Способ калибровки акселерометрического трехосевого инклинометра



Способ калибровки акселерометрического трехосевого инклинометра
Способ калибровки акселерометрического трехосевого инклинометра
Способ калибровки акселерометрического трехосевого инклинометра
Способ калибровки акселерометрического трехосевого инклинометра

 


Владельцы патента RU 2577806:

Открытое акционерное общество "РАДИОАВИОНИКА" (RU)

Изобретение относится к метрологическому обеспечению - калибровке инклинометров, выполненных на основе трехосевого акселерометра. Способ предполагает при калибровке измерение проекций вектора гравитационного ускорения G ¯ на оси акселерометра при его вращении вокруг двух осей, каждый раз в четырех ортогональных положениях. По результатам измерений определяют статическую ошибку каждой оси и отношение коэффициентов чувствительностей по двум парам осей. При использовании инклинометра устанавливают акселерометр на объект исследования, проводят измерения проекций вектора гравитационного ускорения G ¯ на оси акселерометра, компенсируют их статические ошибки, нормируют различия в чувствительности осей акселерометра и вычисляют по простым соотношениям углы наклона объекта по отношению к вектору гравитационного ускорения G ¯ . Технический результат - упрощение способа калибровки акселерометрического трехосевого инклинометра. 3 ил.

 

Изобретение относится к метрологическому обеспечению - калибровке инклинометров, выполненных на основе трехосевого акселерометра. Такие инклинометры могут быть использованы в геофизических работах, устройствах автономной навигации и других задачах. Отличительной особенностью заявляемого изобретения является простота и дешевизна реализации.

Измерения акселерометром по осям чувствительности могут быть представлены в виде:

где:

А - результат измерения ускорения акселерометром по оси чувствительности;

G - действительное значение проекции вектора гравитационного ускорения G ¯ на ось чувствительности;

k - коэффициент чувствительности акселерометра по оси;

m - статическая ошибка акселерометра по оси (показания акселерометра при отсутствии гравитации).

Величины k и m в общем случае неизвестны, но могут быть определены при калибровке в заводских или лабораторных условиях. Однако эти характеристики изменяются со временем и зависят от условий применения. Величина вектора гравитационного ускорения G ¯ также изменяется в зависимости от места, высоты измерений и других факторов. Указанные обстоятельства не позволяют достоверно оценить и использовать результаты измерений акселерометра. У трехосевого акселерометра величины k и m по осям различны, что еще более усложняет задачу инклинометра - определение углов наклона объекта исследования. В заявляемом изобретении предлагается простой способ решения этой задачи, применимый в любых условиях.

Известны способы калибровки инклинометров [1], [2] и многие другие, заключающиеся в том, что калибруемые инклинометры устанавливаются в специальные ручные или автоматизированные установки, обеспечивающие повороты испытуемого прибора на определенные углы. Результаты сравниваются с эталонными измерениями. При необходимости проводится градуировка инклинометра путем проведения измерений при вращении прибора с выбранным шагом.

Недостатками таких способов являются высокие стоимость оборудования и трудоемкость.

Известен способ определения масштабного коэффициента акселерометра [3], заключающийся в том, что акселерометр поворачивают относительно оси на положительный и отрицательный углы и оценивают разность принятых сигналов. Такой прием позволяет устранить статическую ошибку измерений m.

Недостатком такого способа является сложность определения коэффициента чувствительности, поскольку величина вектора гравитационного ускорения G ¯ известна не точно.

Наиболее близким к заявляемому способу является способ определения угла наклона трехосевым, j=1÷3, акселерометром [4], заключающийся в том, что акселерометр устанавливают так, чтобы его первая ось, выбираемая как ось вращения, пересекалась с вектором гравитационного ускорения G ¯ , предпочтительно под углом 90°, калибруют вторую ось акселерометра, для чего вращают его вокруг первой оси, фиксируют в четырех, i=1÷4, ортогональных положениях, в каждом из которых измеряют проекции A2i вектора гравитационного ускорения G ¯ на вторую ось акселерометра, вычисляют статическую ошибку акселерометра по второй оси m2 путем усреднения измерений проекций вектора гравитации на эту ось:

Способ [4] предполагает следующую процедуру калибровки.

На Фиг. 1 приведены оси 1, 2 и 3 трехосевого акселерометра. Ось вращения 1 перпендикулярна плоскости рисунка и вектору гравитационного ускорения G ¯ , ось 2 имеет угол α с вектором гравитационного ускорения G ¯ , а его проекция на эту ось G21=Gcos(α). Тогда в соответствии с (1) в этом положении акселерометр измерит величину:

При повороте осей акселерометра 2 и 3 вокруг оси 1 на 180°, Фиг. 1С, акселерометр второй оси измерит величину:

Поскольку G23=-G21, (см. Фиг. 1А и С), получим:

Аналогичные результаты будут получены при поворотах на ±90° относительно начального положения, Фиг. 1В и D:

Здесь учтено, что G24=-G22.

Сложение результатов измерений A2i по всем четырем, i=1÷4, положениям осей позволяет получить усредненную величину статической ошибки второй оси:

Важно отметить, что результаты измерений являются наиболее точными при значениях угла α, близких к 45°. Кроме того, как показано в [4], наиболее точный результат будет получен, если ось 1 перпендикулярна вектору гравитационного ускорения G ¯ . В противном случае в качестве вектора G ¯ следует использовать его проекцию на плоскость 23 с ухудшением точности.

В [4] предлагается вести калибровку осей по очереди, однако очевидно, что описанная выше процедура калибровки может вестись одновременно для осей 2 и 3 с получением статической ошибки третьей оси m3.

Для определения коэффициентов чувствительности kj по осям в [4] предлагается использовать соотношение (1), однако, как отмечено выше, величина вектора гравитационного ускорения G ¯ известна не точно, что не позволяет получить искомые коэффициенты.

Таким образом, недостатком способа [4] является низкая точность определения коэффициентов чувствительности по осям акселерометра, а следовательно, низкая точность определения углов наклона объекта.

Задачей, решаемой заявляемым изобретением, является создание простого и дешевого способа калибровки трехосевого акселерометра для определения углов наклона объекта инклинометром.

Для решения этой задачи одновременно со второй осью аналогичным образом калибруют третью ось акселерометра с вычислением ее статической ошибки m3, вычисляют относительный k32 - коэффициент чувствительности третьей k3 и второй k2 осей акселерометра, затем устанавливают акселерометр так, чтобы выбрать в качестве оси его вращения вторую ось, и, действуя аналогично, вычисляют статическую ошибку первой оси m1 и относительный k31 - коэффициент чувствительности третьей k3 и первой k1 осей, при практических измерениях устанавливают акселерометр в требуемое положение, измеряют проекции Bj вектора гравитационного ускорения G ¯ на все оси акселерометра, устраняют статические ошибки измерений по каждой оси, нормируют измерения по всем осям с использованием относительных коэффициентов чувствительности, вычисляя углы αj между осями чувствительности акселерометра и вектором гравитационного ускорения G ¯ (углы наклона).

Существенными отличиями заявляемого способа по сравнению с прототипом являются:

Одновременно с калибровкой второй оси акселерометра аналогичным образом калибруют третью ось акселерометра с вычислением ее статической ошибки m3. Это позволяет ускорить процесс калибровки.

В прототипе оси калибруют по очереди.

Вычисление относительного k32=k3/k2 коэффициента чувствительностей третьей и второй осей акселерометра позволяет оценить степень их различия, впоследствии выровнять их чувствительности и, благодаря этому, точно определить ориентацию вектора гравитации G ¯ в этой плоскости.

Калибровка акселерометра с использованием второй оси в качестве оси вращения позволяет определить статическую ошибку первой оси m1 и относительный k31=k3/k1 коэффициент чувствительности третьей и первой осей. В итоге это позволяет выполнить калибровку акселерометра по всем осям с получением статических ошибок и относительных чувствительностей всех осей.

В прототипе делается неудачная попытка определить чувствительности k всех осей по отдельности, используя неточно известные значения вектора гравитационного ускорения G ¯ и его проекций на оси.

При практических измерениях после установки акселерометра в требуемое положение и проведения измерений проекций Bj вектора гравитационного ускорения G ¯ на все оси акселерометра устраняют статические ошибки измерений по каждой оси, нормируют измерения по всем осям и вычисляют углы наклона αj осей чувствительности акселерометра к вектору гравитационного ускорения G ¯ .

В прототипе имеется возможность скомпенсировать только статическую ошибку акселерометра.

Таким образом, главным отличием заявляемого способа по сравнению с известными авторам аналогами является то, что благодаря полученным соотношениям отпадает необходимость определения не только коэффициентов k - чувствительности по осям акселерометра, но и самого вектора гравитации G ¯ .

Заявляемое изобретение иллюстрируют следующие графические материалы.

Фиг. 1 - проекции вектора гравитационного ускорения G ¯ на оси 2 и 3 акселерометра при вращении плоскости 23.

Фиг. 2 - проекции вектора гравитационного ускорения G ¯ на оси 1, 2 и 3 акселерометра при практических измерениях углов наклона.

Фиг. 3 - углы наклона объекта относительно плоскости горизонта.

Рассмотрим возможность реализации заявляемого способа.

Для калибровки устанавливают акселерометр так, чтобы его одна ось (ось вращения), которую условно называем «первой», пересекалась с вектором гравитационного ускорения G ¯ , т.е. ось не должна совпадать с вектором G ¯ . На практике предпочтительно, чтобы первая ось была перпендикулярна вектору гравитационного ускорения G ¯ и лежала в плоскости местного горизонта. Данное требование не является категоричным. Если первая ось имеет угол наклона α1, отличный от 90°, то проекция вектора гравитационного ускорения G ¯ на плоскость 23 составит Gsin(α1). Строго математически результат калибровки не зависит от величины указанной проекции. Однако на практике при уменьшении угла α1 от 90° до 0° реальная точность измерений снижается, а при α1=0° калибровка по второй и третьей осям становится невозможной, поскольку проекция вектора G ¯ на плоскость 23 оказывается нулевой.

Оси 2 и 3 акселерометра для калибровки целесообразно развернуть под углом 45° по отношению к вектору гравитационного ускорения G ¯ . Это требование тоже не категорично, но улучшает точность калибровки.

Калибруют вторую и третью оси акселерометра, для чего вращают его вокруг первой оси, фиксируют в четырех, i=1÷4, ортогональных положениях, в каждом из которых измеряют проекции A2i и A3i вектора гравитационного ускорения G соответственно на вторую и третью оси акселерометра. Вычисляют статическую ошибку акселерометра по второй m2 и третьей m3 осям путем усреднения измерений проекций вектора гравитационного ускорения на эту ось, используя формулу вида (7).

На втором этапе калибруют первую и третью оси акселерометра, для чего выбирают в качестве оси вращения вторую ось и, действуя аналогично описанному выше, измеряют A3i и A1i и вычисляют статическую ошибку первой оси m1.

Для вычисления относительного коэффициента чувствительности по второй и третьей осям акселерометра воспользуемся следующими соображениями: найдем разности между (3) и (4), а также между (5) и (6):

После возведения в квадрат (8) и (9) и сложения получим:

Для третьей оси, действуя аналогичным образом, получим:

Если разделить (11) на (10) и извлечь квадратный корень, то получим выражение для вычисления относительного коэффициента чувствительности третьей и второй осей акселерометра:

Таким образом, для вычисления относительного коэффициента чувствительности по третьей и второй осям не требуется знания коэффициентов чувствительности k по каждой из них, а также величины и ориентации вектора гравитационного ускорения G ¯ , т.е. достаточно тех же измерений, которые были необходимы для определения статических ошибок m.

Аналогичным образом на втором этапе калибровки вычисляется относительный коэффициент чувствительности по третьей и первой осям акселерометра:

При практических измерениях - использовании откалиброванного акселерометра - устанавливают инклинометр на объект исследования и измеряют проекции Bj вектора гравитационного ускорения G ¯ на все оси акселерометра. Далее по ним определяют углы αj между вектором гравитационного ускорения G ¯ и 1, 2 и 3 осями акселерометра, Фиг. 2, используя соотношения:

В этих соотношениях, в соответствии с (1), выражения в круглых скобках (Bj-mj) обеспечивают компенсацию статических ошибок измерений по осям акселерометра. Коэффициенты относительной чувствительности k32 и k31 нормируют измерения по всем осям, устраняя различия в их чувствительности. Справедливость выражений (12) легко проверить, подставив в них:

В ряде практических приложений удобно пользоваться углами βj=(90°-αj) между осями 1, 2 и 3 акселерометра и плоскостью горизонта. Эти углы рассчитываются по формулам, аналогичным (12), с заменой функции arcctg на arctg.

Например, Фиг. 3, если объектом является неподвижный или равномерно движущийся автомобиль, то, совместив первую ось акселерометра с продольной осью автомобиля, вторую ось акселерометра - с поперечной осью, а третью направить ортогонально первым двум, в соответствии с (12) можно определить углы β1 и β2 наклона автомобиля к плоскости горизонта Н.

При технической реализации трехосевой акселерометр через соответствующие контроллеры подключают к компьютеру, который обеспечивает прием измерений на этапах калибровки инклинометра, вычисление статических ошибок и относительных коэффициентов чувствительности, а при его практическом использовании - определение углов наклона объекта.

Таким образом, заявляемый способ может быть реализован и позволяет путем несложных измерений и вычислений откалибровать инклинометр и определить углы ориентации исследуемого объекта относительно гравитационного поля Земли.

Источники информации

1. Лобанков В.М. Калибровка скважинной геофизической аппаратуры. Издательство: Уфа: «Мастер-Копи» 2011, 176 стр. http://tinref.ru/000_uchebniki/05300tehnika/003_kalibrovka_geofizich_aparaturi/015.htm.

2. Патент RU 120215.

3. С.Ф. Коновалов и др. Автоматическое оборудование для испытаний акселерометров. Сборник 4 Санкт-Петербургской международной конференции по интегрированным навигационным системам. Май, 1997 г., ISB №5-900780-13-9.

4. Определение угла наклона акселерометром, http://bitaks.com/resources/inclinometer/ugol_naklona.pdf.

Способ калибровки акселерометрического трехосевого, j=1÷3, инклинометра, заключающийся в том, что акселерометр устанавливают так, чтобы его первая ось, выбираемая как ось вращения, пересекалась с вектором гравитационного ускорения предпочтительно под углом 90°, калибруют вторую ось акселерометра, для чего вращают его вокруг первой оси, фиксируют в четырех, i=1÷4, ортогональных положениях, в каждом из которых измеряют проекции A2i вектора гравитационного ускорения на вторую ось акселерометра, вычисляют статическую ошибку акселерометра по второй оси m2 путем усреднения измерений проекций вектора гравитации на эту ось:

отличающийся тем, что одновременно со второй осью аналогичным образом калибруют третью ось акселерометра с вычислением ее статической ошибки m3, вычисляют относительный k32 - коэффициент чувствительности третьей k3 и второй k2 осей акселерометра:

затем устанавливают акселерометр так, чтобы выбрать в качестве оси его вращения вторую ось и, действуя аналогично, вычисляют статическую ошибку первой оси m1 и относительный k31 - коэффициент чувствительности третьей k3 и первой k1 осей:

при практических измерениях устанавливают акселерометр в требуемое положение, измеряют проекции Bj вектора гравитационного ускорения на все оси акселерометра, устраняют статические ошибки измерений по каждой оси, нормируют измерения по всем осям с использованием относительных коэффициентов чувствительности, вычисляя углы αj между осями чувствительности акселерометра и вектором гравитационного ускорения по формулам:




 

Похожие патенты:

Изобретение относится к гироскопической технике, а именно к способам коррекции дрейфа гироскопа с ротором на сферической шарикоподшипниковой опоре. Сущность изобретения заключается в том, что способ коррекции дрейфа гироскопа с двухфазным бесколлекторным двигателем постоянного тока, содержащего статор, ротор на сферической шарикоподшипниковой опоре, датчики угла и датчики момента, включает этапы вращения ротора, измерения дрейфа и его коррекцию, при этом коррекцию дрейфа проводят непосредственно в процессе его измерения путем компенсации постоянной составляющей электрического тока в разных обмотках статора.

Изобретение относится к области измерения и может быть использовано при метрологических исследованиях навигационных приборов, использующих сигналы с вращающегося трансформатора.

Изобретение относится к области прецизионного приборостроения и может быть использовано при разработке и производстве двухстепенных поплавковых гироскопов с газодинамическим подвесом оси вращения ротора гиромотора.

Изобретение относится к области приборостроения и может быть использовано для определения температурных зависимостей характеристик трехосного лазерного гироскопа (ЛГ) и маятниковых акселерометров (МА) в составе инерциальных измерительных блоков (ИИБ).

Изобретение относится к измерительной технике, а именно к средствам измерения вибрационных реактивных моментов гиромоторов. Стенд содержит подвес, камеру с возможностью закрепления гиромотора экваториальной либо полярной осями вдоль вертикальной оси подвеса, первый и второй магнитоэлектрические датчики, установленные соосно в корпусе стенда, измерительный усилитель, усилитель мощности, нагрузкой которого является обмотка второго датчика, и токоподводы, противоположные концы которых через контактные платы соединены с камерой и корпусом.

Изобретение относится к области приборостроения и может найти применение в системах юстировки бесплатформенных инерциальных систем ориентации. Технический результат - повышение точности.

Изобретение относится к области прецизионного приборостроения и может быть использовано при разработке и производстве гиромоторов с газодинамическим подвесом оси вращения ротора, состоящего из двух полусферических опорных узлов, каждый из которых содержит опору и фланец.

Изобретение относится к магнитному курсоуказанию и навигации и может быть использовано на летательных аппаратах для определения коэффициентов девиации, описывающих изменения напряженности магнитного поля земли (МПЗ), вносимые летательным аппаратом (ЛА) непосредственно в полете, и компенсации этих изменений при вычислении магнитного курса ψм.

Изобретение относится к области приборостроения и может найти применение в системах ориентации подвижных объектов. Технических результат - повышение надежности и точности.

Изобретение относится к навигационной технике и может быть использовано для контроля гиростабилизированных платформ инерциальной системы космического назначения при заводских и предпусковых испытаниях систем управления ракетоносителей, разгонных блоков, космических и летательных аппаратов.

Изобретение относится к области приборостроения и может быть использовано при производстве твердотельных волновых гироскопов и систем ориентации и навигации на их основе. При определении масштабного коэффициента твердотельный волновой гироскоп устанавливают на платформу поворотного стола и при работе гироскопа в разомкнутом режиме вращают равномерно платформу поворотного стола в одном направлении, контролируя угол поворота волны резонатора относительно корпуса гироскопа системой его датчиков угла на выбранном угловом промежутке. Затем изменяют направление вращения платформы на противоположное и измеряют изменения углового положения волны на выбранном промежутке, после чего, используя значения скоростей дрейфа волны при прямом и обратном вращении, определяют масштабный коэффициент с помощью аналитического выражения. Изобретение обеспечивает повышение точности определения масштабного коэффициента.

Изобретения относятся к области навигации летательных аппаратов (ЛА) и могут быть использованы для определения контрольных значений параметров пространственно-угловой ориентации ЛА при летных испытаниях пилотажно-навигационного оборудования (ПНО). Технический результат - расширение функциональных возможностей. Для этого при испытаниях ПНО осуществляют прием и обработку измерений инерциальной навигационной системы (ИНС), корректирование данных ИНС автономным средством и радионавигационное корректирование данных ИНС спутниковой навигационной системой (СНС) на основе базовой корректирующей станции (БКС) или контрольной корректирующей станции (ККС), измерения высоты полета воздушным датчиком или системой (ВДС), осуществляют аэрофотосъемку земной поверхности цифровым аэрофотоаппаратом, а также для формирования ортопланов при отсутствии топографических карт - лазерную съемку земной поверхности бортовым лазерным локатором. При этом для комплексной обработки информации (КОИ) в процессе и после полета, а именно, для предварительной обработки измерительной информации в блоке (ПОИИ), обеспечивают формирование векторов измерений (ФВИ) с контролем для защиты фильтра Калмана, оценки погрешностей ИНС (ОП ИНС) при использовании модифицированного фильтра Калмана, вычисления навигационных параметров (ВНП) с одновременным подключением к нему второго выхода блока ПОИИ. 2 н. и 2 з.п.ф-лы, 4 ил.

Группа изобретений относится к установке и работе инерционных датчиков, таких как, например, датчики пространственного положения (гироскопы) или датчики движения (акселерометры) на борту транспортного средства. Техническим результатом является уменьшение погрешности измерений. В способе осуществляют калибровку устройства (S) инерционного датчика, установленного в произвольной позиции на борту транспортного средства (V), на основе формирования (200-500) матрицы (R) преобразования, приспособленной преобразовывать реально измеренные данные динамических параметров транспортного средства (V), найденных в локальной системе (x, y, z) координат, в данные, указывающие динамические параметры транспортного средства (V) в системе (X, Y, Z) координат транспортного средства, причем значение каждого элемента матрицы (R) преобразования модифицируют посредством наложения ограничения ортогональности (600) матрицы. 2 н. и 13 з.п. ф-лы, 6 ил.

Изобретение относится к области приборостроения и может быть использовано при изготовлении роторов электростатических гироскопов. Способ предназначен для использования при изготовлении роторов чувствительных элементов электростатических гироскопов. Процесс изготовления ротора включает формообразование сферической заготовки ротора, его балансировку, нанесение тонкопленочного износостойкого покрытия и выполнение на этом покрытии растрового рисунка. Вначале частично устраняют исходный дисбаланс ротора методом направленной доводки трубчатым притиром, причем балансировку производят до получения требуемого конечного диаметра ротора, а зону съема материала определяют исходя из величины и направления вектора исходного дисбаланса, задавая преимущественное уменьшение радиальной составляющей этого вектора. На втором этапе окончательную балансировку осуществляют посредством выполнения на поверхности ротора двух соосных диаметрально разнесенных выемок с заданной величиной массы удаляемого из каждой выемки материала. При этом в большей мере устраняется осевая составляющая полученного на первом этапе промежуточного дисбаланса, что определяется углом наклона оси выполняемых выемок к оси симметрии ротора, а выемки выполняют на сферической поверхности шаровых сегментов за пределами зоны растрового рисунка ротора. Технический результат заключается в расширении технологических возможностей и повышении стабильности процесса изготовления ротора электростатического гироскопа, в том числе в части повышения равномерности толщины покрытия. 3 ил.
Наверх