Устройство контроля тепловых режимов силовых модулей преобразователя

Изобретение относится к электротехнике и может быть использовано для контроля теплового состояния силовых модулей, входящих в состав статических преобразователей напряжения и частоты различного типа и назначения. Техническим результатом является автоматизация выявления наиболее нагретого модуля, уменьшение аппаратных затрат, повышение быстродействия и надежности, а также высокая информативность устройства. Устройство контроля тепловых режимов силовых модулей преобразователя снабжено блоком выделения наибольшего напряжения, блоком индикации номера силового модуля, индикатором температуры, двумя компараторами и блоком сигнализации. Блок выделения наибольшего напряжения выполнен на трех операционных выпрямителях. Блок индикации номера силового модуля с наибольшей температурой выполнен на транзисторных ключах, инверторах, триггерах и светодиодах. Устройство существенно улучшает условия эксплуатации преобразователя, облегчает поиск и устранение неисправности, характеризуется малыми габаритами, весом и стоимостью. 2 з.п. ф-лы, 1 ил.

 

Изобретение относится к электротехнике и может быть использовано для контроля теплового состояния силовых модулей, входящих в состав преобразователей напряжения и частоты различного типа и назначения.

Известно устройство для контроля состояния ключей высоковольтного вентильного преобразователя (патент RU 2417498, МПК H02H 7/10, 27.04.2011), содержащее последовательно включенные силовые ключи высоковольтного вентиля, токоограничивающие резисторы, оптопередатчик с оптоприемником, устройство управления и защиты преобразователя, дополнительный блок резисторов, блок измерения сигналов и датчик температуры, имеющий тепловой контакт с корпусом силового ключа и подключенный к входу блока измерения сигналов. Недостаток устройства заключается в том, что контролю теплового состояния подвергается только один силовой ключ, что не гарантирует от тепловой перегрузки других ключей ввиду разброса их характеристик.

Известно защитное устройство для последовательно соединенных IGBT транзисторов (патент CN 201708690, МПК H02H 7/10, H02M 1/32, 12.01.2011), содержащее последовательно соединенные IGBT транзисторы, каждый из которых расположен на отдельном радиаторе и снабжен датчиками напряжения между эмиттером и коллектором и между затвором и эмиттером и датчиком температуры, контактирующим с радиатором. Устройство включает в себя также датчик тока и блок обработки снимаемой с датчиков информации. Недостатком устройства является необходимость оценки теплового состояния каждого IGBT транзистора, что обуславливает большие аппаратные затраты, снижение быстродействия и надежности устройства.

Наиболее близким к предлагаемому является устройство управления двигателем (патент US 6268986, МПК H02H 5/04, 31.07.2001), содержащее двигатель, полупроводниковый преобразователь мощности, запитанный от сети постоянного тока, и управляющий компьютерный блок. Преобразователь мощности включает в себя три силовых модуля, каждый из которых выполнен на двух IGBT транзисторах, двух обратных диодах и термочувствительном диоде, запитанном от источника постоянного тока и связанном через блок фиксации перегрева и блок защиты с затворами IGBT соответствующего силового модуля. Недостаток устройства заключается в необходимости придания каждому модулю своих блоков фиксации перегрева и защиты, а также в отсутствии информации о температуре наиболее нагретого модуля, достижении ею предупредительного и аварийного значений и о конкретном месте расположения (номере) перегретого модуля, сохраняющейся и после выключения преобразователя.

Предлагаемое устройство основано на автоматическом выделении сигнала датчика температуры от наиболее нагретого силового модуля, выведении его на индикатор температуры, сравнении с предупредительным и аварийным значениями и выдаче исполнительных команд на блок сигнализации или блок управления преобразователем. Кроме того, устройство обеспечивает определение номера наиболее нагретого модуля и сохранение этой информации после выключения преобразователя.

На чертеже представлена функциональная схема устройства контроля тепловых режимов силовых модулей преобразователя. Устройство содержит трехфазный преобразователь 1 напряжения, вход которого соединен с источником 2 постоянного напряжения, а выход - с нагрузкой 3. Преобразователь 1 выполнен на трех силовых модулях 4, 5, 6, на каждом из которых установлен датчик 7 температуры. Выходы блока 8 управления преобразователем 1 связаны с затворами IGBT транзисторов 9, 10 модулей 4, 5, 6. Устройство также снабжено блоком 11 выделения наибольшего напряжения, блоком 12 индикации номера одного из силовых модулей 4, 5, 6 с наибольшей температурой, индикатором 13 температуры, компараторами 14, 15 предупредительного и аварийного значений температуры и блоком 16 сигнализации. При этом датчики 7 модулей 4, 5, 6 подключены к входам блока 11, основной выход 17 которого связан с входами индикатора 13 и компараторов 14, 15, а дополнительные выходы 18, 19, 20 - с первыми тремя входами блока 12. Выход компаратора 14 подключен к блоку 16, а выход компаратора 15 - к входу блока 8 и к четвертому входу блока 12.

Блок 11 выполнен на трех операционных выпрямителях 21, входы которых подключены к входам блока 11. Выходы 22 выпрямленного напряжения выпрямителей 21 объединены и связаны с выходом 17 блока 11, а выходы 23 невыпрямленного напряжения подключены к выходам 18, 19, 20.

Блок 12 выполнен на транзисторных ключах 24, входы которых подключены к первым трем входам блока 12. Выходы ключей 24 через инверторы 25 связаны с входами S синхронных RS триггеров 26, к входам С которых подключен четвертый вход блока 12. При этом к коллекторам транзисторов 24 и к выходам триггеров 26 подсоединены светодиоды 27 и 28.

Устройство контроля тепловых режимов силовых модулей преобразователя работает следующим образом.

При включении преобразователя 1 и работе его на нагрузку 3 на модулях 4, 5, 6 выделяется тепловая энергия, приводящая к повышению их температуры. В зависимости от величины нагрузки 3, режима работы преобразователя 1, климатических условий окружающей среды и индивидуальных характеристик модулей 4, 5, 6 меняется степень их нагрева. На выходах датчиков 7 модулей 4, 5, 6 появляются постоянные напряжения, пропорциональные установившимся на них температурам. В блоке 11 на объединенных выходах 22 выпрямителей 21 выделяется наибольшее входное напряжение, например, от датчика 7 модуля 4. Это напряжение поступает на выход 17 блока 11. Одновременно с этим на выходе 23 нижнего по схеме выпрямителя 21 появляется положительное напряжение, а на выходах 23 других выпрямителей 21 - отрицательные напряжения, под действием которых в блоке 12 открывается нижний ключ 24 и закрываются верхние ключи 24. При этом загорается нижний светодиод 27, сигнализирующий о том, что наибольшая температура установилась на модуле 4. Кроме того, выходные сигналы ключей 24 через инверторы 25 поступают на входы S триггеров 26, подготавливая их к запоминанию номера модуля (4) с наибольшей температурой после защитного выключения преобразователя 1. Аналогично работает устройство и при поступлении наибольшего напряжения от датчика 7 модуля 5 или датчика 7 модуля 6. При этом загорается средний или верхний светодиод 27.

Напряжение с выхода 17 блока 11 поступает на индикатор 13, отображающий температуру наиболее нагретого модуля, и на входы компараторов 14, 15. Компаратор 14 настроен на предупредительное значение, а компаратор 15 - на аварийное значение температуры. При достижении температурой одного из наиболее нагретых модулей 4, 5, 6 предупредительного значения срабатывает компаратор 14, который, в свою очередь, включает блок 16, информирующий персонал о предаварийном состоянии преобразователя 1. При достижении температурой аварийного значения срабатывает компаратор 15, под действием которого блок 8 запирает транзисторы 9, 10 модулей 4, 5, 6, выключая тем самым преобразователь 1. Одновременно с этим сигнал от блока 15 поступает на четвертый вход блока 12, устанавливая триггер 26, соответствующий модулю с наибольшей температурой, в единичное состояние, при котором зажигается соответствующий светодиод 28, дублирующий гаснущий после остывания преобразователя 1 светодиод 27.

Таким образом, устройство при минимальном количестве дополнительных элементов осуществляет автоматический контроль теплового состояния наиболее нагруженного силового элемента. При этом обслуживающий персонал обеспечивается всей необходимой информацией как в процессе работы преобразователя, так и при его выключении.

Наиболее целесообразно использование устройства в мощных и высоковольтных преобразователях с большим числом модулей, соединенных параллельно и/или последовательно. В этом случае увеличивается лишь число каналов в блоках 11,12.

Устройство может быть реализовано на широко распространенной элементной базе и отличается низкой стоимостью, малыми габаритами и весом.

1. Устройство контроля тепловых режимов силовых модулей преобразователя, содержащее трехфазный преобразователь напряжения, вход которого соединен с источником постоянного напряжения, а выход - с нагрузкой и выполненный на трех силовых модулях, на каждом из которых установлен датчик температуры, и блок управления преобразователем, выходы которого связаны с затворами IGBT транзисторов силовых модулей, отличающееся тем, что оно снабжено блоком выделения наибольшего напряжения, блоком индикации номера силового модуля с наибольшей температурой, индикатором температуры, компараторами предупредительного и аварийного значений температуры и блоком сигнализации, причем датчики температуры силовых модулей подключены к входам блока выделения наибольшего напряжения, основной выход которого связан с входами индикатора температуры и компараторов, а дополнительные выходы - с первыми тремя входами блока индикации номера силового модуля с наибольшей температурой, выход компаратора предупредительного значения температуры подключен к блоку сигнализации, а выход компаратора аварийного значения температуры - к входу блока управления преобразователем и к четвертому входу блока индикации номера силового модуля с наибольшей температурой.

2. Устройство по п. 1, отличающееся тем, что блок выделения наибольшего напряжения выполнен на трех операционных выпрямителях, входы которых подключены к входам блока, выходы выпрямленного напряжения объединены и связаны с основным выходом блока, а выходы невыпрямленного напряжения подключены к дополнительным выходам блока.

3. Устройство по п. 1, отличающееся тем, что блок индикации номера силового модуля с наибольшей температурой выполнен на транзисторных ключах, входы которых подключены к первым трем входам блока, а выходы через инверторы связаны с входами S синхронных RS триггеров, к входам С которых подключен четвертый вход блока, причем к коллекторам транзисторов и к выходам RS триггеров подсоединены светодиоды.



 

Похожие патенты:

Изобретение относится к области электротехники и может быть использовано в электроприводах на основе коллекторных электродвигателей, в частности для тяговых электродвигателей электропоездов.

Изобретение относится к электротехнике и реализует простой и универсальный способ контроля и защиты инвертора от перегрузок как по активной, так и по полной мощности, что обеспечивает безопасность его эксплуатации без ограничения мощностных возможностей инвертора.

Изобретение относится к технике диагностирования маслонаполненного оборудования. Технический результат состоит в расширении диапазона измеряемых величин и повышении точности измерения.

Использование: в области электроэнергетики. Технический результат - обеспечение точного контроля без необходимости непосредственных измерений и снижение числа контролируемых факторов с обеспечением точности контроля.

Использование: в области электротехники. Шинная распределительная систем (1) включает в себя множество соединенных друг с другом, одно- или многофазных модульных отрезков (2) шинопровода, к шинной распределительной системе подключены несколько ответвительных коробок (3) и/или электрических приборов (4).

Изобретение относится к защитному устройству для крана, которое может стабильно использоваться при температуре, не превышающей минимальную эксплуатационную температуру электронных устройств.

Изобретение относится к реле перегрузки для защиты электродвигателя или иного устройства от состояния тепловой перегрузки. Технический результат заключается в уменьшении размеров реле перегрузки, снижении его стоимости и осуществлении возможности его использования с источником постоянного тока.

Изобретение относится к области электротехники и может быть использовано в устройствах тепловой защиты двигателей. Техническим результатом является повышение точности, надежности, уменьшение габаритов, веса и стоимости, упрощение настройки и регулировки устройства в целом.

Изобретение относится к области электротехники и может быть использовано в устройствах тепловой защиты преимущественно асинхронных электродвигателей, используемых в гребных электроприводах.

Изобретение относится к противоаварийной автоматике электрических сетей напряжением 110 кB и выше. .

Использование: в области электротехники. Технический результат - повышение точности тепловой защиты электроустановки. Согласно способу измеряют ток электроустановки, по измеренному току и по модели нагрева-остывания вычисляют превышение температуры обмотки электроустановки над температурой окружающей среды, измеряют температуру окружающей среды, вычисляют абсолютное значение температуры обмотки, вычисленное абсолютное значение температуры обмотки сравнивают с допустимым значением, если абсолютное значение температуры обмотки превышает допустимое значение, то формируют соответствующий информационный сигнал и управляющий сигнал на разгрузку или отключение электроустановки, дополнительно измеряют температуру в доступной для измерения точке электроустановки, по измеренному току и по модели нагрева-остывания вычисляют температуру для точки электроустановки, в которой измерялась температура, определяют рассогласование между вычисленным и измеренным значениями температуры, по полученному рассогласованию значений температур корректируют параметры модели нагрева до ликвидации рассогласования. 2 з.п. ф-лы, 2 ил.

Изобретение относится к области электротехники. Технический результат - снижение подверженности к сбоям путем контроля нескольких параллельных проводов. Согласно изобретению способ контроля жгута (2) проводов, включающего в себя несколько электрических проводов (4), причем жгут (2) проводов подготовлен для передачи электрической энергии, выработанной генератором ветроэнергетической установки (100), включает в себя следующие этапы: измерение температуры по меньшей мере двух электрических проводов (4), сравнение температур между собой и регистрацию того, отличаются ли друг от друга две температуры более чем на одну заданную величину. 3 н. и 11 з.п. ф-лы, 2 ил.

Изобретение относится к электротехнике и может быть использовано для контроля теплового состояния силовых модулей, входящих в состав статических преобразователей напряжения и частоты различного назначения. Техническим результатом является автоматизация выявления наиболее и наименее нагретых модулей, уменьшение аппаратных затрат, повышение надежности и быстродействия, а также высокая информационность устройства. Устройство контроля тепловых режимов силовых модулей преобразователя снабжено двумя блоками выпрямления и выделения наибольшего напряжения, суммирующим и разностным усилителями, блоками индикации номеров модулей с наибольшей и наименьшей температурами нагрева, индикаторами средней температуры, наибольшей и наименьшей температуры и разности температур между ними, а также двумя компараторами. Блоки выпрямления и выделения наибольшего напряжения выполнены на операционных выпрямителях с диодно-резистивными обратными связями. Блоки индикации номеров модулей с наибольшей и наименьшей температурами нагрева выполнены на транзисторных ключах со светодиодами в коллекторных цепях. Устройство обеспечивает всесторонний контроль теплового состояния силовых модулей преобразователя напряжения и частоты, облегчает поиск и устранение неисправностей, характеризуется малыми габаритами, весом и стоимостью. 2 з.п. ф-лы, 1 ил.

Использование: в области электротехники. Технический результат – уменьшение времени срабатывания защиты. Согласно способу рассчитывают минимальные токи однофазного короткого замыкания по длине этой воздушной линии с учетом сопротивления дуги в месте замыкания и эффекта «теплового спада», строят график функции изменения величины минимального тока однофазного короткого замыкания от длины участка воздушной линии напряжением 380 В между трансформаторной подстанцией и точкой однофазного короткого замыкания, выбирают по условиям отстройки от рабочих и пиковых токов электрической нагрузки воздушной линии напряжением 380 В номинальный ток вставки плавкого предохранителя и устанавливают его в трансформаторной подстанции в начале воздушной линии напряжением 380 В, рассчитывают и строят на графике по паспортным защитным времятоковым характеристикам вставки выбранного плавкого предохранителя и графику функции изменения величины минимального тока однофазного короткого замыкания от длины участка воздушной линии напряжением 380 В зависимость времени срабатывания выбранного плавкого предохранителя от длины воздушной линии напряжением 380 В, определяют по этой зависимости зону защиты выбранного плавкого предохранителя, установленного в трансформаторной подстанции в начале воздушной линии напряжением 380 В, в которой обеспечивается время срабатывания не более 5 секунд, устанавливают в конце его зоны защиты секционирующий плавкий предохранитель, если установленный в начале воздушной линии напряжением 380 В плавкий предохранитель не обеспечивает защиту всей линии со временем срабатывания не более 5 секунд, причем номинальный ток вставки секционирующего плавкого предохранителя выбирают по условиям отстройки от рабочих и пиковых токов нагрузки оставшегося участка воздушной линии напряжением 380 В. 2 ил.

Использование: в области электротехники. Технический результат – повышение точности определения времени срабатывания защиты. Способ включает контроль отклонения от максимально допустимого значения температуры наиболее подверженной перегреву контактной поверхности токоведущего контактного соединения в составе коммутационного аппарата и генерацию сигнала, по которому определяют время достижения контактной поверхностью максимально допустимой температуры. Дополнительно в способе в режиме мониторинга измеряют значение прямоугольного импульса тока и сравнивают измеренную величину с заданным пороговым значением испытательного или эксплуатационного прямоугольного импульса тока, в случае превышения током своего порогового значения проводят температурный контроль контактной поверхности в режиме динамического мониторинга на интервале времени нагрева контактного соединения. Далее проводят пересчет измеренных в ходе динамического мониторинга значений температуры, доступной для прямых измерений внешней поверхности контакт-детали, в соответствующие значения температуры, недоступной для прямых измерений контактной поверхности контактного соединения, и по зарегистрированным косвенным измерениям температуры контактной поверхности строят линейное уравнение регрессии, из которого определяют момент времени до отключения коммутационного аппарата. 4 ил., 2 табл.

Изобретение относится к области электротехники и может быть использовано для защиты электрических двигателей от тепловых перегрузок. Техническим результатом является повышение точности порога срабатывания защиты. Способ защиты электрического двигателя от технологических перегрузок, состоящий в том, что фиксируют ток двигателя, преобразуют его в величину и производят отключение двигателя, за критерий опасного режима принимают мгновенное значение температуры нагрева мощностью независимо от формы тока, фиксируют мгновенное значение тока перегрузки, проходящего через двигатель, и мгновенное значение напряжения на двигателе, перемножают их и величину, пропорциональную получившейся в результате перемножения мощности, рассеиваемой в двигателе и греющей его, подают на элементы, воссоздающие экспоненциальные зависимости, соответствующие кривым нагрева различных условных участков структуры защищаемого двигателя, причем параметры элементов получают путем разложения экспериментально снятой кривой нагрева наиболее опасного в тепловом отношении участка физической структуры защищаемого двигателя на составляющие ее экспоненты, а параметры на выходе указанных элементов складывают, получая параметр, пропорциональный мгновенному значению температуры перегрева наиболее опасного участка физической структуры двигателя относительно окружающей среды, который складывают со значением параметра, пропорционального температуре окружающей среды, а получающуюся в результате суммирования величину, пропорциональную мгновенному значению температуры нагрева наиболее опасного участка физической структуры двигателя, сравнивают с температурой уставки срабатывания защиты, а результат сравнения преобразуют в соответствующие электрические сигналы, с помощью которых производят защитное отключение двигателя. Устройство защиты двигателя от перегрузки состоит из датчика тока (1), двигателя (6), подключенного к преобразователю (3), который преобразует в предлагаемом устройстве мощность, рассеиваемую в двигателе (6), в величину, пропорциональную мгновенному значению температуры опасного участка структуры защищаемого двигателя (6). К входу преобразователя (3) подключен также датчик напряжения на двигателе (2). Выход преобразователя (3) подключен через контакты (4) к контактору (5), предназначенному для защитного отключения двигателя (6). 2 н.п. ф-лы, 2 ил.

Изобретение относится к области электротехники и может быть использовано в устройствах питания асинхронных двигателей как общепромышленного, так и специального назначения. Техническим результатом является обеспечение защиты двигателя от перегрева вследствие повреждений обмоток при повреждении электрической цепи ротора и обеспечения бесперебойной работы двигателя в подобных режимах. В устройство питания асинхронного двигателя, содержащее три мостовых инвертора, питаемых от сети постоянного напряжения и управляемых от трехфазного источника сигналов, введены преобразователи уровней, пик-детекторы фазных напряжений, блок формирования средней амплитуды, аналоговые умножители напряжения, трансформаторы тока, соединенные выходами с сумматорами, вторыми входами у которых являются выходы аналоговых умножителей напряжения, первыми входами которых являются выходы задающего генератора, формирующего фазные напряжения и синхронизированного с питающей сетью, а вторыми - выход блока нелинейного преобразования, вход которого соединен с выходом блока формирования средней амплитуды, входы которого подключены к выходам пик-детекторов, входы которых подключены к выходам преобразователей уровней, входы которых подключены к зажимам питания двигателя, который подключен к выходам мостовых инверторов, к управляющим входам которых подключены выходы сумматоров. 2 ил.

Изобретение относится к электротехнике и может быть использовано для контроля теплового состояния силовых модулей, входящих в состав статических преобразователей напряжения и частоты различного типа и назначения. Техническим результатом является автоматизация выявления наиболее нагретого модуля, уменьшение аппаратных затрат, повышение быстродействия и надежности, а также высокая информативность устройства. Устройство контроля тепловых режимов силовых модулей преобразователя снабжено блоком выделения наибольшего напряжения, блоком индикации номера силового модуля, индикатором температуры, двумя компараторами и блоком сигнализации. Блок выделения наибольшего напряжения выполнен на трех операционных выпрямителях. Блок индикации номера силового модуля с наибольшей температурой выполнен на транзисторных ключах, инверторах, триггерах и светодиодах. Устройство существенно улучшает условия эксплуатации преобразователя, облегчает поиск и устранение неисправности, характеризуется малыми габаритами, весом и стоимостью. 2 з.п. ф-лы, 1 ил.

Наверх