Способ измерения момента инерции



Способ измерения момента инерции
Способ измерения момента инерции

 


Владельцы патента RU 2539812:

Федеральное государственное унитарное предприятие "Научно-производственное объединение "Техномаш" (RU)

Изобретение относится к области измерительной техники, в частности к способам измерения моментов инерции, и может быть использовано для измерения моментов инерции различных изделий. Способ заключается в том, что изделие закрепляют на платформе колебательного устройства, приводят в колебательное движение и измеряют период и амплитуду колебаний. При этом амплитуду колебаний поддерживают постоянной путем компенсации ее уменьшения закруткой упругого элемента на угол, равный разности начального значения и следующих измеренных значений амплитуды колебаний. Компенсирующую закрутку производят с помощью привода, установленного между корпусом и упругим элементом. Технический результат заключается в повышении точности измерений и упрощении реализации способа. 1 з.п. ф-лы, 2 ил.

 

Изобретение относится к машиностроению, а именно к способам измерения моментов инерции, и может быть использовано для измерения моментов инерции различных изделий.

Известен способ измерения моментов инерции изделий методом упругих крутильных колебаний, заключающийся в том, что изделие закрепляют на платформе колебательного устройства, приводят его в колебательное движение и измеряют период колебаний (см. Гернет М.М., Ратобыльский В.Ф. Определение моментов инерции. - М.: Машиностроение, 1969 г., стр.67-69).

Недостатком этого известного способа является сравнительно низкая точность измерения, обусловленная тем, что при реализации способа не учитывается анизохронность колебаний, что приводит к погрешности от допущения о независимости периода колебаний от амплитуды, которая в процессе измерений уменьшается из-за наличия внутреннего трения в материале упругого элемента.

Более точным является способ измерения момента инерции изделия методом упругих крутильных колебаний, описанный в вышеуказанном источнике информации на стр.84-85 (прототип) приведенной выше книги, заключающийся в том, что изделие закрепляют на платформе колебательного устройства, приводят в колебательное движение и измеряют периоды и амплитуды колебаний.

При использовании этого известного способа, являющегося наиболее близким аналогом предлагаемому техническому решению, в процессе затухающих колебаний от некоторой произвольной, но зафиксированной начальной амплитуды Ф0 измеряют времена t1 и t2, а также амплитуды Ф1 и Ф2 для некоторых чисел колебаний z1 и z2. Затем вычисляют коэффициент анизохронности q:

q=(z2t1-z1t2)/[t2ln(Ф01)-t1ln(Ф02)].

Период собственных колебаний, используемый для расчета момента инерции изделия, определяется по формуле:

T=t2/[z2+q·ln(Ф02)].

Недостатком описанного способа является недостаточно полный учет погрешностей от анизохронности колебаний, так как он предполагает неизменность коэффициента анизохронности в пределах изменения амплитуды от Ф0 до Ф1 и от Ф0 до Ф2. Поэтому используемый для расчета момента инерции изделия период колебаний будет содержать погрешность от неполного учета анизохронности крутильных колебаний.

Другим недостатком прототипа является сравнительная сложность, связанная с необходимостью повторных измерений времени с измененным числом колебаний.

Техническим результатом настоящего изобретения является повышение точности измерения момента инерции изделий и упрощение его реализации.

Указанный технический результат обеспечивается тем, что в способе измерения момента инерции, заключающемся в том, что изделие закрепляют на платформе колебательного устройства, закруткой торсиона приводят устройство в колебательное движение, в процессе которого измеряют период и амплитуду колебаний, по которым проводят расчет момента инерции изделия, новым является то, что в процессе измерения периода и амплитуды колебаний, амплитуду колебаний поддерживают постоянной путем компенсации ее уменьшения компенсирующей закруткой торсиона на угол, равный разности начального значения и измеренных значений амплитуды колебаний, причем компенсирующую закрутку производят с помощью привода, установленного на корпусе и связанного с торсионом.

Отличительными признаками предлагаемого способа от прототипа являются дополнительные операции, заключающиеся в том, что амплитуду колебаний поддерживают постоянной путем компенсации уменьшения амплитуды, происходящего под действием сил трения, закруткой упругого элемента на угол, равный разности начального значения и следующих измеренных значений амплитуды колебаний, а компенсирующую закрутку производят с помощью привода, установленного между корпусом и упругим элементом.

Благодаря наличию этих отличительных признаков предлагаемый способ обладает сравнительно большей точностью и простотой в осуществлении.

Заявленный способ иллюстрируется, графическими материалами, на которых:

- на фиг.1 представлено устройство, реализующее способ;

- на фиг.2 показан график, иллюстрирующий принцип поддержания постоянной амплитуды колебаний при осуществлении предлагаемого способа.

Устройство, реализующее заявленный способ, содержит установленный на корпусе 1 аэростатический радиально-упорный подшипник 2, верхняя подвижная часть которого является платформой 3 для установки изделия 4. При работающем аэростатическом подшипнике платформа 3 имеет возможность совершать на воздушной подушке с незначительным трением крутильные колебания вокруг оси 5 за счет упругости торсиона 6, который сверху соединен через муфту 7 с валом 8 платформы 3 аэростатического подшипника. Преобразователь 9 угловых перемещений статором закреплен на корпусе 1. Полый ротор преобразователя 9 прикреплен с помощью встроенной полой муфты к валу 8. Преобразователь 9 угловых перемещений служит для измерения амплитуды колебаний и для выдачи сигналов при прохождении колеблющейся системы через положение равновесия, по которым измеряются периоды колебаний. Преобразователь 9 электрически связан с блоком управления 10 для передачи информации об угловых параметрах колебаний. По сигналам с преобразователя 9 блок управления 10 рассчитывает параметры работы привода 11, соединенного с торсионом 6 с помощью муфты 12. Привод 11 производит закрутку торсиона на рассчитанный угол в заданном направлении.

Заявленный способ реализуют следующим образом.

Изделие 4 закрепляют на платформе 3, приводят аэростатический подшипник 2 в рабочее состояние подачей в него сжатого воздуха, при неподвижном равновесном положении платформы с изделием на аэростатическом подшипнике обнуляют показание преобразователя 9, поворачивают платформу с изделием от нулевого положения на угол Фо и отпускают. При этом платформа с изделием приходит в колебательное движение за счет упругости торсиона 6. График, иллюстрирующий зависимость изменения фазы φ колебаний от времени, приведен на фиг.2. В начальный момент времени амплитуда равна Фо. После отклонения подвижной системы в противоположную сторону от положения равновесия амплитуда колебаний в результате действия внутреннего трения в материале торсиона уменьшится на величину ΔФ. Величина ΔФ запоминается процессором блока управления 10 в момент смены направления изменения текущей амплитуды. В этот же момент блок управления 10 подает сигнал на привод 11, который производит компенсирующую закрутку торсиона на угол ΔФ, компенсирующую потерю потенциальной энергии колебательной системы на трение. В результате закрутки положение равновесия колебательной системы сместится на угол ΔФ, и относительного нового положения равновесия амплитуда станет равной начальному значению Фо. Закрутка производится в короткое время, практически в момент перевалки колебательной системы через максимум амплитуды, например, для периода колебаний, равного 1 с, время закрутки не превышает 0,01 с, за это время амплитуда изменяется не более чем на 0,2%.

Колебательная система, перейдя через новое положение равновесия, вернется в свое начальное положение относительно корпуса. В момент перевалки колебательной системы через максимум амплитуды, блок управления 10 подает сигнал на привод 11, который производит закрутку торсиона на угол ΔФ в обратном направлении и возвращает положение равновесия колебательной системы в исходное положение, при котором значение амплитуды становится равным начальному значению Фо. С этого момента приведенный цикл одного полного колебания с компенсационными закрутками повторяется необходимое количество раз для набора статистики измерений среднего периода колебаний. Колебания становятся незатухающими. Период колебаний определяется как временной интервал между двумя прохождениями колебательной системой одинаковых фаз колебаний, например прохождений нулевого значения показаний преобразователя 9.

В результате использования предлагаемого способа незатухающие колебания изделия с платформой эквивалентны колебаниям консервативной системы с некоторой неизменной жесткостью с (Фо) упругого элемента, соответствующей определенной амплитуде Фо колебаний. Для расчета момента инерции предлагаемым способом можно воспользоваться, например, методом использования эталонного тела, приведенным на стр.71 и 72 (пункт 3) в книге: Гернет М.М., Ратобыльский В.Ф. Определение моментов инерции. - М.: Машиностроение, 1969. Для этого при одной и той же амплитуде Фо измеряют периоды колебаний: пустой платформы - Tо, платформы с эталонным телом - Tэ и платформы с изделием - Tи, и подставляют в уравнения:

J о = с ( Ф о ) T о 2 / 4 π 2 ;

J о + J э = с ( Ф о ) T э 2 / 4 π 2 ;

J о + J и = с ( Ф о ) T и 2 / 4 π 2 ,

откуда момент инерции изделия равен:

J и = J э ( T и 2 T о 2 ) / ( T э 2 T о 2 ) .

Таким образом, предлагаемый способ измерения момента инерции изделия с использованием упругих крутильных колебаний обладает большей точностью за счет уменьшения влияния нелинейности колебательной системы путем поддержания амплитуды колебаний постоянной компенсацией уменьшения амплитуды, происходящего под действием сил трения, закруткой упругого элемента на угол, равный разности начального значения и следующих измеренных значений амплитуды колебаний, а компенсирующую закрутку производят с помощью привода, установленного между корпусом и упругим элементом. Кроме того, способ обладает меньшей сложностью, так как для учета нелинейности не требуется повторных измерений времен, начальных и конечных амплитуд различных чисел колебаний.

1. Способ измерения момента инерции, заключающийся в том, что изделие закрепляют на платформе колебательного устройства, закруткой торсиона приводят устройство в колебательное движение, в процессе которого измеряют период и амплитуду колебаний и по измеренным их значениям проводят расчет момента инерции изделия, отличающийся тем, что в процессе измерения периода и амплитуды колебаний амплитуду колебаний поддерживают постоянной путем компенсации ее уменьшения компенсирующей закруткой торсиона на угол, равный разности начального значения и измеренных значений амплитуды колебаний.

2. Способ по п.1, отличающийся тем, что компенсирующую закрутку торсиона производят с помощью привода, установленного на корпусе и связанного с торсионом.



 

Похожие патенты:

Заявленные изобретения относятся к машиностроению и могут использоваться для динамической балансировки различных изделий. Способ заключается в том, что изделие приводят во вращение на платформе, установленной на центральной шарнирной опоре на вращающемся столе, и измеряют динамические реакции между платформой и столом.

Изобретение относится к области измерений, а именно к процессу определения статического дисбаланса заготовок, и может быть использовано для балансировки заготовок.

Турбинная установка содержит роторную машину (12, 14, 24) и балансировочный груз (78). Роторная машина содержит вращающийся компонент (62) с канавкой (76), имеющей основание (84) и пару наклонных сторон (86), сходящихся друг к другу в первом направлении (66) от основания (84) с образованием проема (92).

Изобретение относится к способам инерционных испытаний цепных передач и позволяет определить момент инерции цепной передачи. Сущность изобретения заключается в том, что к входному валу цепной передачи присоединяется выходной вал электрического двигателя и крепится тело с эталонным моментом инерции, а момент инерции цепной передачи определяется как отношение суммы произведения разности углового ускорения системы вращающихся масс «электрический двигатель, цепная передача, тело с эталонным моментом инерции» и углового ускорения системы вращающихся масс «электрический двигатель, цепная передача» на момент инерции электрического двигателя и произведения углового ускорения системы вращающихся масс «электрический двигатель, цепная передача, тело с эталонным моментом инерции» на момент инерции тела с эталонным моментом инерции к разности углового ускорения системы вращающихся масс «электрический двигатель, цепная передача» и углового ускорения системы вращающихся масс «электрический двигатель, цепная передача, тело с эталонным моментом инерции».

Изобретение относится к машиностроению и может быть использовано при сборке и балансировке сборных роторов компрессоров газоперекачивающих агрегатов. В способе балансировки сборного ротора балансируют вал с использованием плоскостей коррекции дисбалансов на концах вала и его муфты и балансируют собранный ротор, при этом измеряют биения соединительных фланцев муфт относительно их балансировочных поверхностей, определяют и маркируют места максимального радиального биения фланцев.
Изобретение относится к способам диагностики ремонтных конструкций, применяемых для ремонта трубопроводов по композитно-муфтовой технологии. Сущность: трубу с дефектом герметизируют путем приварки к ее торцам двух заглушек с эллиптическими днищами.
Изобретение относится к измерительной технике, в частности к способу балансировки вращающихся частей машин, и может быть использовано для балансировки вентиляторов.

Изобретение относится к машиностроению и может быть использовано для балансировки валов машин. Груз для балансировки редуктора содержит корректирующую массу и выполнен в виде концентричного кольца с выступом или лыской на внутренней поверхности с радиальными сквозными и несквозными прорезями.

Изобретение относится к измерительной технике и может быть использовано для определения координат центра масс и балансировки изделий сложной формы. Способ включает центрирование колеса с установлением точек отсчета координат местонахождения силоизмерительных датчиков, размещенных на поверхности платформ, используемых для взвешивания рабочего колеса.

Изобретение относится к испытательной технике, а именно к стендам для испытания форсунок, предназначенных для распыления огнетушащего вещества при тушении пожара.

Группа изобретений относится к балансировочной технике, в частности к средствам и методам балансировки роторов турбин. Устройство содержит внешний компонент, внутренний компонент, который винтовым образом соединен с внешним компонентом, при этом внутренний компонент ограничивает камеру, которая содержит первое и второе отверстия и содержит нижнюю поверхность, которая снабжена уплотнительным соединением и крышкой для закрывания герметичным образом первого отверстия камеры. Соединение между внешним компонентом и внутренним компонентом является винтовым, то есть является результатом операции нарезки резьбы. Поэтому внутренний компонент может, таким образом, двигаться коаксиальным образом относительно внешнего компонента. Способ включает в себя следующие этапы - остановки турбины, ориентации путем расположения балансировочного отверстия напротив второго отверстия камеры устройства для введения балансировочного груза, осуществления контакта поверхности уплотнительного соединения внутреннего компонента в контакт с ротором с использованием гайки, открытие камеры устройства с удалением крышки, введение груза в отверстие ротора через камеру устройства и позиционирование груза путем ввинчивания и запирания путем зачеканки в балансировочном отверстии, далее установки крышки для закрытия первого отверстия камеры, и отсоединяют камеру от ротора, используя гайку, возвращают турбину в работу. Технический результат заключается в устранении разгерметизации корпуса турбины, ускорении процесса установки грузов. 3 н. и 7 з.п. ф-лы, 4 ил.

Изобретение относится к устройствам и способам автоматического подавления вибрации и может быть использовано в помольно-смесительных агрегатах с автоматической балансировкой. Устройство автоматического подавления вибрации помольно-смесительного агрегата, включающего станину 1, вертикальные колонки 2 с ползунами 3, прямоугольную раму 4 с камерами 5, соединенную с ползунами 3 и эксцентриковым валом 9, снабженным с двух сторон противовесами 10, содержит дополнительный вал 11, связанный с эксцентриковым валом 9. Дополнительный вал 11 снабжен водилом 13 с двумя направляющими 14, несущими дополнительный противовес 15, взаимодействующий с сателлитом дифференциального механизма, левая и правая шестерни которого соединены с полуосями 17, связанными с выходами двух тормозных электромагнитных муфт 19, 20. Электрические входы муфт 19, 20 соединены с выходами соответственно первого 22 и второго 23 усилителей-преобразователей, входящих в прямую цепь основного канала управления положением дополнительного противовеса 15 и соединенных своими входами через модуль ввода-вывода с первым и вторым выходом программируемого контроллера 24. Устройство содержит два дополнительных канала управления. Первый дополнительный канал с управлением по разомкнутому принципу частотой вращения эксцентрикового вала 9 соединен входом с третьим выходом контроллера 24 и состоит из последовательно соединенных третьего усилителя-преобразователя 27, третьего исполнительного механизма 28, связанного с эксцентриковым валом 9. Второй дополнительный канал управления загрузкой помольно-смесительного агрегата входом соединен с четвертым выходом контроллера 24 и содержит в прямой цепи последовательно соединенные четвертый усилитель-преобразователь 29, четвертый исполнительный механизм 30 и второй регулирующий орган 31. При этом цепь обратной связи содержит последовательно соединенные датчик массы материала 32 на выходе помольно-смесительного агрегата и второй нормирующий преобразователь 33, выход которого связан со вторым входом контроллера 24, соединенного своим первым входом с выходом цепи обратной связи основного канала управления положением дополнительного противовеса 15, включающей последовательно соединенные датчик положения дополнительного противовеса и первый нормирующий преобразователь 26. Согласно способу процесс подавления вибрации осуществляют по разомкнутому принципу посредством контроллера 24, база данных в памяти которого задает поверхность статических характеристик агрегата в виде зависимости уровня вибрации от коэффициента загрузки в камерах и положения дополнительного противовеса при различных фиксированных значениях частоты вращения эксцентрикового вала 9. Определяют текущее положение рабочей точки на поверхности статических характеристик, сравнивают с положением точки, соответствующим наименьшему значению вибрации, и формируют управляющее воздействие положительного или отрицательного знака, подаваемое после усиления на первую или вторую тормозные электромагнитные муфты, действие которых приводит к перемещению дополнительного противовеса, способствующему подавлению вибрации. Устройство и способ обеспечивают повышение качества измельченного материала и увеличение ресурса работы узлов и деталей помольно-смесительного агрегата. 2 н.п. ф-лы, 4 ил.

Изобретения относятся к измерительному оборудованию, а именно к средствам и методам балансировки, и могут быть использованы для определения дисбаланса роторов турбин, компрессоров. Согласно способу ротор устанавливают на опорах с вибровоспринимающими резонаторами, разгоняют его до выбранной частоты вращения, регистрируют колебания ротора, определяют дисбаланс и устраняют его. При этом до начала вращения в автоматический оперативный блок вводят исходные параметры балансировки, например, массу ротора и требуемую точность балансировки. Затем на основе исходных параметров определяют режим балансировки: дорезонансный, резонансный или зарезонансный. После этого по команде оперативного блока автоматически устанавливают соответствующие выбранному режиму собственную частоту вибровоспринимающих резонаторов и частоту вращения ротора. Устройство включает вращающее устройство, датчики колебаний и, по крайней мере, две опоры. Опоры соединены с вибровоспринимающими резонаторами. Каждый вибровоспринимающий резонатор выполнен с возможностью изменения собственной частоты и реализации дорезонансного, резонансного или зарезонансного режимов балансировки. Устройства изменения собственной частоты вибровоспринимающих резонаторов соединены с автоматическим оперативным блоком. При этом оперативный блок оборудован устройством ввода исходных параметров балансировки. Технический результат заключается в расширении возможностей и повышении эффективности процесса балансировки. 2 н. и 5 з.п. ф-лы, 2 ил.

Изобретение относится к балансировочной технике, в частности к балансировочному устройству, и может быть использовано для устранения дисбаланса испытываемого образца. Устройство имеет измерительную систему для определения вращательного дисбаланса испытуемого образца, содержащую шпиндельный узел со шпинделем, служащим для удержания испытуемого образца и вращения его с испытательной скоростью вращения, шпиндельную бабку, посредством которой шпиндельный узел подвижно прикреплен к станине станка, так что шпиндельный узел может колебаться в заданном направлении измерения в результате усилий дисбаланса, возникающих во время измерения, и по меньшей мере один датчик, который при вращении шпинделя обнаруживает по меньшей мере одну характеристику переменной дисбаланса, возникающую в направлении измерения. Также система содержит систему съема материала для балансировки испытуемого образца путем съема материала в заданном месте. Измерительная система и система съема материала выполнены так, что съем материала может быть произведен, когда испытуемый образец удерживается в шпинделе. Кроме того, имеется зажим шпинделя, посредством которого шпиндельный узел без шпиндельной бабки или по меньшей мере без датчика может быть зафиксирован усилием, созданным во время фиксации, с тем, чтобы он не перемещался под воздействием усилий, произведенных системой съема материала. 8 з.п. ф-лы, 11 ил.

Изобретение относится к области строительства атомных электрических станций и, в частности, к этапу преднапряжения герметичных защитных оболочек реакторных отделений с реактором ВВР-1000 (1250, 1500). Техническим результатом изобретения является повышение точности измерений деформации. Способ определения деформационных характеристик защитной герметичной оболочки заключается в маркировании по заданным сечениям защитной герметичной оболочки контролируемых точек и выполнении поцикловых определений их положения. Контролируемые точки привязывают к геодезическим планово-высотным пунктам, выполняют анализ измерительной информации. Планово-высотное геодезическое обоснование формируют многоярусным как вне сооружения, так и внутри него в единой системе координат, причем данная система координат совмещается с системой координат защитной герметичной оболочки, исследуемые точки размещают в моментной, переходной, безмоментной зонах строительных элементов защитной герметичной оболочки на ее внешней и внутренней поверхностях, контроль геометрических параметров выполняют поэтапно. В процессе контроля внутренние и внешние геометрические параметры защитной герметичной оболочки определяют одновременно на всех этапах наблюдений. Положения исследуемых точек, размещенных в безмоментной зоне, определяют с точностью, обеспечивающей надежное определение общей ожидаемой максимальной величины деформации стержневой арматуры. 2 ил.

Изобретение относится к испытательной технике, в частности к испытаниям плоских и пространственных железобетонных рамно-стержневых конструктивных систем. Способ реализуется следующим образом. На испытательном стенде собирают конструктивную схему в виде рамно-стрежневой системы, закрепляют опорные стойки с силовым полом, при этом одну из стоек изготавливают телескопической из двух металлических труб, соединенных бетонной шпонкой с заранее прокалиброванным усилием среза. Затем устанавливают источник светового луча вместе с экраном-приемником в одной плоскости и систему зеркал на элементы конструкции в соответствующих сечениях, где необходимо произвести измерения приращения перемещений. Далее производят загружение рамно-стержневой системы заданной проектной статической нагрузкой через нагрузочные устройства, создавая тем самым внезапное хрупкое разрушение бетонной шпонки телескопической стойки и, как следствие, выключение линейной связи. Затем по отсчетам отраженного на экране со шкалой луча производят измерения приращения перемещений от динамического догружения системы в неразрушенных после запроектного воздействия элементах. Технический результат заключается в повышении точности определения приращения перемещений в запредельных состояниях, вызванных внезапным запроектным воздействием. 2 ил.

Изобретение относится к области машиностроения и предназначено для использования в технологических процессах балансировки роторов. Способ заключается в том, что измеряют дисбалансы, определяют параметры корректирующих воздействий для каждой плоскости коррекции и производят корректировку масс, параметры корректирующих воздействий, отвечающих условию равенства нулю остаточных дисбалансов в номинальных плоскостях коррекции. Затем определяют с учетом смещений центров корректирующих масс от номинальных радиусов и плоскостей коррекции ротора через процедуру моделирования ожидаемых последствий корректирующих воздействий, после чего производят корректировку массы ротора. При этом создают виртуально-объемное изображение балансировки ротора, моделируют на виртуальном роторе статические и моментные дисбалансы до совмещения главной центральной оси инерции с осью вращения. Задают параметры дисбалансов, осуществляют корректировку масс на виртуальном эталонном образце ротора, и наблюдают за виртуальной корректировкой ротора в плоскостях коррекции, и создают базу данных виртуальных образцов роторов. Затем устанавливают балансируемый ротор на станок и измеряют динамическое давление в опорах его неуравновешенности, совмещают и сравнивают дисбалансы, а по величине отклонения судят о необходимости балансировки ротора, удалив корректирующую массу, и по минимальному остаточному дисбалансу ротора судят о качестве балансировки. Технический результат заключается в повышении точности балансировки ротора. 2 ил.

Изобретение относится к машиностроению и может быть использовано при монтаже сборных роторов газоперекачивающих агрегатов. При сборке ротора балансируют вал и все его элементы, балансируют собранный ротор и крепят его к валам двигателя и компрессора, производят коррекцию монтажных дисбалансов установкой грузиков, их массу определяют исходя из масс частей сборного ротора, дисбалансы которых корректируют в данных плоскостях, величин биений балансировочных поверхностей ротора и удаления места установки грузика от оси вращения. На каждой контрольной поверхности ротора выбирают и маркируют по четыре точки, размещая их попарно диаметрально противоположно во взаимно перпендикулярных плоскостях. Производят измерения радиальных биений контрольных поверхностей в промаркированных местах относительно нулевой точки после балансировки ротора и после крепления сбалансированного ротора к валам двигателя и компрессора. Результаты в обоих случаях фиксируют, грузики устанавливают на подготовленные места в плоскостях измерения, а массы и места грузиков определяются из предложенных зависимостей. Изобретение направлено на обеспечение повышения точности балансировки сборного ротора за счет минимизации локальных монтажных дисбалансов, обусловленных эксцентриситетом установки. 5 ил.

Группа изобретений относится к машиностроению. Демпфирующее устройство (1) содержит: поддерживающий корпус (6), элемент (11) с кольцеобразным отверстием (12). Упругое средство расположено между поддерживающим корпусом и элементом. Элемент выполнен с возможностью перемещения относительно поддерживающего корпуса и радиально относительно оси (А) между первым и вторым положением при изгибе вала относительно оси. Элемент устанавливается в первое положение при пересечении отверстия свободно валом. Элемент устанавливается во второе положение при взаимодействии с валом. Скорость вращения вала во втором диапазоне содержит по меньшей мере одну критическую скорость вала. Стержень выполнен с возможностью перемещения совместно с элементом радиально относительно оси. Плита выполнена за одно целое со стержнем и поперек него. Упругое средство расположено между стержнем и поддерживающим корпусом. Упругое средство содержит первую пружину и вторую пружину. Первая пружина расположена между первым участком поддерживающего корпуса и выступом элемента. Вторая пружина расположена между плитой и вторым участком поддерживающего корпуса. Привод содержит вал, работающий во втором диапазоне скоростей вращения. Воздушное судно содержит привод. Достигается улучшение гашения изгибных колебаний вала. 3 н. и 7 з.п. ф-лы, 5 ил.

Заявленные изобретения относятся к измерительной технике и могут быть использованы в балансировочной технике, в частности для балансировки ротора. Инструмент пошагового перемещения проверки балансировки содержит поверхность держателя ротора, расположенную на проверяемом роторе, содержащую кинематические соединительные элементы держателя ротора, и приемное устройство держателя ротора, при этом приемное устройство держателя ротора содержит соответствующие кинематические соединительные элементы приемного устройства держателя ротора. Поверхность держателя ротора может быть механически обработанной на поверхности ротора или предоставленной на отдельном держателе ротора, временно прикрепленном к ротору. Поверхность держателя ротора и приемное устройство держателя ротора сконфигурированы для обеспечения соединения при пошаговом перемещении, которое позволяет легко индексировать ротор в любом из нескольких положений индексации для проверки на дисбаланс в устройстве проверки балансировки. Инструмент позволяет производить несколько балансирующих циклов без особых усилий, необходимых для повторного пошагового перемещения ротора. Способ включает использование указанного инструмента пошагового перемещения проверки балансировки. 2 н. и 24 з.п. ф-лы, 10 ил.
Наверх