Способ контроля выставки гиростабилизированной платформы инерциальной системы

Изобретение относится к навигационной технике и может быть использовано для контроля гиростабилизированных платформ инерциальной системы космического назначения при заводских и предпусковых испытаниях систем управления ракетоносителей, разгонных блоков, космических и летательных аппаратов. Технический результат - повышение достоверности контроля начальной выставки гиростабилизированной платформы. Для этого осуществляют начальную выставку гиростабилизированной платформы, определяют ориентацию системы координат, связанной с гиростабилизированной платформой, относительно местной горизонтальной системы координат, связанной с Землей, вычисляют результат автономного определения азимута гиростабилизированной платформы αη, определяют астрономический азимут АКЭ контрольного элемента гиростабилизированной платформы, положение нормали к которому совпадает с нулевым отсчетом датчика угла φ, на момент окончания начальной выставки фиксируют угол φ гиростабилизированной платформы вокруг оси карданова подвеса и определяют погрешность гирокомпасирования ΔА: ΔА=αηКЭ-φ, считают выставку гиростабилизированной платформы прошедшей контроль, если погрешность гирокомпасирования не превышает допустимого значения. 3 ил.

 

Изобретение относится к навигационной технике и может быть использовано для контроля гиростабилизированных платформ космического назначения при заводских и предпусковых испытаниях систем управления ракетоносителей, разгонных блоков, космических и летательных аппаратов.

Известен способ выставки инерциальной системы управления в режиме гирокомпасирования с оптическим контролем [1]. С помощью системы, работающей в этом режиме, платформа до момента старта удерживается в горизонте и выставляется по азимуту. При этом для постоянных по величине погрешностей акселерометров и гироскопов предусмотрено введение соответствующих балансировочных сигналов.

Однако этот способ при использовании его в целях контроля точности гирокомпасирования прецизионных инерциальных систем обладает низкой точностью, т.к. при выработке балансировочных сигналов учитывает только постоянные (систематические) составляющие погрешностей акселерометров и гироскопов и не учитывает случайных составляющих. Так, известно, что случайная составляющая дрейфа гироскопа величиной 0.01 град/час вызывает для средних широт погрешность гирокомпасирования порядка 4 угл.мин. Другим недостатком известного способа является необходимость размещения на внутренней раме карданова подвеса гиростабилизированной платформы оптического элемента (зеркало, призма) и обеспечение с ним через герметичное прозрачное окно оптической связи с опорным геодезическим направлением, что существенно усложняет конструкцию инерциальной системы.

Наиболее близким техническим решением является способ контроля выставки гиростабилизированной платформы инерциальной системы, включающий начальную выставку, определение ориентации системы координат, связанной с гиростабилизированной платформой, относительно местной горизонтальной системы координат, связанной с Землей, вычисление результата автономного определения азимута гиростабилизированной платформы [2].

Недостатком известного способа при его применении для контроля результата выставки гиростабилизированной платформы в азимуте является малая достоверность контроля, т.к. выставка осуществляется только средствами инерциальной системы, в которую входит гиростабилизированная платформа, не используя при этом внешние независимые средства.

Технический результат изобретения заключается в повышении достоверности контроля начальной выставки гиростабилизированной платформы инерциальной системы.

Указанный технический результат достигается тем, что в известном способе контроля выставки гиростабилизированной платформы инерциальной системы, включающем начальную выставку, определение ориентации системы координат, связанной с гиростабилизированной платформой, относительно местной горизонтальной системы координат, связанной с Землей, вычисление результата автономного определения азимута гиростабилизированной платформы αη, дополнительно определяют астрономический азимут АКЭ контрольного элемента гиростабилизированной платформы, положение нормали к которому совпадает с нулевым отсчетом датчика угла φ, на момент окончания начальной выставки фиксируют угол φ гиростабилизированной платформы вокруг оси карданова подвеса и оспределяют погрешность гирокомпасирования ΔA:

ΔA=αηКЭ-φ,

считают выставку гиростабилизированной платформы прошедшей контроль, если погрешность гирокомпасирования не превышает допустимого значения.

На фиг.1 представлены системы координат, используемые при контроле начальной выставки, представлены системы координат, используемые при контроле начальной выставки: система координат X0, Y0, Z0, реализуемая ГСП, и местная горизонтальная система координат ζ, η, ξ, ось η которой имеет направление, противоположное направлению g, а ось ξ направлена в сторону Севера. Обе системы координат - ортогональные правые с началом 0 в месте расположения ГСП.

На фиг.2 представлена схема расположения контрольного элемента, установленного на корпусе гиростабилизированной платформы, геодезического знака, которым оборудовано место пуска ракет, и показаны угловые величины, используемые при определении астрономического азимута контрольного элемента.

На фиг.3 представлена упрощенная кинематическая схема гиростабилизированной платформы и показаны угловые величины, используемые при реализации способа.

Способ контроля выставки гиростабилизированной платформы (ГСП) инерциальной системы реализуют следующим образом.

Осуществляют начальную выставку ГСП известным методом гирокомпасирования, сущность которого заключается в определении матрицы C0 направляющих косинусов системы координат X0, Y0, Z0, реализуемой ГСП, относительно местной горизонтальной системы координат ζ, η, ξ, одна из горизонтальных осей (ξ) которой ориентирована на Север (фиг.1).

При определении матрицы C0 используют информацию акселерометров в четырех ориентациях ГСП, работающей в инерциальном режиме. В этих ориентациях плоскость X0, Z0, реализуемую ГСП, приводят в плоскость местного горизонта, а ось OX0 последовательно ориентируют в направлениях на Север, Юг, в направлении, противоположном полету, и в направлении полета. После заключительной ориентации плоскость X0, Z0 ГСП ориентирована в плоскости горизонта и ось X0 - в направлении полета.

По завершении начальной выставки по датчикам углов, расположенных на осях карданова подвеса, производят измерение углов φ, ψ, υ, характеризующих угловое положение ГСП относительно корпуса.

Из матрицы C0 вычисляют величину угла αη между направлением на Север и проекцией на плоскость горизонта оси X0 ГСП:

α η = a r c t g ( C 0 , 13 / C 0 , 11 ) , ( 1 )

где C0, ij - элемент i-й строки j-го столбца матрицы C0 на момент завершения начальной выставки.

Определяют азимут нормали контрольного элемента АКЭ:

А К Э = А Г З А n Г З , ( 2 )

где АГЗ - астрономический азимут визирного направления на удаленный геодезический знак. Определяется однократно одним из известных методов, применяемых в геодезии, при оборудовании места пуска ракет [3];

An-ГЗ - угол между направлением на геодезический знак и нормалью к контрольному элементу. Определяется при помощи теодолита, расположенного в плоскости I-III стабилизации изделия со стороны контрольного элемента (фиг.2), по разнице отсчетов по лимбу теодолита при наведении теодолита сначала на внешнюю зеркальную поверхность контрольного элемента (нормаль КЭ), а затем на геодезический знак.

Положение ГСП в горизонтальной плоскости по азимуту (фиг.3) определяется углом φ, измеряемым датчиком угла карданова подвеса ГСП, между направлением полета и нормалью к контрольному элементу (КЭ), расположенному на корпусе ГСП таким образом, что положение его нормали соответствует нулевому отсчету датчика угла по φ. В качестве контрольного элемента обычно используют зеркало.

При идеальном гирокомпасировании (фиг.3) будет выполняться соотношение:

α η = А К Э + ϕ ( 3 )

Однако из-за инструментальных погрешностей ГСП, главным образом из-за нестабильности дрейфов ГСП, при регистрации выходных сигналов акселерометров в различных ориентациях ГСП на практике возникает погрешность гирокомпасирования ΔА, определяемая как:

Δ А = α η А К Э ϕ ( 4 )

Считают выставку гиростабилизированной платформы прошедшей контроль, если погрешность гирокомпасирования ΔА не превышает допустимого значения.

Так, например, для обеспечения вывода космических аппаратов телекоммуникационного назначения это допустимое значение составляет 6 угловых минут. В этом случае при получении значения менее 6 угловых минут ГСП считается прошедшей контроль с положительными результатами для обеспечения требуемой точности вывода космического аппарата.

Предельная погрешность δА предлагаемого метода контроля может быть определена как:

δ А = δ α η 2 + δ А К Э 2 + δ ϕ 2 , ( 5 )

где δαη - погрешность определения матрицы C0 по информации акселерометров;

δАКЭ - погрешность определения азимута нормали КЭ АКЭ при помощи теодолита и использования азимута направления на геодезический знак АГЗ;

δφ - погрешность определения положения ГСП датчиком угла φ.

При использовании акселерометров со случайной составляющей погрешности 10-5 g, азимута АГЗ с точностью 20 угл.с, датчика угла φ с ценой младшего разряда 20 угл.с, т.е. при δαη=2 угл.с, δАКЭ=20 угл.с и δφ=20 угл.с предельная погрешность контроля выставки ГСП по азимуту составляет 28.3 угл.с.

Таким образом, предложенный способ обеспечивает требуемую точность и позволяет повысить достоверность контроля начальной выставки гиростабилизированной платформы инерциальной системы за счет осуществления контроля с помощью независимых оптических и геодезических средств.

Источники информации

1. «Инерциальная навигация» под редакцией К.Ф.О' Доннела, М., издательство «Наука», 1969, стр.514.

2. «Авиационные приборы и навигационные системы» под редакцией О.А. Бабича, издание ВВИА им. Н.Е. Жуковского, 1981, стр.523-525.

3. «Справочник геодезиста» под редакцией В.Д. Большакова, Г.П. Левчука, книга 1, М., издательство «Недра», 1985, стр.257-259, стр.428-435.

Способ контроля выставки гиростабилизированной платформы инерциальной системы, включающий начальную выставку, определение ориентации системы координат, связанной с гиростабилизированной платформой, относительно местной горизонтальной системы координат, связанной с Землей, вычисление результата автономного определения азимута гиростабилизированной платформы αη, отличающийся тем, что определяют астрономический азимут АКЭ контрольного элемента гиростабилизированной платформы, положение нормали к которому совпадает с нулевым отсчетом датчика угла φ, на момент окончания начальной выставки фиксируют угол φ гиростабилизированной платформы вокруг оси карданова подвеса и определяют погрешность гирокомпасирования ΔА:
ΔА=αηКЭ-φ,
считают выставку гиростабилизированной платформы прошедшей контроль, если погрешность гирокомпасирования не превышает допустимого значения.



 

Похожие патенты:

Изобретение относится к области исследования и испытания инклинометров в полевых условиях. Техническим результатом является повышение точности и оперативности проверки магнитных и гироскопических скважинных инклинометров в полевых условиях.

Предложенное изобретение относится к средствам калибровки инерциальных датчиков, в частности, в полевых условиях. Предложенный способ калибровки инерциальных датчиков, установленных на рабочем оборудовании, включает в себя сбор данных от одного или более инерциальных датчиков и одного или более температурных датчиков, расположенных вблизи инерциальных датчиков, в период, когда оборудование не работает, и корректировку математической модели температурной систематической ошибки для инерциальных датчиков на основе собранных данных от инерциальных датчиков и температурных датчиков, при этом сбор данных начинают через заранее установленное время после выключения рабочего оборудования, при этом на инерциальные датчики и температурные датчики, образующие сенсорную подсистему, периодически подают питание для сбора данных в период, когда рабочее оборудование не работает.

Изобретение относится к области точного приборостроения и может быть использовано при создании твердотельных волновых гироскопов и систем ориентации и навигации на их основе.

Изобретение относится к области прецизионного приборостроения и может быть использовано при разработке и производстве двухстепенных поплавковых гироскопов. Заявлен способ определения погрешности двухстепенного поплавкового гироскопа, включающий установку гироскопа на неподвижном основании, включение в режим обратной связи датчик угла - усилитель - преобразователь - датчик момента, запуск гиромотора, нагрев гироскопа, измерение тока в цепи датчика момента обратной связи, определение погрешности гироскопа.

Изобретение относится к области измерительной техники, в частности к испытательному оборудованию для калибровки приборов системы навигации и топопривязки. В установочной площадке внутренней рамы динамического двухосного стенда размещены цилиндрические секторы со сквозными пазами, выполненными по дугам окружности концентрично наружной и внутренней поверхностям.

Изобретение относится к измерительной технике, а именно к средствам измерения вибрационных реактивных моментов гиромоторов. Стенд содержит подвес, камеру, допускающую закрепление гиромотора экваториальной либо полярной осями вдоль оси подвеса, средство измерения вибраций в виде первого магнитоэлектрического датчика, обмотки которого закреплены в корпусе устройства в поле магнитов, установленных на оси подвеса, и состыкованы через измерительный усилитель со средством измерения сигнала и усилителем мощности, нагрузкой которого являются обмотки второго магнитоэлектрического датчика, установленного соосно с первым датчиком, подвес выполнен в виде вала, соединенного с камерой и вертикально установленного в подшипниках корпуса, расположенного на подставке; токоподводы гиромотора выполнены в виде трех пружин, противоположные концы которых через контактные платы стыкуются с камерой и корпусом стенда.

Изобретение относится к способу изготовления газодинамического подшипника поплавкового гироскопа. Осуществляют формообразование фланца и опоры с полусферическими встречно обращенными рабочими поверхностями.

Изобретение относится к технике калибровки поворотно-чувствительных устройств без движущихся масс. В способе получения масштабного коэффициента волоконно-оптического гироскопа (ВОГ) осуществляют угловое перемещение ВОГ в виде его колебательного движения с заданной угловой скоростью в пределах выбранного угла качания между двумя фиксированными положениями.

Изобретение относится к измерительной технике и может быть использовано для заводских, отладочных или предварительных приемочных испытаний навигационных систем внутритрубных инспектирующих снарядов без использования действующих трубопроводов.

Изобретение относится к гироскопическим системам, которые основаны на использовании вибрационных гироскопов. В гироскопической системе, содержащей по меньшей мере четыре вибрационных гироскопа, первое измерение обеспечивается вибрационным гироскопом, подлежащим калибровке, и второе измерение обеспечивается комбинацией измерений из других вибрационных гироскопов системы.

Изобретение относится к области приборостроения и может найти применение в системах ориентации подвижных объектов. Технических результат - повышение надежности и точности. Для этого дополнительно введены АЦП, который встроен в микроконтроллер и три канала преобразования, каждый из которых содержит измерительный резистор, подключенный к последовательно соединенным фильтру, дифференциальному усилителю, ограничителю напряжения, подключенному к входу АЦП, встроенного в микроконтроллер, причем шина питания каждого ДУС подключена к источнику питания через измерительный резистор. Предложенное устройство используется в блоке ориентации интегрированной системы резервных приборов. 1 ил.

Изобретение относится к магнитному курсоуказанию и навигации и может быть использовано на летательных аппаратах для определения коэффициентов девиации, описывающих изменения напряженности магнитного поля земли (МПЗ), вносимые летательным аппаратом (ЛА) непосредственно в полете, и компенсации этих изменений при вычислении магнитного курса ψм. Способ основан на нахождении коэффициентов Пуассона, измерении компонент магнитного поля объекта и обработке результатов измерений. В качестве измеряемых компонент магнитного поля используют проекции продольной, поперечной и нормальной составляющих вектора результирующего магнитного поля на строительные оси ЛА при выполнении маневра ЛА в полете. Измерения и обработку результатов измерений производят многократно, используя метод итерации, причем обработку результатов измерений осуществляют путем определения модулей результирующих МПЗ, формирования функций чувствительности и автоматического определения на их основе приращений магнитной девиации магнитометрических датчиков. Устройство для осуществления способа содержит трехкомпонентный магнитометрический датчик 1, вычислитель 2 магнитного курса, блок 3 оценки модуля МПЗ, блок 4 формирования функций чувствительности и блок 5 определения вектора приращений коэффициентов магнитной девиации. Технический результат - упрощение определения и компенсации коэффициентов девиации, сокращение сроков подготовки ЛА к вылету, автоматическое определение коэффициентов и их компенсации при каждом вылете. 2 н.п. ф-лы, 1 ил.

Изобретение относится к области прецизионного приборостроения и может быть использовано при разработке и производстве гиромоторов с газодинамическим подвесом оси вращения ротора, состоящего из двух полусферических опорных узлов, каждый из которых содержит опору и фланец. Технический результат - расширение функциональных возможностей. Для этого в известном способе выставки зазора в газодинамическом подвесе оси вращения ротора гиромотора после предварительной сборки гиромотора с установкой опор на оси вращения ротора, фиксации опор гайками, определения величины перемещения опор в каждом из двух полусферических опорных узлов, разборки гиромотора, съема материала с внутренней базовой поверхности опор в каждом из двух полусферических опорных узлов, осуществляют окончательную сборку гиромотора с установкой опор на оси вращения ротора, фиксацию опор гайками с моментом затяжки равным Мрас. При этом после предварительной сборки гиромотора и установки опор с гайками на оси осуществляют их затяжку моментом Мдоп>М>Мрас, выдерживают в этом состоянии не менее 24 часов, уменьшают момент фиксации до нуля, повторно фиксируют опоры моментом затяжки равным Мрас, после чего измеряют расстояния между внешними базовыми плоскостями опор и между внешними базовыми плоскостями фланцев. 1 з.п. ф-лы, 2 ил.

Изобретение относится к области приборостроения и может найти применение в системах юстировки бесплатформенных инерциальных систем ориентации. Технический результат - повышение точности. Для этого определение котировочных углов рассогласования между измерительными осями бесплатформенной инерциальной системой ориентации и строительными осями объекта осуществляют без использования специальных измерительных приспособлений. А именно, юстировочные углы формируются на основе измерительных данных от инерциальной системы ориентации в двух контрольных положениях. 3 ил.

Изобретение относится к измерительной технике, а именно к средствам измерения вибрационных реактивных моментов гиромоторов. Стенд содержит подвес, камеру с возможностью закрепления гиромотора экваториальной либо полярной осями вдоль вертикальной оси подвеса, первый и второй магнитоэлектрические датчики, установленные соосно в корпусе стенда, измерительный усилитель, усилитель мощности, нагрузкой которого является обмотка второго датчика, и токоподводы, противоположные концы которых через контактные платы соединены с камерой и корпусом. При этом обмотка первого датчика соединена через измерительный усилитель со средством измерения сигнала, подвес соединен с камерой и установлен в подшипниках корпуса, токоподводы выполнены в виде пружин с возможностью изменения коэффициента жесткости. Дополнительно в конструкцию введен узкополосный фильтр, выходом соединенный с входом усилителя мощности, а входом соединенный с выходом измерительного усилителя, при этом фильтр обеспечивает усиление либо подавление отдельной гармоники сигнала с выхода измерительного усилителя. Технический результат заключается в повышении точности контроля вибраций гиромотора. 4 ил.

Изобретение относится к области приборостроения и может быть использовано для определения температурных зависимостей характеристик трехосного лазерного гироскопа (ЛГ) и маятниковых акселерометров (МА) в составе инерциальных измерительных блоков (ИИБ). Технический результат - расширение функциональных возможностей. Для этого на стенде ИИБ с трехосным ЛГ и тремя МА, оснащенными датчиками вращения, на каждом такте измерений определяют количество импульсов для каждого из трех датчиков вращения ЛГ, пропорциональное проекции вектора угла поворота ЛГ за один такт измерений на каждую из трех осей чувствительности ЛГ, определяют средние за один такт измерений значения напряжений на выходе трех МА, пропорциональные проекциям вектора кажущегося линейного ускорения на оси чувствительности МА, и средние за один такт измерений значения температуры на каждом из трех датчиков вращения трехосного ЛГ и трех МА, по которым определяют температурные зависимости всех масштабных коэффициентов ЛГ и МА. 2 ил.

Изобретение относится к области прецизионного приборостроения и может быть использовано при разработке и производстве двухстепенных поплавковых гироскопов с газодинамическим подвесом оси вращения ротора гиромотора. Технический результат - повышение точности. Для этого в известном способе определения погрешности двухстепенного поплавкового гироскопа с газодинамическим подвесом ротора гиромотора путем измерения его выходного сигнала при повороте гироскопа относительно вектора силы тяжести вокруг входной и выходной осей на 360°, при ориентации оси поворота в одном направлении, преимущественно по полуденной линии, вращение гироскопа относительно вектора силы тяжести вокруг каждой оси производят при двух частотах вращения ротора.

Изобретение относится к области измерения и может быть использовано при метрологических исследованиях навигационных приборов, использующих сигналы с вращающегося трансформатора. Технический результат заключается в расширении функциональных возможностей за счет введения режима обеспечения измерения уровня помехоустойчивости. Устройство для измерения уровня помехоустойчивости навигационных приборов, использующих сигналы с вращающегося трансформатора, содержит углозадающий узел, вал которого кинематически связан с вращающимся трансформатором и является кинематическим входом устройства и источник переменного тока. При этом дополнительно введен анализатор сигнала, подключенный к синусной и косинусной обмоткам вращающегося трансформатора, являющегося выходом устройства, трансформатор, через первичную обмотку которого источник переменного напряжения подключен к обмотке возбуждения вращающегося трансформатора, соединенные последовательно формирователь сигнала помех и буфер, выход которого подключен к вторичной обмотке трансформатора. Предложенное устройство используется для измерения уровня помехоустойчивости интегрированной системы резервных приборов. 1 ил.

Изобретение относится к гироскопической технике, а именно к способам коррекции дрейфа гироскопа с ротором на сферической шарикоподшипниковой опоре. Сущность изобретения заключается в том, что способ коррекции дрейфа гироскопа с двухфазным бесколлекторным двигателем постоянного тока, содержащего статор, ротор на сферической шарикоподшипниковой опоре, датчики угла и датчики момента, включает этапы вращения ротора, измерения дрейфа и его коррекцию, при этом коррекцию дрейфа проводят непосредственно в процессе его измерения путем компенсации постоянной составляющей электрического тока в разных обмотках статора. Устройство для коррекции дрейфа гироскопа с двухфазным бесколлекторным двигателем постоянного тока содержит сумматоры и регулировочные резисторы, сигналы с которых позволяют компенсировать постоянные составляющие электрических токов в фазных обмотках статора. Технический результат - снижение трудоемкости изготовления и повышение точности гироскопического прибора. 2 н.п. ф-лы, 2 ил.

Изобретение относится к метрологическому обеспечению - калибровке инклинометров, выполненных на основе трехосевого акселерометра. Способ предполагает при калибровке измерение проекций вектора гравитационного ускорения G ¯ на оси акселерометра при его вращении вокруг двух осей, каждый раз в четырех ортогональных положениях. По результатам измерений определяют статическую ошибку каждой оси и отношение коэффициентов чувствительностей по двум парам осей. При использовании инклинометра устанавливают акселерометр на объект исследования, проводят измерения проекций вектора гравитационного ускорения G ¯ на оси акселерометра, компенсируют их статические ошибки, нормируют различия в чувствительности осей акселерометра и вычисляют по простым соотношениям углы наклона объекта по отношению к вектору гравитационного ускорения G ¯ . Технический результат - упрощение способа калибровки акселерометрического трехосевого инклинометра. 3 ил.
Наверх