, что ряды рабочих лопаток и теплозащитные экраны статора и ряды направляющих лопаток и теплозащитные экраны ротора расположены напротив друг друга соответственно. Ряд направляющих лопаток и следующий ряд рабочих лопаток в направлении вниз по ходу течения потока образуют ступень турбины. Рабочие лопатки ступени турбины снабжены каждая на их концах венцом. Направляющие лопатки ступени турбины обеспечены каждая внешней платформой направляющей лопатки. Внешние платформы направляющих лопаток в ступени турбины и соседние теплозащитные экраны статора приспособлены друг к другу за счет выполнения каждой из внешних платформ направляющих лопаток с расположенным ниже по потоку выступом на ее задней стенке. Выступ проходит вниз по потоку к передней кромке венцов рабочей лопатки и в соответствующую выемку, выполненную в прилегающем теплозащитном экране статора. Теплозащитные экраны статора в ступени турбины охлаждаются посредством ввода охлаждающего воздуха в полость, находящуюся с задней стороны каждого теплозащитного экрана статора. Охлаждающий воздух выходит в тракт течения горячего газа через отверстия, имеющиеся в проходящей ниже и выше по потоку боковой поверхности теплозащитного экрана статора. Полость для введения охлаждающего воздуха через отверстие расположена с задней стороны внешней платформы каждой направляющей лопатки в ступени турбины. Струи охлаждающего воздуха направляются на венцы рабочих лопаток из полости с помощью отверстий, проходящих ниже по потоку через указанный выступ. Предусмотрены пазы, проходящие в направлении вниз по потоку через выступы для направления потока охлаждающего воздуха точно в промежуток между соседними, размещенными в окружном направлении теплозащитными экранами статора. Изобретение направлено на повышение эффективности охлаждения, снижение массового расхода охлаждающего воздуха. 2 з.п. ф-лы, 7 ил.

Осевая газовая турбина содержит ротор с чередующимися рядами воздухоохлаждаемых рабочих лопаток и воздухоохлаждаемых теплозащитных экранов ротора и статор с чередующимися рядами воздухоохлаждаемых направляющих лопаток и воздухоохлаждаемых теплозащитных экранов статора, установленных в держателе направляющих лопаток. Статор коаксиально охватывает ротор снаружи с образованием между ними тракта течения горячих газов так, что ряды рабочих лопаток и теплозащитных экранов статора и ряды направляющих лопаток и теплозащитных экранов ротора расположены относительно друг определенным образом соответственно. Ряды направляющих лопаток и следующий ряд рабочих лопаток в направлении вниз по ходу течения потока образуют ступень турбины. Ступень турбины обеспечена средствами для повторного использования охлаждающего воздуха, который уже был использован для охлаждения, в частности, профильных частей направляющих лопаток ступени турбины, с целью охлаждения теплозащитных экранов статора указанной ступени турбины, находящихся ниже по потоку от указанных направляющих лопаток. Изобретение направлено на повышение эффективности охлаждения и снижение потребления охлаждающего воздуха. 8 з.п. ф-лы, 5 ил.

Изобретение касается конструктивного элемента газовой турбины, например лопатки турбины или диска ротора. Конструктивный элемент газовой турбины снабжен по меньшей мере одним оканчивающимся на неструктурированной поверхности каналом для направления охлаждающего средства. В поверхности рядом с устьем канала имеется по меньшей мере одно пазообразное углубление, которое отделено от устья перегородкой и которое эффективно уменьшает концентрацию напряжений, вызванную каналом, по сравнению с концентрацией напряжений при отсутствии пазообразного углубления. Перегородка имеет минимальную толщину стенки, а канал - диаметр устья. Отношение минимальной толщины стенки к диаметру лежит в пределах от 0,05 до 3, предпочтительно от 0,05 до 2. Изобретение направлено на увеличение срока службы соответствующего конструктивного элемента путем уменьшения концентрации напряжений, обусловленной тепловыми и механическими нагрузками. 11 з.п. ф-лы, 4 ил.

Осевая газовая турбина содержит ротор с чередующимися рядами воздухоохлаждаемых рабочих лопаток и теплозащитных экранов ротора, и статор с чередующимися рядами воздухоохлаждаемых направляющих лопаток и теплозащитных экранов статора, установленных в держателе направляющих лопаток. Статор коаксиально охватывает ротор снаружи с образованием между ними тракта течения горячих газов так, что ряды рабочих лопаток и теплозащитных экранов статора и ряды направляющих лопаток и теплозащитных экранов ротора расположены напротив друг друга соответственно. Ряд направляющих лопаток и следующий ряд рабочих лопаток в направлении вниз по ходу течения потока образуют ступень турбины. Рабочие лопатки ступени турбины выполнены с внешними платформами на их концах. Ступень турбины содержит средства, направляющие охлаждающий воздух, который уже был использован для охлаждения профильной части направляющих лопаток ступени турбины, в первую полость, находящуюся между внешними платформами рабочих лопаток и расположенными напротив теплозащитными экранами статора, для защиты теплозащитных экранов статора от горячих газов и для охлаждения внешних платформ рабочих лопаток. Каждая из направляющих лопаток содержит внешнюю платформу. Средства для направления охлаждающего воздуха включают в себя вторую полость для поступления охлаждающего воздуха, который выходит из профильной части направляющей лопатки. Кроме того, средства направления охлаждающего воздуха включают в себя средства подачи поступившего охлаждающего воздуха в радиальном направлении в указанную первую полость. Изобретение направлено на повышение эффективности охлаждения и на снижение расхода охлаждающего воздуха. 6 з.п.ф-лы, 6 ил.

Установка с потоком текучей среды, в особенности газовая турбина с аксиально проходящим потоком нагретого газа, выполнена с рядами лопаток ротора со стороны ротора и рядами направляющих лопаток со стороны корпуса, расположенными соответственно аксиально между последовательными рядами лопаток ротора, а также с валом ротора, окруженным теплозащитными элементами и элементами основания лопаток ротора. В области первой радиальной плоскости вала ротора, внутри теплозащитных элементов и элементов основания расположены первые камеры с охлаждающим воздухом, которые сообщаются друг с другом и с источником охлаждающего воздуха. В области радиальной внешней второй радиальной плоскости вала ротора, внутри плит основания, между лопатками ротора и их элементами основания расположены дополнительные камеры с охлаждающим воздухом, которые могут продуваться в нагретого газа. Дополнительные камеры с охлаждающим воздухом могут продуваться исключительно с их торцов, расположенных по ходу спереди относительно направления потока нагретого воздуха. Изобретение направлено на оптимизацию потока охлаждающего воздуха и на повышение эффективности путем устранения неконтролируемого поступления охлаждающего воздуха в поток нагретого газа. 6 з.п. ф-лы, 4 ил.

Изобретение относится к энергомашиностроению и может быть использовано в автономных энергоустановках с высокоскоростными генераторами в летательных и космических аппаратах. Роторная система магнитоэлектрической машины содержит корпус турбинного блока, турбину на валу, установленном в подшипниках, корпус генератора, ротор. Ротор состоит из равномерно размещенных постоянных магнитов, намагниченных в радиальном направлении с чередующейся полярностью. Турбина и ротор установлены на едином пустотелом валу, с возможностью прокачки хладагента через его полость насосом, установленным со стороны турбины. На конце пустотелого вала выполнены спиралевидные канавки. Пустотелый вал с ротором образуют цилиндр постоянного сечения, на внешней поверхности которого установлена бандажная оболочка из высокопрочного немагнитного материала. Подшипники могут быть выполнены в виде бесконтактных газовых опор, электромагнитных подшипников или гибридных магнитных подшипников. Достигается минимизация нагрева постоянных магнитов и теплопередачи между валом турбины и валом генератора, а также повышение жесткости и механической прочности системы, благодаря выполнению вала генератора и вала турбины в виде одного цельного полого вала с возможностью прокачки хладагента через его полость и выполнению на конце ротора спиралевидных канавок. 3 з.п. ф-лы, 3 ил.

Изобретение относится к наземным газотурбинным установкам, выполненным на основе турбокомпрессора от двигателя внутреннего сгорания, и предназначено для охлаждения вала свободной турбины, вращающегося в подшипниках качения. Устройство охлаждения вала свободной турбины газотурбинной установки включает турбину с валом и направляющий аппарат. В корпусе между направляющим аппаратом и первым подшипником выполнены два диаметрально расположенных отверстия с воздуховодами. По одному из воздуховодов подается холодный воздух к валу турбины, а по другому воздуховоду отводится нагретый валом воздух. В районе отверстий с воздуховодами вал имеет не проходящие через центр вращения вала поперечные отверстия, расположенные на разных поперечных сечениях вала и имеющие равное угловое смещение. Поперечные отверстия выполнены с возможностью захватывания при вращении вала холодного воздуха и пропускания его через тело вала, тем самым охлаждая последний. В районе подвода воздуха вал имеет увеличенный диаметр, площадь поперечного сечения которого больше на величину площади продольного сечения поперечного отверстия в этом сечении. Изобретение позволяет упростить устройство охлаждения вала свободной турбины. 2 ил.
Наверх