Способ определения границ защищенных зон в лавах угольных пластов



Способ определения границ защищенных зон в лавах угольных пластов
Способ определения границ защищенных зон в лавах угольных пластов

 


Владельцы патента RU 2542068:

федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный минерально-сырьевой университет "Горный" (RU)

Изобретение относится к горному делу, а именно к повышению безопасности ведения горных работ. Технический результат достигается тем, что измерение относительного изменения радиационной температуры поверхности забоя пласта осуществляют дистанционно с расстояния 1,0-1,5 м через 3-5 м по длине лавы, при этом в каждой точке измерения к учету принимают среднее значение, полученное не менее чем в 30 циклах измерений, а границей защищенной зоны принимают расстояние от линии примыкания пласта к выработанному пространству до точки фиксации стабилизации значения радиационной температуры. В способе определения границ защищенных зон в лавах угольных пластов осуществляется дистанционное измерение относительного изменения радиационной температуры (интенсивности инфракрасного излучения) поверхности забоя пласта. Первый замер производится в точке на расстоянии 3-5 м от ниши или от штрека, последующие точки измерения располагаются на равном расстоянии через 3-5 м по длине лавы. В каждой точке измерения выполняется не менее 5 точечных замеров. После выполнения каждого цикла измерений для каждой точки в цикле рассчитываются средние значения. По средним значениям не менее чем 30 циклов измерений строится график относительного изменения радиационной температуры поверхности забоя пласта по длине лавы и фиксируется точка ее стабилизации, которая и является границей защищенной зоны. 1 ил.

 

Изобретение относится к горному делу, а именно к повышению безопасности ведения горных работ.

Известен способ определения размеров безопасной зоны разгрузки в призабойной части выбросоопасных угольных пластов по результатам поинтервальных измерений начальной скорости газовыделения из шпуров, в пределах которой разрешается вести выемку угля узкозахватными комбайнами по односторонней схеме или стругами без применения прогноза или противовыбросных мероприятий («Инструкция по безопасному ведению горных работ на угольных пластах, опасных по внезапным выбросам угля (породы) и газа.» РД 05-350-00).

Недостатком данного способа является постоянная по мере подвигания очистного забоя необходимость его применения, что приводит к дополнительным трудовым и временным (выделению специальной рабочей смены) затратам.

Известен способ расчета и построения защищенных, незащищенных зон и зон ПГД при отработке защитных пластов («Инструкция по безопасному ведению горных работ на шахтопластах, разрабатывающих угольные пласты, склонные к горным ударам» РД 05-328-99), включающий графическое построение размеров зон на основании эмпирических коэффициентов, учитывающих: глубину разработки защитного пласта; вынимаемую мощность; принятый способ управления кровлей; угол падения; процентное содержание песчаников в составе междупластья; размеры очистной выработки.

Недостатком данного способа является использование эмпирических коэффициентов в графическом построении, которые не учитывают многообразие горногеологических и горнотехнических условий ведения горных работ и иногда приводят к ошибочным результатам, особенно при вторичной защите.

Известен способ определения безопасных зон выбросоопасного угольного пласта («Инструкция по безопасному ведению горных работ на пластах, опасных по внезапным выбросам угля, породы и газа. - М: ИГД им. А.А. Скочинского. 1989 г. - 192 с.), включающий бурение контрольных шпуров, поинтервальное определение начальной скорости газовыделения, учет времени существования выработанного пространства вышележащего этажа и глубину разработки. При этом число циклов измерений должно быть не менее 30.

Недостатком данного способа является невозможность его использования в уже действующих очистных забоях после первичной посадки пород основной кровли. Кроме того, способ не может быть применен в лавах, отрабатываемых столбами по восстанию (падению), а также при комбинированной системе разработки.

Известен способ определения невыбросоопасной зоны для крутопадающих пластов в лавах уступной формы при поэтажной разработке (Авторское свидетельство №1395838, опубл. 15.05.1988 г.), включающий бурение контрольных шпуров во внутренних углах уступов по мере подвигания лавы, поинтервальные измерения начальной скорости газовыделения, фиксацию линии шпуров, где произошла стабилизация средней суммарной скорости газовыделения, и определение расстояния до линии примыкания к выработанному пространству предыдущего этажа.

Недостатком данного способа является очень ограниченная область применения, достаточно высокая трудоемкость и необходимость вмешательства в технологический цикл угледобычи.

Известен способ оценки степени выбросоопасности призабойной части пласта по изменению радиационной температуры поверхности забоя (Бобров А.И., Николин В.В., Топалов О.В. Оценка степени выбросоопасности призабойной части пласта по изменению радиационной температуры поверхности забоя // Способы и средства создания безопасных и здоровых условий труда: Сб. научн. тр. - Макеевка-Донбасс. - МакНИИ. - С.203-209), принятый за прототип, включающий дистанционное измерение радиационной температуры (интенсивности инфракрасного излучения) поверхности забоя пласта и определение ее значения по среднему из 5 точечных замеров.

Недостатком данного способа является отсутствие методики его выполнения и критериев, позволяющих использовать способ в промышленных условиях.

Технический результат заключается в возможности использования способа и расширении области его применения на все типы лавы при любой принятой системе разработки благодаря дистанционному измерению относительного изменения радиационной температуры (интенсивности инфракрасного излучения) поверхности забоя пласта.

Технический результат достигается тем, что измерение относительного изменения радиационной температуры (интенсивности инфракрасного излучения) поверхности забоя пласта осуществляют дистанционно с расстояния 1,0-1,5 м через 3-5 м по длине лавы, при этом в каждой точке измерения к учету принимают среднее значение, полученное не менее чем в 30 циклах измерений, а границей защищенной зоны принимают расстояние от линии примыкания пласта к выработанному пространству до точки фиксации стабилизации значения радиационной температуры.

Описываемый способ поясняется графиком (Фиг.1), на котором приведены результаты измерений, выполненных в условиях 4-й восточной лавы пласта h10 «Ливенский» шахты им. М.И. Калинина.

Способ осуществляют следующим образом.

Специальным прибором типа СТТ.У5 дистанционно с расстояния 1,0-1,5 м осуществляется измерение относительного изменения радиационной температуры (интенсивности инфракрасного излучения) поверхности забоя пласта. Первый замер производится в точке на расстоянии 3-5 м от ниши или от штрека (при безнишевой схеме выемке угля). Последующие точки измерения располагаются на равном расстоянии через 3-5 м (3-5 секций крепи) по длине лавы. Нумерация и расположение точек измерения в лаве должны быть постоянными во всех циклах измерений.

В каждой точке измерения выполняется не менее 5 точечных замеров. На Фиг.2 показана схема выполнения замеров в точке измерения по пласту мощностью до 1,5 м. На пластах мощностью более 1,5 м на каждый метр увеличения мощности по вертикали добавляется одна точка измерения.

После выполнения каждого цикла измерений все данные заносятся в журнал и для каждой точки в цикле рассчитываются средние значения. По средним значениям не менее чем 30 циклов измерений строится график относительного изменения радиационной температуры поверхности забоя пласта по длине лавы и фиксируется точка ее стабилизации, которая и является границей защищенной зоны.

Данные положения подтверждаются сопоставлением результатов измерений относительного изменения радиационной температуры поверхности забоя пласта и результатов применения «Способа определения невыбросоопасной зоны для крутопадающих пластов в лавах уступной формы при поэтажной разработке» в условиях лавы участка 45/1080 м пласта m2 «Тонкий» шахты «Кочегарка», когда в обоих случаях граница защищенной зоны была определена в верхнем кутке 7-го уступа на расстоянии 43 м по падению от выработанного пространства вышележащего этажа. Способ иллюстрируется следующим примером.

Пример. Необходимо определить границу защищенной зоны в верхней части лавы, примыкающей к выработанному пространству вышележащего этажа. Прибором типа СТТ.У5 дистанционно с расстояния 1,0-1,5 м осуществлялись измерения относительного изменения радиационной температуры (интенсивности инфракрасного излучения) поверхности забоя пласта. Первый замер производился в точке на расстоянии 3 м от вентиляционного штрека. В каждой точке измерения выполнялось пять точечных замеров. Последующие точки измерения располагались на равном расстоянии через 3 м по длине лавы. Расположение точек измерения было постоянным во всех 30 циклах измерений.

После выполнения каждого цикла измерений все данные заносились в журнал и для каждой точки в цикле рассчитывались средние значения. По средним значениям 30 циклов измерений построен график (Фиг.1) относительного изменения радиационной температуры поверхности забоя пласта по длине лавы и зафиксирована точка ее стабилизации на расстоянии 45 м от вентиляционного штрека, которая и является границей защищенной зоны.

Способ определения границ защищенных зон в лавах угольных пластов, включающий дистанционное измерение радиационной температуры поверхности забоя пласта и определение ее значения по среднему из не менее чем 5 точечных замеров, отличающийся тем, что измерение относительного изменения радиационной температуры поверхности забоя пласта осуществляют дистанционно с расстояния 1,0-1,5 м через 3-5 м по длине лавы, при этом в каждой точке измерения к учету принимают среднее значение, полученное не менее чем в 30 циклах измерений, а границей защищенной зоны принимают расстояние от линии примыкания пласта к выработанному пространству до точки фиксации стабилизации значения радиационной температуры.



 

Похожие патенты:

Изобретение относится к автоматизированной системе аэрогазового контроля в очистном забое шахты. Техническим результатом является минимизация опасности взрыва путем надежного выявления манипуляции с газовыми датчиками и предупреждения самовозгорания угля в забое.

Изобретение относится к горной промышленности и может быть использовано для проветривания глубоких карьеров и эффективной очистки выдаваемого из рабочей зоны воздуха.
Изобретение относится к области горной промышленности, преимущественно к угольной и рудной, и может быть использовано для прогноза риска взрывов гибридных смесей в шахтах и газоопасных рудниках.

Способ относится к области горной промышленности, преимущественно к угольной, и может быть использован для прогноза взрывоопасности метанопылевоздушных смесей при разрушении угля.
Изобретение относится к области горной промышленности, преимущественно к угольной, и может быть использовано для прогноза риска взрывов метана и пыли в шахтах и газоопасных рудниках.

Изобретение относится к горному делу и может быть использовано при текущем прогнозе выбросоопасности угольных пластов. Техническим результатом изобретения является повышение надежности определения выбросоопасных зон в угольных пластах.

Изобретение относится к угольной промышленности и может быть использовано для установления категорий опасности шахт по метану. Техническим результатом является повышение безопасности ведения горных работ по газовому фактору за счет повышения точности прогноза метаноопасности шахт по показателям содержания метана в угольных пластах по числовым значениям абсолютной метанообильности очистных выработок.

Изобретение относится к горному делу и может быть использовано при герметизации шпуров для оценки газоносности метаноносных угольных пластов и контроля газовыделения в горные выработки.

Изобретение относится к способам контроля состава и параметров атмосферы угольных шахт, а именно к газовому анализу. Техническим результатом является повышение эффективности аэрогазового контроля в горных выработках угольных шахт за счет выполнения диагностики и выявления незаконных вмешательств в штатный режим работы систем аэрогазового контроля (АГК), а также реагирования на кратковременные пульсации концентраций метана, превышающих по амплитуде допустимые нормы.

Изобретение относится к области горной промышленности, преимущественно к угольной, и может быть использовано для прогноза взрывоопасности метановоздушных смесей в шахтах.
Изобретение относится к горному делу, преимущественно к угольной промышленности. Предложен способ прогноза местонахождения нижней границы взрывоопасной газовой зоны в очистном забое, включающий проходку параллельных выработок на выемочном участке, проведение скважины в кровлю пласта и измерение концентрации метана по ее длине подвижным газоизмерительным зондом.
Изобретение относится к горному делу, преимущественно к угольной промышленности. Техническим результатом является повышение точности определения протяженности зоны опорного давления от очистного забоя.

Изобретение относится к области горного дела, а именно к лабораторным исследованиям механизма фильтрации жидкостей в трещиноватых горных породах, и может быть использовано при извлечении метана из угольных пластов с предварительным их гидроразрывом, а также в нефтедобывающей и газодобывающей отраслях и научных организациях.

Изобретение относится к способам определения природных напряжений в массиве горных пород, которые используются в качестве граничных условий при расчете напряжений в горных конструкциях и элементах систем разработки для оценки их устойчивости.

Изобретение относится к области геофизики и может быть использовано для контроля изменения физико-механического состояния массива горных пород. Заявленное решение направлено на повышение достоверности контроля изменения физико-механического состояния массива горных пород за счет улучшения отношения сигнал/шум информационно-измерительной системы.

Изобретение относится к бурению скважин и может найти применение при регулировании условий бурения. Техническим результатом является оптимизация процесса бурения скважины.

Изобретение относится к горной промышленности и может быть применено для доставки датчиков в скважину. Способ состоит в том, что датчик и порция раствора для его тампонирования доставляются в скважину одновременно в специальной капсуле, причем порция тампонирующего раствора упаковывается в легко разрываемый пакет, который размещают в капсуле впереди датчика по ходу продвижения ее в скважину.

Изобретение относится к горному делу и предназначено для оценки напряженно-деформированного состояния участка массива горных пород путем регистрации импульсного излучения электромагнитных колебаний.

Изобретение относится к горной промышленности и предназначено для определения сопротивляемости угля и горных пород резанию рабочим инструментом исполнительных органов горных машин.

Изобретение относится к горному делу и предназначено для определения изменения напряженного состояния горного массива. Технический результат направлен на повышение длительности определения изменений напряженного состояния горного массива в окрестностях выработок в ходе непрерывных мониторинговых акустико-эмиссионных измерений перемещения вглубь массива зоны опорного давления.

Группа изобретений относится к горной промышленности и строительству, а именно к прогнозу динамических проявлений в массиве горных пород при изменении его напряженно-деформированного состояния. Технический результат - повышение точности измерений путем единого порядка выбора точек измерений, фиксации количества отсчетов и правильной ориентации выбранного устройства. Предлагаются два варианта способа - для призабойной зоны и участка, удаленного от призабойной зоны. В обоих вариантах производят измерения амплитуд импульсов сигналов электромагнитного излучения (ЭМИ). До регистрации сигналов ЭМИ формируют замерную станцию для проведения измерений величин амплитуд импульсов сигналов ЭМИ, для чего используют закрепленный в породе ее кровли отвес с фиксатором на высоте 1,5 м от почвы выработки, размещая их по вертикальной оси этой плоскости, после чего размещают указанное устройство перед упомянутым фиксатором. Измеряют величины амплитуд импульсов сигналов ЭМИ, выбирают наибольшие величины - Nmax (1 вариант) и N ' max (2 вариант), которые сравнивают с критической величиной Nкр амплитуды импульсов ЭМИ по горизонту шахты. Если Nmax>Nкр или N ' max > N к р , то состояние рассматриваемого участка оценивают как опасное. Проводят оборку нависших заколов и кусков породы инструментом. Повторяют операции, пока не будет получено Nmax≤Nкр или N ' max ≤ N к р . 2 н. и 4 з.п. ф-лы, 2 ил.
Наверх