Способ прогноза заколов и вывалообразований в пределах незакрепленного крепью участка проводимой подготовительной горной выработки (варианты)

Группа изобретений относится к горной промышленности и строительству, а именно к прогнозу динамических проявлений в массиве горных пород при изменении его напряженно-деформированного состояния. Технический результат - повышение точности измерений путем единого порядка выбора точек измерений, фиксации количества отсчетов и правильной ориентации выбранного устройства. Предлагаются два варианта способа - для призабойной зоны и участка, удаленного от призабойной зоны. В обоих вариантах производят измерения амплитуд импульсов сигналов электромагнитного излучения (ЭМИ). До регистрации сигналов ЭМИ формируют замерную станцию для проведения измерений величин амплитуд импульсов сигналов ЭМИ, для чего используют закрепленный в породе ее кровли отвес с фиксатором на высоте 1,5 м от почвы выработки, размещая их по вертикальной оси этой плоскости, после чего размещают указанное устройство перед упомянутым фиксатором. Измеряют величины амплитуд импульсов сигналов ЭМИ, выбирают наибольшие величины - Nmax (1 вариант) и N ' max (2 вариант), которые сравнивают с критической величиной Nкр амплитуды импульсов ЭМИ по горизонту шахты. Если Nmax>Nкр или N ' max > N к р , то состояние рассматриваемого участка оценивают как опасное. Проводят оборку нависших заколов и кусков породы инструментом. Повторяют операции, пока не будет получено Nmax≤Nкр или N ' max N к р . 2 н. и 4 з.п. ф-лы, 2 ил.

 

Технические решения относятся к горной промышленности и строительству, а именно к прогнозу динамических проявлений в массиве горных пород при изменении его напряженно-деформированного состояния, и могут найти применение в горной геофизике, газодинамике, геомеханике при контроле и прогнозировании в массивах горных пород динамических проявлений в виде заколов и вывалообразований.

Известен способ защиты от травмирования горнорабочих, задействованных на проведении подготовительных горных выработок в массивах трещиноватых горных пород путем возведения временной крепи, включающий подвешивание на верхняках крепи, например, длинных металлических стержней в виде металлических труб, которые по мере подвигания забоя горной выработки передвигают вперед вплотную к забою и на них укладывают верхняки рам крепления и настил из обрезков плах или затяжек (В.М. Макаров, Г.М. Котов, В.А. Зубань. Применение временных крепей в забоях подготовительных выработок шахт Кузбасса // Вопросы безопасности в угольных шахтах. Труды ВостНИИ, т. IX. Изд-во «Недра», М.: - 1969, - с.244-253, рис.4).

Недостатком способа является его высокая трудоемкость и значительные затраты времени на сборку и разборку такой временной крепи перед передвижением ее вперед после очередного подвигания забоя, включающие время на подвешивание упомянутых длинных стержней, разборку перекрытия и его повторную сборку после передвижки стержней, что затрудняет использование способа на практике.

Известен способ контроля нарушений сплошности массива горных пород по авт.св. СССР №1101552, кл. E21C 39/00, опубл. 07.07.84 г., БИ №25, включающий регистрацию сигналов электромагнитного излучения (ЭМИ) по длине выработки и измерение их длительности, определение средней длительности импульсов, возникающих при перераспределении горного давления, которую принимают за эталонную, выделение импульсов длительностью, более чем на порядок превышающей эталонную, и по их появлению судят о возникновении расслоения.

Недостатком этого способа является то, что не регистрируют амплитуды сигналов ЭМИ, а это снижает достоверность получаемой информации.

Наиболее близким к предлагаемому способу по технической сущности и совокупности существенных признаков является способ прогноза разрушения горных пород, реализованный с помощью устройства для его осуществления по патенту РФ №2137920, класс E21C 39/00, G01N 29/04, опубл. в БИ №26, 1999 г.

Способ включает регистрацию на интервале времени измерения сигналов ЭМИ и измерение их амплитуд, по которым определяют начало разрушения исследуемого участка массива, при этом интервал времени измерения разделяют на две неравные части, производя на каждой из них измерение величин амплитуд импульсов сигналов ЭМИ через равные промежутки времени, до нагружения исследуемого участка массива определяют интенсивность измерения сигнала помехи, измеряя амплитуды импульсов сигналов ЭМИ на большей части интервала времени измерения, а начало момента разрушения определяют по мере нагружения исследуемого участка массива по выполнению установленного соотношения.

Недостатком данного способа является то, что место измерений в каждой конкретной горной выработке и их количество выбирают случайно, что влияет на достоверность измерений. Кроме того, величины отсчетов по упомянутому устройству зависят от ориентации этого устройства в момент измерения. Неправильная ориентация устройства отрицательно влияет на точность измерений и, как следствие, на их достоверность.

Техническая задача: повышение достоверности прогнозирования заколов и вывалообразований за счет повышения точности измерений путем единого порядка выбора точек измерений, фиксации количества отсчетов и правильной ориентации выбранного устройства.

Поставленная задача по первому варианту реализации решается тем, что в способе прогноза заколов и вывалообразований в пределах незакрепленного крепью участка проводимой подготовительной горной выработки, включающем регистрацию в пределах исследуемого участка на интервале времени измерения сигналов ЭМИ и измерение величин амплитуд их импульсов с помощью устройства для прогноза разрушения горных пород по патенту РФ №2137920, опубл. 20.09.1999 г., которые фиксируют на равных интервалах времени и по которым определяют начало разрушения незакрепленного крепью участка упомянутой горной выработки, согласно техническому решению до регистрации сигналов ЭМИ в пределах незакрепленного крепью участка, представляющего собой призабойную зону проводимой подготовительной горной выработки, формируют замерную станцию для проведения измерений величин амплитуд импульсов сигналов ЭМИ на расстоянии 3÷5 м от забоя упомянутой выработки в плоскости ее поперечного сечения, для чего используют закрепленный в породе ее кровли отвес с фиксатором на высоте 1,5 м от почвы выработки, размещая их по вертикальной оси этой плоскости, после чего размещают указанное устройство перед упомянутым фиксатором, ориентируя его горизонтально длинной стороной перпендикулярно к боковым стенкам этой выработки, и на отрезке времени продолжительностью, например, 1 минута измеряют величины амплитуд импульсов сигналов ЭМИ, делая, например, по три отсчета в первую, вторую и третью минуты измерений, выбирая каждый раз из них максимальные величины N1max, N2max, N3max. Дополнительно проводят также измерения величин амплитуд импульсов сигналов ЭМИ на высоте 1,5 м от почвы выработки вдоль контура призабойной зоны упомянутой выработки с шагом, например, 1,5÷2 м: вдоль левой боковой стенки, вдоль плоскости забоя и вдоль правой боковой стенки, делая каждый раз по три отсчета и выбирая затем из них максимальные величины N л max, N з max, N п max. После этого из полученных шести максимальных величин выбирают наибольшую Nmax, которую сравнивают с критической величиной амплитуды импульсов сигналов ЭМИ по горизонту шахты, определенной предварительно службой прогноза и профилактики горных ударов шахты как средняя по всем общешахтным замерным станциям для этого горизонта шахты. Если Nmax>Nкр, то состояние рассматриваемой призабойной зоны оценивают как опасное по заколам и вывалообразованию. В этом случае проводят оборку нависших заколов и кусков породы кровли, боковых стенок и забоя рассматриваемой призабойной зоны, используя инструмент, приспособленный для такой оборки, а по окончании оборки повторяют перечисленные операции до тех пор, пока не будет получено Nmax≤Nкр.

Физика процесса разрушения горной породы включает формирование микротрещин и трещин, сопровождающихся движением электрических зарядов на берегах трещин. Движение зарядов сопровождается ЭМИ. Чем выше рост механических напряжений, тем выше интенсивность ЭМИ.

Указанная совокупность признаков позволяет повысить достоверность прогнозирования заколов и вывалообразований за счет повышения точности измерений путем единого порядка выбора точек измерений и фиксации количества отсчетов при использовании упомянутого устройства для прогноза разрушения горных пород по патенту РФ №2137920 в роли индикатора амплитуд импульсов сигналов ЭМИ деформируемого массива горных пород и с его помощью установить момент формирования заколов и вывалообразований как за счет возрастания интенсивности сигналов ЭМИ, так и за счет световой и звуковой сигнализации упомянутого устройства.

Размещение указанного устройства перед фиксатором при измерениях исключает влияние на точность измерения расстояния от упомянутого устройства как до кровли и почвы, так и до боковых стенок выработки, в том числе в процессе повторных измерений. Отклонение его положения от горизонтального и перпендикулярного боковым стенкам также влияет на точность измерений и, как следствие, на достоверность измерений.

Выбор из трех отсчетов наибольшего резко снижает вероятность пропуска повышенного отсчета, что в этих измерениях является основным и также способствует решению технической задачи.

Формирование замерной станции для проведения измерений включает выбор конкретного поперечного сечения указанной выработки в пределах участка измерений. На практике длина призабойной зоны обычно составляет 3÷5 м согласно проекту проводимой подготовительной горной выработки.

Формирование замерной станции упорядочивает процесс измерений ЭМИ в горной выработке как за счет размещения упомянутого устройства относительно контура забоя и боковых стенок рассматриваемой горной выработки, так и за счет количества замеров. Кроме того, поскольку контур боковых стенок и забоя горной выработки не может быть строго одинаковым на различных участках измерения, а упомянутое устройство фиксирует при каждом измерении ЭМИ с достаточно ограниченного участка контура забоя и боковых стенок выработки, то повторные измерения при разной ориентации измерительного устройства могут сильно различаться, что снижает точность измерений. Дополнительные замеры по контуру боковых стенок незакрепленного крепью участка обеспечивают более равномерное распределение выбранных точек измерений по контуру этого участка. Соответственно, сводится к минимуму случайный пропуск высоконапряженных зон контура указанного участка. Все это направлено на повышение точности и, как следствие, достоверности измерений, т.е. на решение поставленной технической задачи.

При дополнительных измерениях по контуру участка принято по три измерения длительностью по 1 минуте. При снятии замеров необходимо: прибор включить, взять отсчет по табло прибора, отключить прибор, затем повторно включить, взять второй отсчет и снова отключить и т.д. Поскольку при включенном приборе непрерывно сменяются цифры, то оператору трудно решить какое число, появившееся на экране, взять в качестве отсчета, поэтому следует некоторое время подождать, когда величины чисел на табло стабилизируются. Рекомендуется одновременно проводить по три отсчета и из них выбирать максимальную величину. Взятие во время снятия отсчетов трех чисел увеличивает общее число измерений, но обеспечивает повышение достоверности прогноза, что способствует решению технической задачи. Выбор из трех отсчетов наибольшего - максимального резко снижает вероятность пропустить повышенный отсчет, что в этих экспериментах является основным и также способствует решению технической задачи.

Целесообразно при этом упомянутые величины амплитуд импульсов сигналов ЭМИ в призабойной зоне указанной горной выработки измерять в начале рабочей смены и в течение ее перед каждой технологической операцией, связанной с пребыванием рабочих в этой призабойной зоне до возведения в ней крепи или окончания ее ремонта, что позволяет своевременно в течение рабочей смены получать информацию о формировании заколов и вывалообразований, чтобы исключить травмирование рабочих от случайного падения кусков породы во время выполнения работ по ремонту крепи на этом участке или по возведению новой крепи, что способствует решению поставленной задачи.

Целесообразно отсчеты по упомянутому устройству производить с выдержкой времени длительностью 1 минута для стабилизации его показаний.

По второму варианту реализации решение поставленной задачи достигается тем, что в способе прогноза заколов и вывалообразований в пределах незакрепленного крепью участка проводимой подготовительной горной выработки, включающем регистрацию в пределах исследуемого участка на интервале времени измерения сигналов ЭМИ и измерение величин амплитуд их импульсов с помощью устройства для прогноза разрушения горных пород по патенту РФ №2137920, опубл. 20.09.1999 г., которые фиксируют на равных интервалах времени и по которым определяют начало разрушения незакрепленного крепью участка упомянутой горной выработки, согласно техническому решению до регистрации сигналов ЭМИ в пределах незакрепленного крепью участка, удаленного от призабойной зоны проводимой подготовительной горной выработки, формируют замерную станцию для проведения измерений величин амплитуд импульсов сигналов ЭМИ в упомянутом незакрепленном крепью участке проводимой подготовительной горной выработки в плоскости ее поперечного сечения в средней части этого участка. Для этого используют закрепленный в породе ее кровли отвес с фиксатором на высоте 1,5 м от почвы выработки, размещая их по вертикальной оси этой плоскости. После этого размещают указанное устройство перед упомянутым фиксатором, ориентируя его горизонтально длинной стороной перпендикулярно к боковым стенкам этой выработки, и на отрезке времени продолжительностью, например, 1 минута измеряют величины амплитуд импульсов сигналов ЭМИ, делая, например, по три отсчета в первую, вторую и третью минуты измерений, выбирая каждый раз из них максимальные величины N ' 1 max , N ' 2 max , N ' 3 max . Дополнительно проводят также измерения величин амплитуд импульсов сигналов ЭМИ на высоте 1,5 м от почвы выработки вдоль левой и правой боковых стенок рассматриваемого участка упомянутой горной выработки с шагом, например, 1,5÷2 м: вдоль левой боковой стенки и вдоль правой боковой стенки, делая каждый раз по три отсчета и выбирая затем из них максимальные величины N ' л max и N ' п max . После этого из полученных пяти максимальных величин выбирают наибольшую N ' max , которую сравнивают с критической величиной Nкр амплитуды импульсов сигналов ЭМИ по горизонту шахты, определенной предварительно службой прогноза и профилактики горных ударов шахты как средняя по всем общешахтным замерным станциям для этого горизонта шахты. Если N ' max > N к р , то состояние рассматриваемого незакрепленного участка оценивают как опасное по заколам и вывалообразованию. В этом случае проводят оборку нависших заколов и кусков породы кровли и боковых стенок рассматриваемого участка, используя инструмент, приспособленный для такой оборки, а по окончании оборки повторяют перечисленные операции до тех пор, пока не будет получено N ' max N к р .

Указанная совокупность признаков позволяет повысить достоверность прогнозирования заколов и вывалообразований за счет повышения точности измерений путем единого порядка выбора точек измерений и фиксации их количества при использовании упомянутого устройства для прогноза разрушения горных пород по патенту РФ №2137920 в роли индикатора амплитуд импульсов сигналов ЭМИ деформируемого массива горных пород и с его помощью установить момент формирования опасных заколов и вывалообразований как за счет возрастания интенсивности сигналов ЭМИ упомянутого устройства, так и за счет обеспечения звуковой и световой сигнализации этого устройства.

Размещение указанного устройства перед фиксатором при измерениях исключает влияние на точность измерений расстояния от упомянутого устройства как до кровли и почвы, так и до боковых стенок выработки, в том числе в процессе повторных измерений. Отклонения его положения от горизонтального и перпендикулярного боковым стенкам также влияет на точность измерений и, как следствие, на достоверность измерений.

Формирование замерной станции упорядочивает процесс измерений ЭМИ в горной выработке как за счет размещения упомянутого устройства относительно контура боковых стенок рассматриваемой горной выработки, так и за счет количества замеров. Кроме того, поскольку контур боковых стенок горной выработки не может быть строго одинаковым на различных участках измерения, а упомянутое устройство фиксирует при каждом измерении ЭМИ с достаточно ограниченного участка контура боковых стенок выработки, то повторные измерения при разной ориентации измерительного устройства могут сильно различаться, что снижает точность измерений. Дополнительные замеры по контуру боковых стенок незакрепленного крепью участка обеспечивают более равномерное распределение выбранных точек измерений по контуру этого участка. Соответственно, сводится к минимуму случайный пропуск высоконапряженных зон контура указанного участка. Все это направлено на повышение точности и, как следствие, достоверности измерений, т.е. на решение поставленной технической задачи.

При дополнительных измерениях по контуру участка принято по три измерения длительностью по 1 минуте. При снятии замеров необходимо: прибор включить, взять отсчет по табло прибора, отключить прибор, затем повторно включить, взять второй отсчет и снова отключить и т.д. Поскольку при включенном приборе непрерывно сменяются цифры, то трудно оператору решить какое число, появившееся на экране, взять в качестве отсчета, поэтому следует некоторое время подождать, когда величины чисел на табло стабилизируются. Рекомендуется одновременно проводить по три отсчета и из них выбирать максимальную величину. Взятие во время снятия отсчетов трех чисел увеличивает общее число измерений, но обеспечивает повышение достоверности прогноза, что способствует решению технической задачи. Выбор из трех отсчетов наибольшей - максимальной величины резко снижает вероятность пропустить повышенный отсчет, что в этих экспериментах является основным и также способствует решению технической задачи.

Целесообразно при этом упомянутые величины амплитуд импульсов сигналов ЭМИ в пределах ее незакрепленного крепью указанного участка измерять в начале рабочей смены и в течение ее перед каждой технологической операцией, связанной с пребыванием рабочих в пределах этого участка до возведения в нем крепи или окончания ее ремонта, что позволяет своевременно в течение рабочей смены получать информацию о формировании заколов и вывалообразований, чтобы исключить травмирование рабочих от случайного падения кусков породы во время выполнения работ по ремонту крепи на этом участке или по возведению новой крепи в течение всей смены.

Целесообразно отсчеты по упомянутому устройству производить с выдержкой времени длительностью 1 минута для стабилизации его показаний.

Сущность предлагаемых вариантов способа прогноза заколов и вывалообразований в пределах незакрепленного крепью участка проводимой подготовительной горной выработки поясняется примерами их реализации и чертежами фиг.1,2. На фиг.1 приведен продольный вертикальный разрез Б-Б выработки на фиг.2. На фиг.2 - справа разрез A11 (участок «а») и слева разрез А-А (участок «в») на фиг.1 (повернуто на 180° справа налево).

Способ по первому варианту реализуют следующим образом.

Незакрепленный крепью участок представляет собой призабойную зону проводимой подготовительной горной выработки (далее - выработка), участок «а». На расстоянии 3÷5 м от забоя формируют замерную станцию для регистрации сигналов ЭМИ в плоскости поперечного сечения указанной выработки. Эта плоскость представлена разрезом A11 на фиг.1, который приведен на фиг.2 справа. В этой плоскости размещают отвес 1, закрепленный с помощью репера 2 в породах кровли (фиг.2), с фиксатором 3 (фиг.1), выполненным в виде металлического или пластмассового шарика с осевым отверстием, через которое пропущен шнур отвеса 1. Фиксатор 3 устанавливают на высоте 1,5 м от почвы выработки, и он служит для фиксации положения устройства 4 для прогноза разрушения горных пород по патенту РФ №2137920 (далее - устройство 4). На фиг.1 отмечены заколы 5 в пределах забоя, кровли и боковых стенок выработки.

На фиг.1 в данном частном случае приведена деревянная крепь в форме трапеции, состоящая из стоек 6, верхняков 7 и затяжек 8. По контуру выработки штриховкой 9 (фиг.1 и 2) отмечены боковые породы, в которых проведена рассматриваемая выработка.

Оператор при проведении измерений амплитуд импульсов сигналов ЭМИ держит устройство 4 в руках на уровне фиксатора 3. Наличие фиксатора 3 позволяет размещать устройство 4 в момент измерения в предварительно фиксированной точке (в том числе при повторных измерениях).

Затем устройством 4 выполняют с периодом 1 минута 3 замера, в каждом по 3 отсчета. Из них отбирают по одной наибольшей величине N1max, N2max, N3max. Дополнительно выполняют измерения на высоте 1,5 м от почвы выработки по контуру призабойной зоны с шагом 1,5÷2 м. На практике - это по одному замеру по каждой из трех сторон призабойной зоны, при этом каждый раз делают по 3 отсчета, из которых отбирают по одной наибольшей величине N л max, N з max, N п max. Рекомендуемая длительность каждого замера 1 минута. Все отсчеты при измерениях необходимо заносить в журнал измерений. Всего на замерной станции призабойной зоны будет получено 6 величин. Их них выбирают наибольшую величину Nmax, которую сравнивают с критической величиной Nкр амплитуды импульсов сигналов ЭМИ по горизонту шахты, определенной предварительно службой прогноза и профилактики горных ударов шахты как средняя по всем общешахтным замерным станциям для рассматриваемого горизонта шахты. Если Nmax>Nкр, то состояние рассматриваемой призабойной зоны оценивают как опасное по заколам и вывалообразованию. В этом случае проводят оборку нависших заколов и кусков породы кровли, боковых стенок и забоя рассматриваемой призабойной зоны, используя инструмент, приспособленный для такой оборки. По окончании оборки повторяют перечисленные операции до тех пор, пока не будет получено Nmax≤Nкр. На практике приведенное соотношение обычно выполняют после первой оборки, если эта операция выполнялась тщательно.

Способ по второму варианту реализуют следующим образом.

Незакрепленный крепью участок «в» проводимой подготовительной горной выработки - это участок, удаленный от призабойной зоны на расстояние «б», где крепь отсутствует по различным причинам (разрушена высоким горным давлением, разрушена во время взрывных работ в забое рассматриваемой выработки, выбита при передвижении транспортных и других машин и механизмов), либо в пределах этого участка предполагают начать рассечку для проведения новой горной выработки (в этом случае крепь убирают).

В средней части этого незакрепленного крепью участка «в» (фиг.1) проводимой подготовительной горной выработки в плоскости поперечного сечения этой выработки формируют замерную станцию для измерения амплитуд импульсов сигналов ЭМИ. Для этого в кровле выработки закрепляют репер 2 с отвесом 1 и фиксатором 3 (фиг.1, 2), размещая его на высоте 1,5 м от почвы выработки. Перед фиксатором 3 размещается оператор с устройством 4, при этом устройство 4 размещают горизонтально, длинной стороной перпендикулярно боковым стенкам выработки в пределах участка «в».

Измерения на замерной станции на участке «в» выполняют следующим образом. На отрезке времени продолжительностью 1 минута измеряют величины амплитуд импульсов в сигнале ЭМИ, выполняя по три отсчета величин амплитуд импульсов в сигналах ЭМИ в первую, вторую и третью минуты измерений, выбирая каждый раз из них максимальные величины N ' 1 max , N ' 2 max , N ' 3 max . Все отсчеты при измерениях необходимо заносить в журнал измерений. Дополнительно проводят также измерения величин амплитуд импульсов в сигнале ЭМИ на высоте 1,5 м от почвы выработки вдоль левой и правой боковых стенок рассматриваемого участка упомянутой горной выработки с шагом, например, 1,5÷2 м: вдоль левой боковой стенки и вдоль правой боковой стенки, делая каждый раз по три отсчета и выбирая затем из них максимальные величины N ' л max и N ' п max . После этого из полученных пяти максимальных величин выбирают наибольшую N ' max , которую сравнивают с критической величиной Nкр амплитуды импульсов сигнала ЭМИ по горизонту шахты, определенной предварительно службой прогноза и профилактики горных ударов шахты как средняя по всем общешахтным замерным станциям для этого горизонта шахты. Если N ' max > N к р , то состояние рассматриваемого незакрепленного участка «в» оценивают как опасное по заколам и вывалообразованию. В этом случае выполняют оборку нависших заколов и кусков породы кровли и боковых стенок рассматриваемого участка «в», используя инструмент, приспособленный для такой оборки, а по окончании оборки повторяют перечисленные операции до тех пор, пока не будет получено N ' max N к р .

Целесообразно на замерной станции участка «в» измерения ЭМИ выполнять в начале рабочей смены и в течение ее перед каждой технологической операцией, связанной с пребыванием рабочих в пределах незакрепленного указанного участка, где предполагаются работы по возведению крепи или ее ремонту.

Целесообразно также отсчеты по упомянутому устройству выполнять с выдержкой времени длительностью 1 минута для стабилизации его показаний.

Таким образом, изложенные варианты способов позволяют контролировать возможность заколов и вывалообразований, что обеспечивает выполнение поставленной технической задачи по повышению достоверности прогнозирования заколов и вывалообразований за счет повышения точности измерений путем единого порядка выбора точек измерений, фиксации их количества и правильной ориентации устройства 4.

1. Способ прогноза заколов и вывалообразований в пределах незакрепленного крепью участка проводимой подготовительной горной выработки, включающий регистрацию в пределах исследуемого участка на интервале времени измерения сигналов электромагнитного излучения (ЭМИ) и измерение величин амплитуд их импульсов с помощью устройства для прогноза разрушения горных пород, содержащего канал приема и регистрации сигналов ЭМИ с последовательно включенными усилителем и регистратором, электромагнитный преобразователь-антенну, формирователь порогового напряжения, детектор, компаратор, аналого-цифровой преобразователь и индикатор, входом подключенный к выходу аналого-цифрового преобразователя, вход которого подсоединен к выходу детектора с подключенными к нему входами компаратора и формирователя порогового напряжения, выход которого подключен ко второму входу компаратора, причем выход компаратора подсоединен к выполненному в виде свето- и звукового сигнализатора регистратору сигналов ЭМИ, а вход детектора подключен к выходу усилителя, ко входу которого подсоединен электромагнитный преобразователь-антенна, при этом амплитуды импульсов сигналов ЭМИ фиксируют на равных интервалах времени и по ним определяют начало разрушения незакрепленного крепью участка упомянутой горной выработки, отличающийся тем, что до регистрации сигналов ЭМИ в пределах незакрепленного крепью участка, представляющего собой призабойную зону проводимой подготовительной горной выработки, формируют замерную станцию для проведения измерений величин амплитуд импульсов сигналов ЭМИ на расстоянии 3÷5 м от забоя упомянутой выработки в плоскости ее поперечного сечения, для чего используют закрепленный в породе ее кровли отвес с фиксатором на высоте 1,5 м от почвы выработки, размещая их по вертикальной оси этой плоскости, после чего размещают указанное устройство перед упомянутым фиксатором, ориентируя его горизонтально длинной стороной перпендикулярно к боковым стенкам этой выработки, и на отрезке времени продолжительностью, например, 1 минута измеряют величины амплитуд импульсов сигналов ЭМИ, делая, например, по три отсчета в первую, вторую и третью минуты измерений, выбирая каждый раз из них максимальные величины N1max, N2max, N3max, при этом дополнительно проводят также измерения величин амплитуд импульсов сигналов ЭМИ на высоте 1,5 м от почвы выработки вдоль контура призабойной зоны упомянутой выработки с шагом, например, 1,5÷2 м: вдоль левой боковой стенки, вдоль плоскости забоя и вдоль правой боковой стенки, делая каждый раз по три отсчета и выбирая затем из них максимальные величины N л max, N з max, N п max, после чего из полученных шести максимальных величин выбирают наибольшую Nmax, которую сравнивают с критической величиной Nкр амплитуды импульсов сигналов ЭМИ по горизонту шахты, определенной предварительно службой прогноза и профилактики горных ударов шахты как средняя по всем общешахтным замерным станциям для этого горизонта шахты, при этом, если Nmax>Nкр, то состояние рассматриваемой призабойной зоны оценивают как опасное по заколам и вывалообразованию, в этом случае проводят оборку нависших заколов и кусков породы кровли, боковых стенок и забоя рассматриваемой призабойной зоны, используя инструмент, приспособленный для такой оборки, а по окончании оборки повторяют перечисленные операции до тех пор, пока не будет получено Nmax≤Nкр.

2. Способ по п.1, отличающийся тем, что упомянутые величины амплитуд импульсов сигналов ЭМИ в призабойной зоне указанной горной выработки измеряют в начале рабочей смены и в течение ее перед каждой технологической операцией, связанной с пребыванием рабочих в этой призабойной зоне до возведения в ней крепи или окончания ее ремонта.

3. Способ по п.1, отличающийся тем, что отсчеты по упомянутому устройству производят с выдержкой времени длительностью 1 минута для стабилизации его показаний.

4. Способ прогноза заколов и вывалообразований в пределах незакрепленного крепью участка проводимой подготовительной горной выработки, включающий регистрацию в пределах исследуемого участка на интервале времени измерения сигналов ЭМИ и измерение величин амплитуд их импульсов с помощью устройства для прогноза разрушения горных пород, содержащего канал приема и регистрации сигналов ЭМИ с последовательно включенными усилителем и регистратором, электромагнитный преобразователь-антенну, формирователь порогового напряжения, детектор, компаратор, аналого-цифровой преобразователь и индикатор, входом подключенный к выходу аналого-цифрового преобразователя, вход которого подсоединен к выходу детектора с подключенными к нему входами компаратора и формирователя порогового напряжения, выход которого подключен ко второму входу компаратора, причем выход компаратора подсоединен к выполненному в виде свето- и звукового сигнализатора регистратору сигналов ЭМИ, а вход детектора подключен к выходу усилителя, ко входу которого подсоединен электромагнитный преобразователь-антенна, при этом амплитуды импульсов сигналов ЭМИ фиксируют на равных интервалах времени и по ним определяют начало разрушения незакрепленного крепью участка упомянутой горной выработки, отличающийся тем, что до регистрации сигналов ЭМИ в пределах незакрепленного крепью участка, удаленного от призабойной зоны проводимой подготовительной горной выработки, формируют замерную станцию в средней части этого участка для проведения измерений величин амплитуд импульсов сигналов ЭМИ в упомянутом незакрепленном крепью участке проводимой подготовительной горной выработки в плоскости ее поперечного сечения, для чего используют закрепленный в породе ее кровли отвес с фиксатором на высоте 1,5 м от почвы выработки, размещая их по вертикальной оси этой плоскости, после чего размещают указанное устройство перед упомянутым фиксатором, ориентируя его горизонтально длинной стороной перпендикулярно к боковым стенкам этой выработки, и на отрезке времени продолжительностью, например, 1 минута измеряют величины амплитуд импульсов сигналов ЭМИ, делая, например, по три отсчета в первую, вторую и третью минуты измерений, выбирая каждый раз из них максимальные величины , , , при этом дополнительно проводят также измерения величин амплитуд импульсов сигналов ЭМИ на высоте 1,5 м от почвы выработки вдоль левой и правой боковых стенок рассматриваемого участка упомянутой горной выработки с шагом, например, 1,5÷2 м: вдоль левой боковой стенки и вдоль правой боковой стенки, делая каждый раз по три отсчета и выбирая затем из них максимальные величины и , после чего из полученных пяти максимальных величин выбирают наибольшую , которую сравнивают с критической величиной Nкр амплитуды импульсов сигналов ЭМИ по горизонту шахты, определенной предварительно службой прогноза и профилактики горных ударов шахты как средняя по всем общешахтным замерным станциям для этого горизонта шахты, при этом, если , то состояние рассматриваемого незакрепленного участка оценивают как опасное по заколам и вывалообразованию, в этом случае проводят оборку нависших заколов и кусков породы кровли и боковых стенок рассматриваемого участка, используя инструмент, приспособленный для такой оборки, а по окончании оборки повторяют перечисленные операции до тех пор, пока не будет получено .

5. Способ по п.4, отличающийся тем, что упомянутые величины амплитуд импульсов сигналов ЭМИ в пределах незакрепленного крепью указанного участка измеряют в начале рабочей смены и в течение ее перед каждой технологической операцией, связанной с пребыванием рабочих в пределах этого участка до возведения в нем крепи или окончания ее ремонта.

6. Способ по п.4, отличающийся тем, что отсчеты по упомянутому устройству производят с выдержкой времени длительностью 1 минута для стабилизации его показаний.



 

Похожие патенты:

Изобретение относится к горному делу, а именно к повышению безопасности ведения горных работ. Технический результат достигается тем, что измерение относительного изменения радиационной температуры поверхности забоя пласта осуществляют дистанционно с расстояния 1,0-1,5 м через 3-5 м по длине лавы, при этом в каждой точке измерения к учету принимают среднее значение, полученное не менее чем в 30 циклах измерений, а границей защищенной зоны принимают расстояние от линии примыкания пласта к выработанному пространству до точки фиксации стабилизации значения радиационной температуры.
Изобретение относится к горному делу, преимущественно к угольной промышленности. Предложен способ прогноза местонахождения нижней границы взрывоопасной газовой зоны в очистном забое, включающий проходку параллельных выработок на выемочном участке, проведение скважины в кровлю пласта и измерение концентрации метана по ее длине подвижным газоизмерительным зондом.
Изобретение относится к горному делу, преимущественно к угольной промышленности. Техническим результатом является повышение точности определения протяженности зоны опорного давления от очистного забоя.

Изобретение относится к области горного дела, а именно к лабораторным исследованиям механизма фильтрации жидкостей в трещиноватых горных породах, и может быть использовано при извлечении метана из угольных пластов с предварительным их гидроразрывом, а также в нефтедобывающей и газодобывающей отраслях и научных организациях.

Изобретение относится к способам определения природных напряжений в массиве горных пород, которые используются в качестве граничных условий при расчете напряжений в горных конструкциях и элементах систем разработки для оценки их устойчивости.

Изобретение относится к области геофизики и может быть использовано для контроля изменения физико-механического состояния массива горных пород. Заявленное решение направлено на повышение достоверности контроля изменения физико-механического состояния массива горных пород за счет улучшения отношения сигнал/шум информационно-измерительной системы.

Изобретение относится к бурению скважин и может найти применение при регулировании условий бурения. Техническим результатом является оптимизация процесса бурения скважины.

Изобретение относится к горной промышленности и может быть применено для доставки датчиков в скважину. Способ состоит в том, что датчик и порция раствора для его тампонирования доставляются в скважину одновременно в специальной капсуле, причем порция тампонирующего раствора упаковывается в легко разрываемый пакет, который размещают в капсуле впереди датчика по ходу продвижения ее в скважину.

Изобретение относится к горному делу и предназначено для оценки напряженно-деформированного состояния участка массива горных пород путем регистрации импульсного излучения электромагнитных колебаний.

Изобретение относится к горной промышленности и предназначено для определения сопротивляемости угля и горных пород резанию рабочим инструментом исполнительных органов горных машин.

Изобретение относится к испытательной технике, в частности к области инженерных изысканий, и может быть использовано для определения напряженно-деформированного состояния пород, а именно определения стадии развития деформационных процессов в массиве материала (в горном массиве, грунтов под инженерным сооружением и т.п.). Сущность: отбирают образцы материала с хрупким скелетом. Осуществляют нагружение образцов с регистрацией физико-механических характеристик материала и строят кривую напряжение-деформация, по которой находят параметры, характеризующие предвестник разрушения материала. При сжатии образцов определяют коэффициенты α p − , α-, αJ, характеризующие изменение потенциальной энергии упругого деформирования при рассеянном разрушении материала, а предвестник разрушения материала находят по формуле ω = α _ I 1 + α J J + α p − Δ p − γ − , где γ- - положительный параметр, задающий квадратичную зависимость поверхностной энергии накопленного ансамбля микротрещин в хрупком материале, I1 - относительное изменение объема материала, J - интенсивность касательных деформаций, Δp - изменение внутрипорового давления. Технический результат: возможность характеризовать стадию состояния материала перед разрушением, что и является предвестником разрушения материала, путем сокращения времени измерения за счет уменьшения количества испытываемых образцов. 2 з.п. ф-лы, 3 ил.

Изобретение относится к способу и устройству для определения локальной величины зерна минерала для минерала ценного материала в породе месторождения или залежи, причем порода включает в себя по меньшей мере один другой минерал, и при этом минерал ценного материала имеет более высокую плотность, чем по меньшей мере один другой минерал. Способ характеризуется следующими этапами: выполнение процесса бурения посредством буровой установки в породе, при этом создается буровая мелочь, образование аэрозоля, включающего в себя буровую мелочь и газовый поток, перенос аэрозоля от буровой установки к по меньшей мере одному воздушному сепаратору, выполнение классификации в потоке, причем образуются по меньшей мере две фракции, включающие в себя частицы соответствующей равнопадаемости буровой мелочи, и определение свойства по меньшей мере одной из фракций, которая применяется как мера для локальной величины зерна минерала для минерала ценного материала в породе. 2 н. и 18 з.п. ф-лы, 3 ил.

Изобретение относится к способу и устройству для повышения добычи на месторождении, содержащем породу, которая включает в себя по меньшей мере один раскрываемый путем размельчения породы минерал ценного материала и по меньшей мере один другой минерал, причем минерал ценного материала имеет более высокую плотность, чем по меньшей мере один другой минерал. Причем способ характеризуется следующими этапами: выполнение процесса бурения посредством буровой установки для выемки породы. При этом создается буровая мелочь, образование аэрозоля, включающего в себя буровую мелочь и газовый поток, перенос аэрозоля от буровой установки к по меньшей мере одному воздушному сепаратору, выполнение классификации в потоке, причем образуются по меньшей мере две фракции, включающие в себя частицы соответствующей равнопадаемости буровой мелочи, и определение свойства по меньшей мере одной из фракций, которая применяется как мера для установления оптимальной степени размельчения породы. 2 н. и 21 з.п. ф-лы, 4 ил.

Изобретение относится с горному делу, преимущественно к угольной промышленности. Предложен способ определения газоносности массива угля в зоне его разрушения, включающий сменный режим работы очистного забоя по добыче угля, отработку пласта продольными полосами, измерение интенсивности газовыделения из отрабатываемого пласта в добычную смену и установление показателя нарастания интенсивности газовыделения в призабойное пространство лавы при разрушении угля. При этом интенсивность газовыделения из пласта измеряют во время выемки первой и второй полос угля после ремонтной смены, при этом газоносность массива угля в зоне его разрушения определяют по приведенному математическому выражению. Предложенный способ позволяет определить достоверную величину газоносности массива угля в зоне его разрушения за счет прямых измерений интенсивности газовыделения из пласта в призабойное пространство.

Изобретение относится к горному делу и предназначено для определения направления максимального напряжения в конструктивных элементах систем разработки относительно пробуренных в них контрольных скважин. Технический результат направлен на обеспечение возможности определения направления максимального напряжения, действующего ортогонально измерительной скважине. Способ включает размещение в измерительной скважине стержневого звукопровода, на котором жестко закреплено контактирующее со стенками скважины кольцо, и регистрацию акустической эмиссии (АЭ) на выступающем из скважины конце звукопровода. В массиве в одной горизонтальной плоскости с испытательной скважиной и параллельно ей дополнительно бурят не менее трех скважин, в каждой из которых размещают такой же, как в первой испытательной скважине, звукопровод с кольцом. Все кольца изготавливают из слоистого композиционного материала, имеющего анизотропную структуру в плоскости кольца, а угол ориентации слоев кольца в каждой последующей скважине увеличивают на 15° по сравнению с предыдущей. По зарегистрированным на каждом звукопроводе сигналам акустической эмиссии определяют соответствующие им зависимости суммарного счета от времени, выявляют тот звукопровод, которому соответствует спад суммарного счета АЭ во времени. По направлению слоев в кольце на этом звукопроводе судят о направлении максимального напряжения, действующего в массиве в плоскости ортогональной оси измерительной скважины. 2 ил.

Изобретение относится к горному делу и может быть использовано для определения напряжений в массиве горных пород. Техническим результатом изобретения является определение факта превышения значением максимального главного напряжения критического уровня, равного или превышающего 0,9 от предела прочности при сжатии σсж, что свидетельствует о переходе породы в стадию предразрушения. Способ, в котором из массива в направлении, совпадающем с направлением действующего в нем максимального главного напряжения, извлекают образцы. Подвергают их объемному нагреву от 20 до 570°C, затем дают им остыть до температуры 140-150°C, одновременно регистрируют активность акустической эмиссии. Определяют отношение амплитуд огибающих активности акустической эмиссии, возникающей при остывании и нагревании, по значению которого судят о достижении напряжением на исследуемых участках массива величины нагрузки, равной или превышающей 0,9 от предела прочности при сжатии горной породы, свидетельствующей о переходе последней в стадию предразрушения. 2 ил.

Предложенная группа изобретений относится к измерительной технике, в частности к технике создания скважинных инклинометрических систем, и может быть использована в горном деле для контроля деформационных процессов горных пород и закладочного массива. Техническим результатом является повышение точности измерения угла наклона субгоризонтальной скважины относительно горизонтальной плоскости и повышение точности определения местоположения зон локализации деформаций (критических зон). Предложен скважинный инклинометрический зонд, содержащий цилиндрический корпус со средствами измерения угла наклона субгоризонтальной скважины, помещенный в обсадной трубе для установки в указанной скважине с возможностью перемещения вдоль продольной ее оси. При этом средства измерения угла наклона субгоризонтальной скважины реализованы размещенными перпендикулярно друг другу измерительным датчиком угла наклона указанной скважины относительно горизонтальной плоскости, установленным в плоскости продольной оси корпуса, и датчиком контроля положения упомянутого измерительного датчика в вертикальной плоскости путем поворота зонда досылочными элементами корпуса. Указанные датчики связаны со входами блока согласования, соединенного с выходом указанного зонда. С внешней стороны корпус имеет по меньшей мере две опоры, закрепленные в нижней части корпуса на его концах, а в верхней части - по меньшей мере два подпружинивающих элемента для постоянного контакта опор в нижней части корпуса с внутренней поверхностью обсадной трубы. Предложена также система для определения вертикальных сдвижений горных пород и закладочного массива, включающая последовательно соединенные упомянутый зонд, электронный блок, выполненный на основе аналого-цифрового преобразователя с блоком питания, интерфейсную подсистему с прикладным программным обеспечением сбора и хранения информации. При этом электронный блок снабжен соединенным с аналого-цифровым преобразователем и блоком питания модулем передачи данных в цифровой форме в режиме реального времени в указанную интерфейсную подсистему, которая реализована в виде персонального компьютера с общим и прикладным программным обеспечением обработки и преобразования информации, дополнительно включающим блок предварительной обработки сигналов указанных датчиков и блок выбора режимов проведения эксперимента, соединенные со входами блока отображения текущей информации в графической форме и управления экспериментом, выход которого соединен со входом блока представления данных и хранения файлов. 2 н. и 2 з.п. ф-лы, 2 ил.

Изобретение относится к технике горного дела, добыче полезных ископаемых, в частности к устройствам для изучения физико-механических свойств горных пород, и может быть использовано в геологии, горной, газовой и нефтяной промышленности для расчета предельной величины давления гидроразрыва пласта. Сущность: осуществляют воздействие на образец горной породы внешним давлением и измеряют скорости распространения продольных и поперечных упругих волн в образце. Производят циклическое воздействие внешним давлением на образец с чередованием нагрузки-разгрузки, с постепенным увеличением внешнего давления до номинальной величины, о достижении которой судят по моменту стабилизации зависимости скорости распространения продольной и поперечной волн от увеличения внешнего давления на образец, в результате полученные значения скорости распространения продольной и поперечной волн используют как истинные величины для расчета значений модуля Юнга и коэффициента Пуассона. Технический результат: снижение погрешности при измерении скорости распространения упругих волн в образцах керна. 1 ил.

Изобретение относится к горному делу, в частности к средствам контроля состояния анкерной крепи и смещений вмещающих пород горизонтальных и наклонных подземных горных выработок, закрепленных анкерной крепью. Устройство контроля анкерной крепи содержит реперы, каждый из которых соединен гибкой связью с соответствующим ему индикатором, и устьевую трубку. При этом индикаторы закреплены на гибких связях фиксаторами, расположены один в другом или независимо друг от друга. Также в устройстве контроля анкерной крепи: репер выполнен в виде пружины с отогнутыми концами; индикаторы на внешней поверхности имеют горизонтальную трехцветную разметку, которая нанесена с помощью краски или выполнена из отдельных или объединенных на листе или оболочке полосок. Индикаторы имеют дополнительную оболочку из полимерного материала; гибкие связи выполнены из нержавеющего стального троса или из полимерных или композиционных материалов. Устьевая трубка выполнена из металлических, или полимерных, или композиционных материалов. Техническим результатом изобретения является упрощение монтажа, повышение информативности и надежности контроля состояния анкерной крепи и смещений вмещающих пород горизонтальных и наклонных подземных горных выработок. 5 з.п. ф-лы, 9 ил.

Изобретение относится к горному делу и может быть использовано при оценке структурно нарушенных и удароопасных массивов горных пород и прогноза развития деформационных процессов. Способ включает оборудование гипсово-скважинной наблюдательной станции в подземной горной выработке. По контуру сечения выработки наносят гипсовый слой шириной 20-50 см, толщиной 0,5-3 см, слой наносят на борта выработки, кровлю и на почву выработки. В гипсовом слое закрепляют съемные маячки по определенной сетке. Одновременно с нанесением гипсового слоя на расстоянии 1-2 м от него пробуривают скважины по контуру сечения выработки в радиальных направлениях глубиной, необходимой для определения зоны влияния выработки. По характеру деформирования выработки определяют направление действия главных нормальных напряжений σ1 в массиве горных пород. По пробуренным наблюдательным скважинам определяют расположение трещин в массиве, добиваясь тем самым картирования - натурного отображения скважины в пространстве. По съемным маякам в гипсовом слое определяют конвергенцию горной выработки, а по результатам картирования скважин определяют направление действия главных напряжений и глубину распространения зоны повреждения пород, устанавливая тем самым механизм деформирования выработки и массива горных пород. 1 з.п. ф-лы, 4 ил.
Наверх