Способ косвенного контроля температуры провода воздушных линий электропередачи

Использование: в области электроэнергетики. Технический результат - обеспечение точного контроля без необходимости непосредственных измерений и снижение числа контролируемых факторов с обеспечением точности контроля. Согласно способу измеряют токи, протекающие по проводу, и с использованием результатов измерений рассчитывают мощность Р нагрева провода, выделяющуюся на участке провода длиной L (величина L гораздо больше диаметра провода). При этом используют тестовый образец длиной L, помещенный на высоте подвеса контролируемого провода и имеющий такие же физические характеристики, определяющие процесс охлаждения провода, как и контролируемый провод. Тестовый образец имеет теплоемкость, равную теплоемкости провода длиной L. При этом на тестовый образец подают мощность нагрева, равную рассчитанной мощности Р нагрева провода, измеряют температуру тестового образца, причем температуру провода приравнивают к измеренной температуре тестового образца. Предлагаемый способ позволяет автоматически учитывать изменяющиеся внешние условия охлаждения, такие как температура окружающей среды, влажность, скорость ветра, дождь, снег, туман. 1 ил.

 

Изобретение относится к электроэнергетике и может быть применено для максимального использования пропускной способности воздушных линий электропередачи, защиты от пережога провода воздушной линии электропередачи при проведении на ней плавки гололеда.

Трудности измерения температуры проводов воздушных линий электропередачи связаны с высоким напряжением на проводах линии, от 6 до 500 киловольт, в результате стоимость прямого контактного способа измерения температуры провода довольно большая.

Известен бесконтактный способ контроля температуры, использующий зависимость интенсивности теплового излучения объекта контроля от его температуры (Туричин А.М. Электрические измерения неэлектрических величин. Л.: "Энергия", 5-е изд., 1975; Низкотемпературные пирометры с тепловыми приемниками излучения / Е.И. Фандеев, Б.В. Васильев, А.П. Бараненко, В.М. Горбачев. М: Энергоатомиздат, 1993). Этот способ не требует формирования специального канала передачи информации с высоковольтного датчика - термопреобразователя на потенциал земли, однако практически непригоден для контроля температуры провода воздушной линии из-за влияния поглощающих тепловое излучение атмосферных осадков - тумана, дождя, снега.

Известен способ косвенного контроля температуры провода, основанный на измерении линейного температурного удлинения провода, нагреваемого электрическим током (Электрические и магнитные измерения. Под ред. Е.Г. Шрамкова. Л., М., 1937, стр.134-135).

Недостаток данного способа - существенная зависимость удлинения провода не только от его температуры, но и от изменяющихся механических нагрузок на провод - гололедной и ветровой.

Известен выбранный в качестве прототипа способ косвенного контроля температуры провода воздушной линии электропередачи, заключающийся в том, что измеряют ток линий и с использованием результатов измерений рассчитывают численным методом, исходя из уравнения теплового баланса провода, параметры математической модели экспоненциального с постоянной времени Т нарастания температуры нагреваемого провода от начальной в момент t0 температуры до установившегося значения (Петрова Т.Е., Фигурнов Е.П. Защита от перегрузки по току проводов воздушных линий электропередачи. Электричество, 1991, N 8, стр.29-34).

Согласно способу-прототипу при расчете параметров математической модели нагрева провода непосредственно измеряют значения тока линии, скорости ветра и температуры окружающей среды, а другие факторы, влияющие на теплоотдачу провода, учитывают в виде их оценочных значений.

Недостаток прототипа состоит в том, что необходимо контролировать на высоте подвески проводов или учитывать в виде оценочных значений многие атмосферные факторы, влияющие на теплоотдачу провода воздушной линии. К таким факторам, помимо температуры окружающей среды, относятся: скорость и направление ветра, влажность воздуха, степень турбулизации воздушного потока, прозрачность атмосферы, уровень солнечной радиации и т.п. Без непосредственного контроля этих факторов способ-прототип не обеспечивает достаточную точность оперативного измерения температуры провода.

Задача изобретения - создание способа косвенного контроля температуры провода воздушных линий электропередачи, не требующего непосредственного измерения или оценки большого числа факторов, влияющих на тепловой баланс провода, и позволяющего снизить число контролируемых факторов без ущерба для точности определения температуры провода.

Предметом изобретения является способ косвенного контроля температуры провода воздушных линий электропередачи, заключающийся в том, что измеряют токи, протекающие по проводу, и с использованием результатов измерений рассчитывают мощность Р нагрева провода, выделяющуюся на участке провода длиной L, при этом величина L гораздо больше диаметра провода. Отличие предлагаемого изобретения в том, что используют тестовый образец длиной L, помещенный в близкие с контролируемым проводом внешние условия, которые определяют процесс охлаждения провода, причем тестовый образец имеет близкие с контролируемым проводом физические характеристики, определяющие процесс охлаждения провода, а также имеет теплоемкость, равную теплоемкости провода длиной L. При этом на тестовый образец подают мощность нагрева, равную рассчитанной мощности Р нагрева провода, измеряют температуру тестового образца, причем температуру провода приравнивают к измеренной температуре тестового образца.

В основе метода лежит утверждение, что если два объекта, А (контролируемый объект) и Б (тестовый образец), имеющие близкие физические характеристики, которые определяют процесс охлаждения объектов, имеющие равные теплоемкости, поместить в одинаковые внешние условия и подать на оба объекта одинаковую мощность нагрева, то температуры объектов А и Б будут равны.

Единственная проблема в том, что линейные размеры проводов очень большие: длина проводов воздушных линий электропередачи исчисляется километрами. Сделать тестовый образец таких размеров затруднительно.

Но процесс охлаждения проводов при одинаковых внешних условиях одинаков на каждом метре длины провода. Поэтому достаточно создать тестовый образец с единичной длиной и подать на тестовый образец удельную мощность Руд нагрева, выделяемую на участке провода с единичной длиной.

В нашем случае объект А - это контролируемый провод, по которому протекает ток I, нагревающий данный провод. Зная удельное сопротивление Rуд провода и измерив ток I, подсчитаем удельную мощность Руд нагрева провода, приходящуюся на единичную длину провода, по формуле Руд=I2*Rуд, где Rуд - сопротивление единицы длины провода.

В качестве объекта Б будем использовать тестовый образец, помещенный в близкие с контролируемым проводом внешние условия, которые определяют процесс охлаждения (например, высоту подвеса, такую же как высота подвеса провода воздушной линии электропередачи), имеющий близкие с контролируемым проводом А физические характеристики, которые определяют процесс охлаждения провода (такие как диаметр, форма, цвет, фактура поверхности и т.д.), имеющий теплоемкость С, равную теплоемкости Суд, приходящуюся на единичную длину провода. На тестовый объект подадим мощность нагрева, равную рассчитанной удельной мощности нагрева провода Руд.

При таких условиях температура тестового образца Б будет равна температуре провода А.

Таким образом, измерив ток I, протекающий по проводу, рассчитав удельную мощность Руд нагрева провода, подав точно такую же мощность нагрева Руд на тестовый образец, имеющий единичную длину, и измерив температуру Т тестового образца, определяем температуру провода, которая будет равна температуре Т тестового образца.

Рассмотрим воздушную линию электропередачи, у которых на опорах 1 (фиг.1) подвешены провода 2.

По всей длине линии протекает один и тот же ток I, соответственно на каждом метре длины провода 2 выделяется одна и та же удельная мощность Руд нагрева, определяемая по формуле Руд=I2*Rуд, где I - ток, протекающий по проводу 2, Rуд - удельное, приходящееся на один метр длины сопротивление провода 2.

Для контроля температуры проводов 2 создадим тестовый образец 3 длиной один метр непосредственно из материала провода 2 воздушной линии электропередачи или тестовый образец, имеющий такие же физические характеристики, которые определяют процесс охлаждения провода линии (такие как диаметр, форма, цвет, фактура поверхности и т.д.), имеющий теплоемкость С, равную теплоемкости Суд одного метра провода линии.

Поместим тестовый образец 3 на высоте подвеса провода линии электропередачи. От системы 4 контроля температуры подадим на тестовый образец 3 мощность Руд нагрева, такую же, что и выделяется на одном метре длины провода 2. Измерим температуру Т тестового образца 3, это и будет температура провода 2 воздушной линии электропередачи.

При этом единичная длина тестового образца 3 в один метр выбрана исключительно для простоты рассмотрения. В качестве единичной длины мы можем выбрать любую длину L, соответственно длина тестового образца может быть любая.

Единственное требование - чтобы длина L тестового образца была гораздо больше диаметра провода, поскольку при этих условиях процесс охлаждения тестового образца будет совпадать с процессом охлаждения участка провода длиной L (охлаждение концов тестового образца будет вносить малый вклад в общую мощность охлаждения тестового образца).

Таким образом, предлагаемый способ косвенного контроля температуры провода воздушных линий электропередачи позволяет автоматически учитывать изменяющиеся внешние условия охлаждения, такие как температура окружающей среды, влажность, скорость ветра, дождь, снег, туман. Предлагаемый способ косвенного контроля температуры может использоваться для максимального использования пропускной способности воздушных линий электропередачи, защиты от пережога провода воздушной линии электропередачи при проведении на ней плавки гололеда.

Способ косвенного контроля температуры провода воздушных линий электропередачи, заключающийся в том, что измеряют токи, протекающие по проводу, и с использованием результатов измерений рассчитывают мощность Р нагрева провода, выделяющуюся на участке провода длиной L, при этом величина L гораздо больше диаметра провода, отличающийся тем, что используют тестовый образец длиной L, который помещают на высоте подвеса контролируемого провода, причем тестовый образец имеет такие же физические характеристики, определяющие процесс охлаждения провода, как и контролируемый провод, имеет теплоемкость, равную теплоемкости провода длиной L, на тестовый образец подают мощность Р нагрева, равную рассчитанной мощности нагрева провода, измеряют температуру тестового образца, при этом температуру провода приравнивают к измеренной температуре тестового образца.



 

Похожие патенты:

Использование: в области электротехники. Шинная распределительная систем (1) включает в себя множество соединенных друг с другом, одно- или многофазных модульных отрезков (2) шинопровода, к шинной распределительной системе подключены несколько ответвительных коробок (3) и/или электрических приборов (4).

Изобретение относится к защитному устройству для крана, которое может стабильно использоваться при температуре, не превышающей минимальную эксплуатационную температуру электронных устройств.

Изобретение относится к реле перегрузки для защиты электродвигателя или иного устройства от состояния тепловой перегрузки. Технический результат заключается в уменьшении размеров реле перегрузки, снижении его стоимости и осуществлении возможности его использования с источником постоянного тока.

Изобретение относится к области электротехники и может быть использовано в устройствах тепловой защиты двигателей. Техническим результатом является повышение точности, надежности, уменьшение габаритов, веса и стоимости, упрощение настройки и регулировки устройства в целом.

Изобретение относится к области электротехники и может быть использовано в устройствах тепловой защиты преимущественно асинхронных электродвигателей, используемых в гребных электроприводах.

Изобретение относится к противоаварийной автоматике электрических сетей напряжением 110 кB и выше. .

Изобретение относится к электротехнике, а именно к способам защиты потребителей электроэнергии от тепловой перегрузки. .

Изобретение относится к электротехнике, а именно к устройствам защиты различных потребителей электроэнергии от тепловой перегрузки при повышенных токах или повышении температуры защищаемого корпуса изделия.

Изобретение относится к технике диагностирования маслонаполненного оборудования. Технический результат состоит в расширении диапазона измеряемых величин и повышении точности измерения. Способ контроля качества бумажной изоляции трансформатора заключается в передаче с помощью оптико-волоконных кабелей отраженного излучения от изоляции трансформатора для определения коэффициента отражения R650-655 на длинах волн 650-655 нм и вычислении степени полимеризации (СП). Оценку СП производят применительно к бумажной изоляции трансформатора без отключения трансформатора, используя методы неразрушающего контроля, а СП вычисляют путем определения коэффициентов отражения излучения R650-655 и их зависимостей от СП. 2 ил.

Изобретение относится к электротехнике и реализует простой и универсальный способ контроля и защиты инвертора от перегрузок как по активной, так и по полной мощности, что обеспечивает безопасность его эксплуатации без ограничения мощностных возможностей инвертора. Технический результат заключается в защите устройства от перегрузки, его малых габаритах и весе, его высокой надежности и удобстве эксплуатации. Для этого заявленное устройство содержит источник постоянного напряжения, инвертор, датчики выходного тока и напряжения, нагрузку, блок контактора с контактами между источником постоянного напряжения и инвертором, дополнительно снабжено двумя аналоговыми перемножителями, двумя выпрямителями, фильтром нижних частот, двумя компараторами, элементом ИЛИ, таймером и элементом запрета. 1 ил.

Изобретение относится к области электротехники и может быть использовано в электроприводах на основе коллекторных электродвигателей, в частности для тяговых электродвигателей электропоездов. Технический результат заключается в возможности повышения чувствительности защиты к возможным перегрузкам электродвигателя с самовентиляцией при малых частотах вращения и токах ниже номинального. Для этого заявленное устройство содержит электродвигатель и датчик тока, подключенные к питающей сети через устройство регулирования напряжения, блок интегрирования, датчик нулевой скорости электродвигателя, пороговый элемент, управляемый делитель напряжения, также в устройство дополнительно введены квадратор и функциональный преобразователь, в устройстве осуществляется определение текущей температуры якоря в зависимости от тока и частоты вращения. 1 ил.

Изобретение относится к электротехнике и может быть использовано для контроля теплового состояния силовых модулей, входящих в состав статических преобразователей напряжения и частоты различного типа и назначения. Техническим результатом является автоматизация выявления наиболее нагретого модуля, уменьшение аппаратных затрат, повышение быстродействия и надежности, а также высокая информативность устройства. Устройство контроля тепловых режимов силовых модулей преобразователя снабжено блоком выделения наибольшего напряжения, блоком индикации номера силового модуля, индикатором температуры, двумя компараторами и блоком сигнализации. Блок выделения наибольшего напряжения выполнен на трех операционных выпрямителях. Блок индикации номера силового модуля с наибольшей температурой выполнен на транзисторных ключах, инверторах, триггерах и светодиодах. Устройство существенно улучшает условия эксплуатации преобразователя, облегчает поиск и устранение неисправности, характеризуется малыми габаритами, весом и стоимостью. 2 з.п. ф-лы, 1 ил.

Использование: в области электротехники. Технический результат - повышение точности тепловой защиты электроустановки. Согласно способу измеряют ток электроустановки, по измеренному току и по модели нагрева-остывания вычисляют превышение температуры обмотки электроустановки над температурой окружающей среды, измеряют температуру окружающей среды, вычисляют абсолютное значение температуры обмотки, вычисленное абсолютное значение температуры обмотки сравнивают с допустимым значением, если абсолютное значение температуры обмотки превышает допустимое значение, то формируют соответствующий информационный сигнал и управляющий сигнал на разгрузку или отключение электроустановки, дополнительно измеряют температуру в доступной для измерения точке электроустановки, по измеренному току и по модели нагрева-остывания вычисляют температуру для точки электроустановки, в которой измерялась температура, определяют рассогласование между вычисленным и измеренным значениями температуры, по полученному рассогласованию значений температур корректируют параметры модели нагрева до ликвидации рассогласования. 2 з.п. ф-лы, 2 ил.

Изобретение относится к области электротехники. Технический результат - снижение подверженности к сбоям путем контроля нескольких параллельных проводов. Согласно изобретению способ контроля жгута (2) проводов, включающего в себя несколько электрических проводов (4), причем жгут (2) проводов подготовлен для передачи электрической энергии, выработанной генератором ветроэнергетической установки (100), включает в себя следующие этапы: измерение температуры по меньшей мере двух электрических проводов (4), сравнение температур между собой и регистрацию того, отличаются ли друг от друга две температуры более чем на одну заданную величину. 3 н. и 11 з.п. ф-лы, 2 ил.

Изобретение относится к электротехнике и может быть использовано для контроля теплового состояния силовых модулей, входящих в состав статических преобразователей напряжения и частоты различного назначения. Техническим результатом является автоматизация выявления наиболее и наименее нагретых модулей, уменьшение аппаратных затрат, повышение надежности и быстродействия, а также высокая информационность устройства. Устройство контроля тепловых режимов силовых модулей преобразователя снабжено двумя блоками выпрямления и выделения наибольшего напряжения, суммирующим и разностным усилителями, блоками индикации номеров модулей с наибольшей и наименьшей температурами нагрева, индикаторами средней температуры, наибольшей и наименьшей температуры и разности температур между ними, а также двумя компараторами. Блоки выпрямления и выделения наибольшего напряжения выполнены на операционных выпрямителях с диодно-резистивными обратными связями. Блоки индикации номеров модулей с наибольшей и наименьшей температурами нагрева выполнены на транзисторных ключах со светодиодами в коллекторных цепях. Устройство обеспечивает всесторонний контроль теплового состояния силовых модулей преобразователя напряжения и частоты, облегчает поиск и устранение неисправностей, характеризуется малыми габаритами, весом и стоимостью. 2 з.п. ф-лы, 1 ил.

Использование: в области электротехники. Технический результат – уменьшение времени срабатывания защиты. Согласно способу рассчитывают минимальные токи однофазного короткого замыкания по длине этой воздушной линии с учетом сопротивления дуги в месте замыкания и эффекта «теплового спада», строят график функции изменения величины минимального тока однофазного короткого замыкания от длины участка воздушной линии напряжением 380 В между трансформаторной подстанцией и точкой однофазного короткого замыкания, выбирают по условиям отстройки от рабочих и пиковых токов электрической нагрузки воздушной линии напряжением 380 В номинальный ток вставки плавкого предохранителя и устанавливают его в трансформаторной подстанции в начале воздушной линии напряжением 380 В, рассчитывают и строят на графике по паспортным защитным времятоковым характеристикам вставки выбранного плавкого предохранителя и графику функции изменения величины минимального тока однофазного короткого замыкания от длины участка воздушной линии напряжением 380 В зависимость времени срабатывания выбранного плавкого предохранителя от длины воздушной линии напряжением 380 В, определяют по этой зависимости зону защиты выбранного плавкого предохранителя, установленного в трансформаторной подстанции в начале воздушной линии напряжением 380 В, в которой обеспечивается время срабатывания не более 5 секунд, устанавливают в конце его зоны защиты секционирующий плавкий предохранитель, если установленный в начале воздушной линии напряжением 380 В плавкий предохранитель не обеспечивает защиту всей линии со временем срабатывания не более 5 секунд, причем номинальный ток вставки секционирующего плавкого предохранителя выбирают по условиям отстройки от рабочих и пиковых токов нагрузки оставшегося участка воздушной линии напряжением 380 В. 2 ил.

Использование: в области электротехники. Технический результат – повышение точности определения времени срабатывания защиты. Способ включает контроль отклонения от максимально допустимого значения температуры наиболее подверженной перегреву контактной поверхности токоведущего контактного соединения в составе коммутационного аппарата и генерацию сигнала, по которому определяют время достижения контактной поверхностью максимально допустимой температуры. Дополнительно в способе в режиме мониторинга измеряют значение прямоугольного импульса тока и сравнивают измеренную величину с заданным пороговым значением испытательного или эксплуатационного прямоугольного импульса тока, в случае превышения током своего порогового значения проводят температурный контроль контактной поверхности в режиме динамического мониторинга на интервале времени нагрева контактного соединения. Далее проводят пересчет измеренных в ходе динамического мониторинга значений температуры, доступной для прямых измерений внешней поверхности контакт-детали, в соответствующие значения температуры, недоступной для прямых измерений контактной поверхности контактного соединения, и по зарегистрированным косвенным измерениям температуры контактной поверхности строят линейное уравнение регрессии, из которого определяют момент времени до отключения коммутационного аппарата. 4 ил., 2 табл.

Изобретение относится к области электротехники и может быть использовано для защиты электрических двигателей от тепловых перегрузок. Техническим результатом является повышение точности порога срабатывания защиты. Способ защиты электрического двигателя от технологических перегрузок, состоящий в том, что фиксируют ток двигателя, преобразуют его в величину и производят отключение двигателя, за критерий опасного режима принимают мгновенное значение температуры нагрева мощностью независимо от формы тока, фиксируют мгновенное значение тока перегрузки, проходящего через двигатель, и мгновенное значение напряжения на двигателе, перемножают их и величину, пропорциональную получившейся в результате перемножения мощности, рассеиваемой в двигателе и греющей его, подают на элементы, воссоздающие экспоненциальные зависимости, соответствующие кривым нагрева различных условных участков структуры защищаемого двигателя, причем параметры элементов получают путем разложения экспериментально снятой кривой нагрева наиболее опасного в тепловом отношении участка физической структуры защищаемого двигателя на составляющие ее экспоненты, а параметры на выходе указанных элементов складывают, получая параметр, пропорциональный мгновенному значению температуры перегрева наиболее опасного участка физической структуры двигателя относительно окружающей среды, который складывают со значением параметра, пропорционального температуре окружающей среды, а получающуюся в результате суммирования величину, пропорциональную мгновенному значению температуры нагрева наиболее опасного участка физической структуры двигателя, сравнивают с температурой уставки срабатывания защиты, а результат сравнения преобразуют в соответствующие электрические сигналы, с помощью которых производят защитное отключение двигателя. Устройство защиты двигателя от перегрузки состоит из датчика тока (1), двигателя (6), подключенного к преобразователю (3), который преобразует в предлагаемом устройстве мощность, рассеиваемую в двигателе (6), в величину, пропорциональную мгновенному значению температуры опасного участка структуры защищаемого двигателя (6). К входу преобразователя (3) подключен также датчик напряжения на двигателе (2). Выход преобразователя (3) подключен через контакты (4) к контактору (5), предназначенному для защитного отключения двигателя (6). 2 н.п. ф-лы, 2 ил.

Использование: в области электроэнергетики. Технический результат - обеспечение точного контроля без необходимости непосредственных измерений и снижение числа контролируемых факторов с обеспечением точности контроля. Согласно способу измеряют токи, протекающие по проводу, и с использованием результатов измерений рассчитывают мощность Р нагрева провода, выделяющуюся на участке провода длиной L. При этом используют тестовый образец длиной L, помещенный на высоте подвеса контролируемого провода и имеющий такие же физические характеристики, определяющие процесс охлаждения провода, как и контролируемый провод. Тестовый образец имеет теплоемкость, равную теплоемкости провода длиной L. При этом на тестовый образец подают мощность нагрева, равную рассчитанной мощности Р нагрева провода, измеряют температуру тестового образца, причем температуру провода приравнивают к измеренной температуре тестового образца. Предлагаемый способ позволяет автоматически учитывать изменяющиеся внешние условия охлаждения, такие как температура окружающей среды, влажность, скорость ветра, дождь, снег, туман. 1 ил.

Наверх