Способ изготовления сверхпроводящих наноэлементов с туннельными или джозефсоновскими переходами



Способ изготовления сверхпроводящих наноэлементов с туннельными или джозефсоновскими переходами
Способ изготовления сверхпроводящих наноэлементов с туннельными или джозефсоновскими переходами
Способ изготовления сверхпроводящих наноэлементов с туннельными или джозефсоновскими переходами

 


Владельцы патента RU 2541679:

Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт" (RU)

Использование: для изготовления сверхпроводниковых туннельных или джозефсоновских переходов. Сущность изобретения заключается в том, что способ изготовления сверхпроводящих наноэлементов с туннельными или джозефсоновскими переходами включает формирование нанопроводов из веществ, обладающих сверхпроводящими свойствами, и преобразование их в несверхпроводящие в выбранных разделительных участках заданной ширины за счет селективного изменения атомного состава путем воздействия пучком ускоренных частиц через защитную маску с заданным рельефом. Технический результат: обеспечение возможности повышения производительности. 8 з.п. ф-лы, 2 ил.

 

Изобретение относится к области сверхпроводниковой микроэлектроники, в частности к изготовлению сверхпроводниковых туннельных или джозефсоновских переходов, структур типа сверхпроводник-изолятор-сверхпроводник или любых других, и может быть использовано в электротехнической, радиотехнической, медицинской и других отраслях промышленности, в частности для создания систем «read out» криогенных детекторов.

Технология изготовления сверхпроводниковых туннельных переходов, джозефсоновских переходов, структур типа сверхпроводник-изолятор-сверхпроводник (СИС), структур сверхпроводник-изолятор-нормальный металл (СИН), болометров на холодных электронах описывается в RU 2442246 [1]. Способ изготовления устройств с тонкопленочными сверхпроводниковыми переходами предусматривает нанесение поддерживающего и основного резиста, экспозицию, проявление этих слоев резиста, напыление первого слоя нормального металла или сверхпроводника под прямым углом к подложке, окисление для формирования туннельного барьера, напыление второго слоя пленки сверхпроводника под углом к нормали, взрывание резиста. Напыление верхней пленки сверхпроводника производится под двумя разными углами +φ и -φ с разных сторон от нормали так, что обе пленки сверхпроводника перекрывают необходимый зазор и образуют единый сверхпроводящий слой. Между нормальным металлом и сверхпроводником формируется туннельный контакт, при этом углы нанесения выбирают по формуле tg≤φ t/(L+w), где t=t1+t2 - суммарная толщина двухслойного резиста, w - ширина нижнего электрода, L - глубина подтрава. Недостатком известного способа является то, что он обеспечивает формирование переходов относительно большой площади. Кроме того, как и во всех литографических процессах возникает проблема совмещения топологий на различных стадиях процесса.

Известен способ формирования пленочного микромостика, включающий нанесение пленки ВТСП-материала и формирование путем фотолитографии дорожки со слабой связью, сверхпроводимость в области слабой связи дополнительно подавляют облучением дорожки сфокусированным электронным лучом (RU 2080693 [2]). В результате поперек дорожки формируется узкая, шириной 0,8-1 мкм, область с подавленной сверхпроводимостью. Недостатком данного способа является то, что размер активной зоны велик. Устойчивые и воспроизводимые технические характеристики в подобных устройствах достигаются при размерах активной зоны менее 100 нм.

Известен способ изготовления сверхпроводникового туннельного перехода (US 5885937 [3]). В качестве барьерного слоя используются Bi2Sr2(Ca0.6Y0.4)Cu2O8, Bi2Sr2Cu2O6 и Bi2Sr2CaCu2O8. В качестве сверхпроводниковых электродов используются YSr2Cu2.7Re0.3O7, Sr2CaCu2O6 и (La0.9Sr0.1)2CuO4. Переход осуществлен в направлении с-оси. Полученная по этому способу сверхпроводниковая структура является многослойной, что, в свою очередь, делает трудоемким и дорогостоящим технологический процесс изготовления. Ухудшается воспроизводимость параметров структур.

Наиболее близким техническим решением является способ изготовления перехода Джозефсона, включающий ионное легирование перехода примесью, подавляющей сверхпроводимость. Формирование окон для легирования выполняют с помощью "протаскивания иглы" атомно-силового микроскопа, при этом время имплантации выбирается с учетом свойств имплантанта, сверхпроводника и параметров обработки по формуле

где j - плотность ионного тока, dC - толщина пленки ВТСП, hC - толщина мостика Джозефсона, R X - эффективная проекция пробега иона, характеризующая глубину легирования, Δ R X - среднеквадратичное отклонение от R X , Nкр - концентрация примеси, подавляющей ВТСП (RU 2376686[4]).

Недостатком известного способа является малая производительность, что обусловлено использованием атомно-силового микроскопа, с помощью которого операции выполняются индивидуально над каждым формируемым переходом.

Заявляемый способ изготовления сверхпроводящих пленарных наноэлементов в виде нанопроводов с туннельными или джозефсоновскими переходами направлен на повышение производительности.

Указанный результат достигается тем, что способ изготовления сверхпроводящих наноэлементов с туннельными или джозефсоновскими переходами включает формирование нанопроводов из веществ, обладающих сверхпроводящими свойствами, и преобразование их в несверхпроводящие в выбранных разделительных участках заданной ширины за счет селективного изменения атомного состава путем воздействия пучком ускоренных частиц через защитную маску с заданным рельефом.

Указанный результат достигается также тем, что нанопровод формируют из нитрида ниобия, а преобразование выбранных разделительных участков в несверхпроводящие осуществляют путем селективного удаления атомов азота путем воздействия пучком ускоренных протонов или атомов водорода через защитную маску с заданным рельефом.

Указанный результат достигается также тем, что нанопровод формируют из нитрида ниобия, а преобразование выбранных разделительных участков в несверхпроводящие осуществляют путем селективного замещения атомов азота на атомы кислорода путем воздействия пучком ускоренных протонов или атомов водорода и ионов или атомов кислорода через защитную маску с заданным рельефом.

Указанный результат достигается также тем, что нанопровод формируют из нитрида ниобия, а преобразование выбранных разделительных участков в несверхпроводящие осуществляют путем селективного удаления атомов азота путем воздействия пучком ускоренных протонов или атомов водорода через защитную маску с заданным рельефом в присутствии кислорода в реакционном объеме.

Указанный результат достигается также тем, что нанопровод формируют из карбида ниобия, а преобразование выбранных разделительных участков в несверхпроводящие осуществляют путем селективного замещения атомов углерода на атомы кислорода путем воздействия пучком ускоренных протонов или атомов водорода и ионов или атомов кислорода через защитную маску с заданным рельефом.

Указанный результат достигается также тем, что нанопровод формируют из карбида ниобия, а преобразование выбранных разделительных участков в несверхпроводящие осуществляют путем селективного удаления атомов углерода путем воздействия пучком ускоренных протонов или атомов водорода через защитную маску с заданным рельефом.

Указанный результат достигается также тем, что нанопровод формируют из карбида ниобия, а преобразование выбранных разделительных участков в несверхпроводящие осуществляют путем селективного замещения атомов углерода на атомы кислорода путем воздействия ускоренных протонов или атомов водорода через защитную маску с заданным рельефом в присутствии кислорода в реакционном объеме.

Указанный результат достигается также тем, что облучение нанопровода осуществляют пучком ускоренных частиц через защитную маску, наклоненную под углом к оси пучка.

Указанный результат достигается также тем, что в качестве ускоренных частиц используют протоны или атомы водорода.

Указанный результат достигается также тем, что в качестве пучка ускоренных частиц смешанного состава используют пучки, содержащие протоны или атомы водорода и ионы или атомы кислорода.

Указанный результат достигается также тем, что энергию частиц и время воздействия ускоренным пучком на выбранные участки нанопровода подбирают расчетным путем или экспериментально в зависимости от вещества нанопровода и требуемого состава разделительного несверхпроводящего участка.

Преобразование участков нанопровода, выполненных из веществ, обладающих сверхпроводящими свойствами в несверхпроводящие в выбранных разделительных участках заданной ширины за счет селективного изменения атомного состава путем воздействия пучком ускоренных частиц через защитную маску с заданным рельефом, позволяет за одну операцию и одновременно сформировать все туннельные или джозефсоновские переходы, наличие которых предусмотрено схемным решением изготавливаемого прибора, что обеспечивает высокую производительность процесса. Облучение через участки маски сформированной на нанопроводах потоком ускоренных протонов или атомов водорода или протонов или атомов водорода и ионов или атомов кислорода позволяет обеспечить преобразование этих участков нанопровода, выполненных из веществ, обладающих сверхпроводящими свойствами в несверхпроводящие. Наиболее целесообразным представляется использовать в различных вариантах реализации предлагаемого способа для формирования нанопроводов из нитрида ниобия или из карбида ниобия и, соответственно, обеспечивать селективное удаление атомов азота или атомов углерода или обеспечивать селективную замену атомов азота на атомы кислорода или атомов углерода на атомы кислорода. В частных случаях реализации целесообразно осуществлять облучение нанопровода пучком ускоренных частиц через защитную маску, наклоненную под углом к оси пучка. Это позволяет даже при относительно «больших» размерах окон в защитной маске с заданным рельефом существенно уменьшить размеры подвергаемых преобразованию участков.

Наиболее эффективно использовать для преобразования веществ, обладающих сверхпроводящими свойствами в несверхпроводящие путем использования в качестве ускоренных частиц протонов или атомов водорода. Для того чтобы эффективно осуществлять указанные преобразования, целесообразно энергию частиц и время воздействия ускоренным пучком на выбранные участки нанопровода подбирать расчетным путем или экспериментально в зависимости от вещества нанопровода и требуемого состава разделительного несверхпроводящего участка. Предлагаемый метод отличается от уже имеющихся, прежде всего, пленарным представлением туннельной структуры, что дает свое преимущество за счет существенного уменьшения паразитных емкостей (согласно теории туннельных переходов).

Данный метод позволяет создавать сверхпроводниковые туннельные структуры с различным барьерным слоем, а именно условия облучения позволяют управлять электрическими свойствами барьерного слоя, то есть материал может проявлять себя как диэлектрик или как металл.

Также данный метод является технологически простым, так как исключает множество стандартных технологических операций, которые, в свою очередь, очень сильно влияют на выход годных и на производительность технологии.

Сущность заявляемого способа поясняется примерами осуществления и графическими материалами, поясняющими процесс реализации.

На фиг.1 представлены схематично (в плане и в разрезе) некоторые стадии процесса реализации: а) заготовка со сформированными нанопроводами; б) заготовка с нанесенной маской; в) заготовка со сформированными с туннельными или джозефсоновскими переходами и удаленной маской. На фиг.2 показан вариант реализации способа с облучением нанопровода, осуществляемого пучком ускоренных частиц через защитную маску, наклоненную под углом к оси пучка (направление потока ускоренных частиц показано стрелками).

Пример 1. В самом общем случае способ осуществляется следующим образом. Заготовка 1 со сформированными в ней или на ней любым из известных способов нанопроводами 2 из сверхпроводящего вещества, поверх которых нанесена защитная маска 3 с выполненными в ней окнами 4, помещается в рабочую камеру, где подвергают облучению пучком ускоренных частиц. В результате облучения в веществе нанопровода происходит селективное изменение атомного состава сверхпроводящего вещества, что приводит к переходу этого вещества в несверхпроводящее состояние. Таким образом, туннельный или джозефсоновский переход 5 оказывается сформированным.

Пример 2. Способ реализовывался следующим образом. В камере технологической установки на подложкодержателе устанавливается подложка (заготовка) 1 с изготовленными на ней нанопроводами из нитрида ниобия 2, заданные участки которого преобразуются под воздействием потока ускоренных протонов.

Поверх размещается маска 3 с требуемым рисунком, изготавливаемая по любой из известных технологий. Заготовка облучается протонами с расчетной энергией в диапазоне 0,1-4,5 кэВ до дозы, соответствующей минимальному значению, достаточному для требуемого частичного или полного удаления атомов азота из нитрида ниобия без маски. Соответствующее значение минимальной дозы облучения определяется заранее экспериментальным или расчетным путем. В результате взаимодействия материала с потоком ускоренных частиц под окнами 4 в маске 3 происходит требуемый частичный или полный переход нитрида ниобия в ниобий, т.е. переход в несверхпроводящее состояние при рабочей температуре. Таким образом, туннельный или джозефсоновский переход 5 оказывается сформированным.

Пример 3. Способ реализовывался следующим образом. В камере технологической установки на подложкодержателе устанавливается подложка (заготовка) 1 с изготовленными на ней нанопроводами из нитрида ниобия 2, заданные участки которого преобразуются под воздействием пучка ускоренных ионов и атомов водорода и кислорода. Поверх размещается маска 3 с требуемым рисунком, изготавливаемая по любой из известных технологий. Заготовка облучается атомами водорода с расчетной энергией в диапазоне 0,1-4,5 кэВ до дозы, соответствующей минимальному значению, достаточному для требуемого частичного или полного замещения атомов азота на атомы кислорода в участках нитрида ниобия, не покрытых маской. Соответствующее значение минимальной дозы облучения определяется заранее экспериментальным или расчетным путем. В результате взаимодействия материала с потоком ускоренных частиц смешанного состава под окнами 4 в маске 3 происходит переход нитрида ниобия в оксид ниобия, т.е. переход в несверхпроводящее состояние. Таким образом, туннельный или джозефсоновский переход 5 оказывается сформированным.

Пример 4. Способ реализовывался следующим образом. В камере технологической установки на подложкодержателе устанавливается подложка (заготовка) 1 с изготовленными на ней нанопроводами из нитрида ниобия 2, заданные участки которого преобразуются под воздействием потока ускоренных частиц.

Поверх размещается маска 3 с требуемым рисунком, изготавливаемая по любой из известных технологий. Заготовка облучается ускоренными частицами в присутствии кислорода с расчетной энергией, соответствующей минимальному значению, достаточному для частичного или полного замещения атомов азота из нитрида ниобия на атомы кислорода на участках, не закрытых маской. Соответствующее значение минимальной дозы облучения определяется заранее экспериментальным или расчетным путем. В результате взаимодействия материала с потоком ускоренных частиц, под окнами 4 в маске 3 происходит частичный или полный переход нитрида ниобия в оксид ниобия, т.е. переход в несверхпроводящее состояние. Таким образом, туннельный или джозефсоновский переход 5 оказывается сформированным.

Пример 5. Способ реализовывался следующим образом. В камере технологической установки на подложкодержателе устанавливается подложка (заготовка) 1 с изготовленными на ней нанопроводами из карбида ниобия 2, заданные участки которого преобразуются под воздействием потока ускоренных протонов.

Поверх размещается маска 3 с требуемым рисунком, изготавливаемая по любой из известных технологий. Заготовка облучается протонами с расчетной энергией в диапазоне 0,1-4,5 кэВ до дозы, соответствующей минимальному значению, достаточному для частичного или полного удаления атомов углерода из карбида ниобия на участках, не защищенных маской. Соответствующее значение минимальной дозы облучения определяется заранее экспериментальным или расчетным путем. В результате взаимодействия материала с потоком ускоренных частиц под окнами 4 в маске 3 происходит частичный или полный переход карбида ниобия в ниобий, т.е. переход в несверхпроводящее состояние при рабочей температуре. Таким образом, туннельный или джозефсоновский переход 5 оказывается сформированным.

Пример 6. Способ реализовывался следующим образом. В камере технологической установки на подложкодержателе устанавливается подложка (заготовка) 1 с изготовленными на ней нанопроводами из карбида ниобия 2, заданные участки которого преобразуются под воздействием потока ускоренных атомов водорода в присутствии кислорода.

Поверх размещается маска 3 с требуемым рисунком, изготавливаемая по любой из известных технологий. Заготовка облучается атомами водорода в присутствии кислорода с расчетной энергией в диапазоне 0,1-4,5 кэВ до дозы, соответствующей минимальному значению, достаточному для требуемого частичного или полного удаления атомов азота из карбида ниобия на участках, не защищенных маской. Соответствующее значение минимальной дозы облучения определяется заранее экспериментальным или расчетным путем. В результате взаимодействия материала с потоком ускоренных частиц под окнами 4 в маске 3 происходит частичный или полный переход карбида ниобия в оксид ниобия, т.е. переход в несверхпроводящее состояние. Таким образом, туннельный или джозефсоновский переход 5 оказывается сформированным.

Пример 7. Способ реализовывался следующим образом. В камере технологической установки на подложкодержателе устанавливается подложка (заготовка) 1 с изготовленными на ней нанопроводами из карбида ниобия 2, заданные участки которого преобразуются под воздействием потока ускоренных протонов или атомов водорода и ионов или атомов кислорода. Поверх размещается маска 3 с требуемым рисунком, изготавливаемая по любой из известных технологий. Заготовка облучается смешанным пучком протонов и ионов кислорода с расчетной энергией в диапазоне 0,1-4,5 кэВ до дозы, соответствующей минимальному значению, достаточному для требуемого частичного или полного замещения атомов углерода на атомы кислорода в карбиде без маски. Соответствующее значение минимальной дозы облучения определяется заранее экспериментальным или расчетным путем. В результате взаимодействия материала с потоком ускоренных частиц смешанного состава под окнами 4 в маске 3 происходит переход карбида ниобия в оксид ниобия, т.е. переход в несверхпроводящее состояние. Таким образом, туннельный или джозефсоновский переход 5 оказывается сформированным.

1. Способ изготовления сверхпроводящих наноэлементов с туннельными или джозефсоновскими переходами, включающий формирование нанопроводов из веществ, обладающих сверхпроводящими свойствами, и преобразование их в несверхпроводящие в выбранных разделительных участках заданной ширины за счет селективного изменения атомного состава путем воздействия пучком ускоренных частиц через защитную маску с заданным рельефом.

2. Способ по п.1, отличающийся тем, что нанопровод формируют из нитрида ниобия, а преобразование выбранных разделительных участков в несверхпроводящие осуществляют путем селективного удаления атомов азота путем воздействия пучком ускоренных протонов или атомов водорода через защитную маску с заданным рельефом.

3. Способ по п.1, отличающийся тем, что нанопровод формируют из нитрида ниобия, а преобразование выбранных разделительных участков в несверхпроводящие осуществляют путем селективного замещения атомов азота на атомы кислорода путем воздействия пучком ускоренных протонов или атомов водорода и ионов или атомов кислорода через защитную маску с заданным рельефом.

4. Способ по п.1, отличающийся тем, что нанопровод формируют из нитрида ниобия, а преобразование выбранных разделительных участков в несверхпроводящие осуществляют путем селективного удаления атомов азота путем воздействия пучком ускоренных протонов или атомов водорода через защитную маску с заданным рельефом в присутствии кислорода в реакционном объеме.

5. Способ по п.1, отличающийся тем, что нанопровод формируют из карбида ниобия, а преобразование выбранных разделительных участков в несверхпроводящие осуществляют путем селективного удаления атомов углерода путем воздействия пучком ускоренных протонов или атомов водорода через защитную маску с заданным рельефом.

6. Способ по п.1, отличающийся тем, что нанопровод формируют из карбида ниобия, а преобразование выбранных разделительных участков в несверхпроводящие осуществляют путем селективного замещения атомов углерода на атомы кислорода путем воздействия пучком ускоренных протонов или атомов водорода и ионов или атомов кислорода через защитную маску с заданным рельефом.

7. Способ по п.1, отличающийся тем, что нанопровод формируют из карбида ниобия, а преобразование выбранных разделительных участков в несверхпроводящие осуществляют путем селективного замещения атомов углерода на атомы кислорода путем воздействия ускоренных протонов или атомов водорода через защитную маску с заданным рельефом в присутствии кислорода в реакционном объеме.

8. Способ по п.1, отличающийся тем, что облучение нанопровода осуществляют пучком ускоренных частиц через защитную маску, наклоненную под углом к оси пучка.

9. Способ по п.1, отличающийся тем, что энергию частиц и время воздействия ускоренным пучком на выбранные участки нанопровода подбирают расчетным путем или экспериментально в зависимости от вещества нанопровода и требуемого состава разделительного несверхпроводящего участка.



 

Похожие патенты:

Изобретение относится к области металлургии, в частности к получению сверхпроводящего материала в виде покрытия, и может быть использовано при изготовлении экранов электронных схем от воздействия электромагнитного и ионизирующего излучений в энергетике, транспорте, связи, приборостроении, в ракетной и аэрокосмической отраслях промышленности.

Изобретение относится к способам формирования методом лазерного напыления сверхпроводящих ультратонких пленок сложного металлооксидного соединения состава YBa2Cu3O7-x путем оптимизации параметров лазерного излучения и условий постростового отжига в напылительной камере.

Использование: для получения высокотемпературных сверхпроводников и изготовления высокочувствительных приемников электромагнитного излучения. Сущность изобретения заключается в том, что способ включает в себя формирование пленки из высокотемпературного сверхпроводящего материала, который представляет собой монофазный текстурированный сверхпроводник состава (Bi,Pb)2Sr2Ca2Cu3O10, на диэлектрической подложке методом магнетронного распыления из мишени, изготовление чувствительного элемента, антенны и подводящих линий выполняется в едином процессе на одном слое образованной пленки ВТСП (Bi,Pb)2Sr2Ca2Cu3O10.

Изобретение относится к способам формирования сверхпроводящих пленок с двух сторон диэлектрических подложек. Изобретение обеспечивает создание однородных по толщине сверхпроводящих пленок с двух сторон подложки в одном технологическом цикле.

Изобретение относится к формированию на диэлектрических подложках золотых контактных площадок к пленкам YBa2Cu3O7-х. Изобретение обеспечивает получение качественных золотых контактных площадок к сверхпроводящим пленкам.

Изобретение относится к способам формирования методом лазерного напыления сверхпроводящих пленок. Изобретение обеспечивает получение на золотом буферном подслое сверхпроводящих пленок с высокими токонесущими свойствами, обеспечивающими значения плотности сверхпроводящего критического тока не ниже 105 А/см2.

Изобретение относится к технологии криоэлектроники и может быть использовано при изготовлении высокотемпературных сверхпроводящих (ВТСП) схем. Техническим результатом изобретения является повышение качества ВТСП схем, увеличение их температурного рабочего диапазона, повышение удельного сопротивления ВТСП материала в нормальном состоянии путем введения ферромагнитной примеси в ВТСП пленку при электроискровой обработке отрицательными импульсами, мощность которых находится из заявленного соотношения.

Изобретение относится к сборке из металлических элементов, составляющей заготовки для сверхпроводника. Сборка содержит, по меньшей мере, один проводниковый элемент, адаптированный для обеспечения сверхпроводящей нити в конечном сверхпроводнике, и по меньшей мере один легирующий элемент, обеспечивающий источник легирования для легирования проводникового элемента, и источник олова.

Изобретение относится к области высокотемпературной сверхпроводимости и может использоваться для изготовления ленточных высокотемпературных сверхпроводников второго поколения.

Изобретение относится к электричеству, к электрофизике и теплопроводности материалов, к явлению нулевого электрического сопротивления, т.е. к гиперпроводимости, и нулевого теплового сопротивления, т.е.

Изобретение относится к области преобразования электрической энергии в тепловую посредством дугового разряда в генераторе низкотемпературной плазмы (плазмотроне) и может быть использовано в энергетике для розжига и подсветки пылеугольного факела в топочных устройствах, в металлургической и химической промышленности, для получения ультрадисперсной сажи, которая является сырьем для получения наноструктурированного технического углерода.

Группа изобретений относится к области нанотехнологий, в частности к технологиям получения углеродных наноструктур и наноматериалов для применения в качестве подложек для нанесенных катализаторов, высокопрочных наполнителей, и касается полых углеродных наночастиц, углеродного наноматериала и способа его получения.

Автоматизированная технологическая линия для поверхностной модификации наночастицами серебра полимерного волокнистого материала предназначена для получения антибактериального фильтровального материала.

Изобретение относится к способу получения биосовместимых высокодисперсных полилактидных частиц для in situ изготовления диагностических средств для позитронно-эмиссионной томографии посредством объединения указанных частиц с раствором, содержащим катионы галлия-68 (III).

Изобретение относится к нанотехнологии и может применяться при изготовлении планарных двухэлектродных резистивных элементов запоминающих устройств. Способ получения резистивного элемента памяти включает в себя создание проводящих электродов на непроводящей подложке, напыление в зазор между электродами металлической пленки и последующий термический отжиг пленки.

Изобретение может быть использовано при изготовлении люминесцентных материалов для лазеров, светодиодов, солнечных батарей и биометок. В реактор загружают 2,5-5% раствор желатина в дистиллированной воде при температуре 20-30°C, нагревают его до 40-90°C и заливают 96%-этанол в количестве 2,5% от объема раствора желатина.

Изобретение относится к области нанотехнологии, а именно к полимерным композиционным материалам с нанонаполнителями. Способ включает дезагрегацию наноразмерных частиц путем разбиения агрегатов наноразмерных частиц и последующее модифицирование полимерного материала наноразмерными частицами.

Изобретение относится к электролитическому способу получения наноразмерного порошка гексаборида церия, включающему синтез гексаборида церия из расплавленных сред в атмосфере очищенного и осушенного аргона.

Изобретение относится к способу формирования тонкопленочного защитного покрытия на базисах съемных зубных протезов, обтураторах и компонентах челюстно-лицевых протезов и может найти применение в стоматологии.

Использование: для формирования наноточек на поверхности кристалла. Сущность изобретения заключается в том, что осуществляют конденсацию на поверхность подложки материала, предназначенного для формирования наноточек, при этом в вакууме получают скол монокристалла, который используют в качестве подложки, на которой создают регулярно расположенные точечные дефекты, для чего наносят на поверхность подложки резист, далее поверхность подложки экспонируют через шаблон электромагнитным излучением, после чего удаляют облученные участки резиста, далее облучают поверхность подложки жестким электромагнитным излучением для образования точечных дефектов в местах, где удален резист, затем на поверхность подложки проводят конденсацию материала, предназначенного для формирования наноточек, в течение времени tкр, необходимого для получения наноточек диаметром dp, при этом повышают температуру подложки до значения, априори достаточного для обеспечения роста зародышей конденсата на созданных точечных дефектах и отсутствия зародышей между этими дефектами, после чего удаляют остатки резиста.

Изобретение относится к измерительной технике и может быть использовано для измерения давления жидких и газообразных средств. Датчик содержит корпус, установленную в нем нано- и микроэлектромеханическую систему (НиМЭМС), состоящую из упругого элемента - мембраны с жестким центром, с периферийным основанием в виде оболочки вращения, образованной на ней гетерогенной структуры из тонких пленок материалов, в которой сформированы контактные площадки, первые радиальные тензорезисторы из одинаковых тензоэлементов, расположенных по одной окружности мембраны, и вторые радиальные тензорезисторы из одинаковых тензоэлементов, расположенных по другой окружности на мембране, соединенные перемычками, включенные в измерительный мост. Радиус жесткого центра определен из соотношения: rж.ц.=0,42rм, где rм - радиус мембраны. При этом тензоэлементы первых радиальных тензорезисторов расположены по окружности, радиус которой определен из соотношения r1=0,444rм, а тензоэлементы вторых радиальных тензорезисторов расположены по окружности, радиус которой определен из соотношения r2=0,733 rм. Техническим результатом изобретения является повышение точности за счет повышения чувствительности при одновременном уменьшении нелинейности. 5 ил.
Наверх