Способ термической обработки полуфабрикатов из стали мартенситного класса

Изобретение относится к области черной металлургии, а именно к технологии термической обработки полуфабрикатов из стали мартенситного класса, предназначенных для изготовления деталей и узлов, работающих в условиях Крайнего Севера и Сибири, например контейнеров для перевозки отработавшего ядерного топлива. Техническим результатом изобретения является повышение хладостойкости сталей мартенситного класса. Для достижения технического результата полуфабрикат из хромоникельмолибденованадиевой мартенситной стали подвергают нагреву под закалку до температуры Ас3 +(30÷50)°C и последующему отпуску при 600÷700°C с охлаждением на воздухе, затем проводят старение при 450±10°C с выдержкой 5,0÷10,0 ч для полного прогрева заготовки и охлаждают на воздухе, при этом при температуре нагрева под закалку осуществляют выдержку в течение времени, определяемого из расчета 2,5÷3,0 мин/мм сечения, и охлаждают в масло, а при отпуске время выдержки определяют из расчета 5,0÷6,0 мин/мм сечения с последующим охлаждением на воздухе. Полуфабрикаты, прошедшие разработанный режим термической обработки, обладают высокой хладостойкостью. 2 табл., 1 пр.

 

Изобретение относится к технологии термической обработки полуфабрикатов, предназначенных для изготовления деталей и узлов, работающих в условиях Крайнего Севера и Сибири, например контейнеров для перевозки отработавшего ядерного топлива.

Известны способы термической обработки сталей, позволяющие достичь удовлетворительных значений прочностных и вязкопластических свойств (Гуляев А.П. «Металловедение», Москва, издательство «Металлургия, 1986 г., стр.334-337).

Наиболее близким по технической сущности и достигаемому эффекту является способ термической обработки металлов, (Новиков И.И. «Теория термической обработки металлов», Москва, издательство «Металлургия», 1974 г., стр.352-354).

Согласно известному способу поковки нагревают до температуры выше точки Ас3 на 30-50°C, выдерживают при этой температуре и охлаждают в воде или масле. Затем проводят отпуск при температуре 600-670°C с последующим охлаждением на воздухе, в воде или масле.

Недостатком известного способа, как установлено исследованиями, является недостаточная хладостойкость хромоникельмолибденованадиевых сталей мартенситного класса.

Техническим результатом изобретения является повышение хладостойкости хромоникельмолибденованадиевых сталей мартенситного класса.

Поставленный технический результат достигается за счет того, что в способе термической обработки полуфабрикатов из хромоникельмолибденованадиевых сталей мартенситного класса, включающем закалку стали от температур на 30-50°C выше точки Ас3 и последующий отпуск при температуре 600-700°C с охлаждением на воздухе, согласно изобретению, после отпуска дополнительно проводят старение в диапазоне температур 450±10°C с выдержкой 5-10 час после полного прогрева заготовки с дальнейшим охлаждением на воздухе, при этом при нагреве под закалку время выдержки стали определяют из расчета 2,5-3 мин/мм сечения, а закалку проводят в масло, а при отпуске время выдержки стали определяют из расчета 5-6 мин/мм сечения с последующим охлаждением на воздухе.

Исследованиями установлено, что нагрев до температуры Ас3+(30-50)°C приводит к растворению феррита, цементита, а также тугоплавких карбидов хрома, молибдена и ванадия в аустените. Последующая закалка стали приводит к образованию мартенситной или мартенситно-бейнитной структуры. Дальнейший высокий отпуск приводит к распаду мартенсита и бейнита с образованием феррито-цементитной структуры (сорбит), что приводит к повышению вязкопластических свойств стали.

Регламентирование времени выдержки под закалку, определенное из расчета 2,5-3,0 мин/мм сечения, способствует переводу стали в аустенитное состояние и растворению карбидной фазы в аустените.

Уменьшение длительности выдержки при закалке менее 2,5 мин/мм сечения не позволяет полностью растворить тугоплавкие карбиды.

Увеличение длительности выдержки при закалке более 3,0 мин/мм сечения приводит к росту зерна, что снижает хладостойкость.

Регламентирование времени выдержки в процессе отпуска, определенное из расчета 5,0-6,0 мин/мм сечения, способствует более полному распаду мартенсита и бейнита с образованием ферритокарбидной структуры, что приводит к повышению вязкопластических свойств стали.

Уменьшение длительности выдержки при отпуске менее 5,0 мин/мм сечения не позволяет полностью выделиться карбидам хрома и ванадия.

Увеличение длительности выдержки при отпуске более 6,0 мин/мм сечения приводит к образованию аустенита, который при последующем охлаждении переходит в мартенсит, что охрупчивает сталь.

В процессе отпуска происходит растворение третичного цементита и в связи с тем, что после отпуска металл охлаждается на воздухе с высокой скоростью, ферритная матрица пересыщается углеродом, что ведет к снижению хладостойкости стали.

Для выделения углерода из ферритной матрицы с целью повышения хладостойкости необходимо проведение старения стали при температуре 450±10°C.

Снижение температуры старения менее 450±10°C также способствует выделению цементита. Но при этом из-за малого размера частиц цементита и большой плотности их выделений происходит снижение хладостойкости стали.

Повышение температуры старения более 450±10°C приводит к выделению из феррита мелкодисперсных тугоплавких карбидов ванадия и хрома, что также снижает хладостойкость стали.

На хладостойкость стали оказывает влияние и длительность процесса старения. При выдержке менее 5,0 час при температуре 450±10°C имеет место выделение мелкодисперсных карбидов цементита. Увеличение длительности выдержки свыше 10,0 час приводит к выделению карбидов ванадия и хрома, что также снижает хладостойкость стали.

Пример конкретного выполнения способа:

На металлургическом заводе ОАО «ОМЗ-Спецсталь» была выплавлена хромоникельмолибденованадиевая сталь марки 38ХН3МФА, химический состав которой приведен в таблице 1.

Химический состав стали 38ХН3МФА

Таблица 1
Марка стали Содержание элементов, мас.%
С Si Mn S P W Cr Ni V Mo Cu Fe
38ХН3МФА 0,38 0,39 0,38 0,18 0,022 0,02 1,32 3,17 0,14 0,42 0,12 Остальное

Из этой стали были изготовлены поковки диаметром 100 мм, которые были подвергнуты закалке при температуре 880±10°C в масле и последующему отпуску при температуре 620±10°C на категорию прочности КП90 по ГОСТ 23304-78. После указанной термической обработки поковка была разрезана на заготовки размером 20×20×60 мм, которые были подвергнуты старению при температуре 450±10°C и выдержке 5,0, 7,0 и 10,0 часов.

Из этих заготовок были изготовлены образцы 11 типа с V-образным надрезом по ГОСТ 9454-78 и испытаны при различных температурах от +20 до -50°C. Результаты испытаний приведены в таблице 2.

Влияние режимов термической обработки на хладостойкость стали марки 38ХН3МФА на КП90.

Таблица 2
Способ Параметры способа Ударная вязкость
Предлагаемый Закалка Отпуск Старение Температура
Температура,
°C
Длительность,
мин/мм
Температура,
°C
Длительность,
мин/мм
Температура,
°C
Длительность,
ч
+20 -20 -30 -50
880±10 2,5 620±10 5,0 450±10 5,0 60 54 52 45
3,0 6,0 63 58 56 47
2,5 5,0 7,0 96 69 62 55
3,0 6,0 101 73 66 59
2,5 6.0 10,0 95 65 59 53
3,0 5,0 89 61 54 49
Известный 880±10 - 620±10 - - - 50 48 45 41
Примечание:
1. Результаты испытаний усреднены по третьим образцам на точку и округлены до целого числа.
2. Испытания на ударный изгиб проводились на образцах 11 типа с V-образным надрезом по ГОСТ 9454-78.
3. Разброс температуры, равный ±10°C, при закалке, отпуске и старении соответствует точности регулирования задатчика потенциометра и перепаду температурного поля внутри печи.

Как видно из полученных результатов, образцы, термически обработанные по предлагаемому способу, имеют более высокие значения хладостойкости по сравнению с образцами, термически обработанными по известному способу.

Ожидаемый технико-экономический эффект по сравнению с прототипом выразится в возможности создания новых образцов машин и конструкций общего и специального назначения с повышенной надежностью и долговечностью, работающих в районах Крайнего Севера и Сибири, за счет повышения их хладостойкости.

Способ термической обработки полуфабриката из стали мартенситного класса, включающий нагрев под закалку до температуры Ас3+(30-50)°C, охлаждение и отпуск в диапазоне температур 600-700°C с охлаждением на воздухе, отличающийся тем, что после отпуска дополнительно проводят старение при температуре 450±10°C с выдержкой 5-10 ч для полного прогрева заготовки и охлаждение на воздухе, причем при температуре закалки осуществляют выдержку полуфабриката в течение времени, определяемого из расчета 2,5-3 мин на 1 мм сечения, и охлаждают в масло, а при температуре отпуска - выдержку в течение времени, определяемого из расчета 5-6 мин на 1 мм сечения, c последующим охлаждением на воздухе.



 

Похожие патенты:
Изобретение относится к металлургии, а именно к термической обработке высокопрочных коррозионно-стойких мартенситностареющих сталей криогенной техники, и может быть использовано в энергетическом машиностроении при изготовлении высоконагруженных упругих металлических уплотнений разъемных соединений энергетических установок, работающих в агрессивных средах при температурах от 20 до 723К.
Изобретение относится к области металлургии, а именно к способу термической обработки жаропрочных сталей мартенситного класса, применяемых для изготовления элементов тепловых энергетических установок с рабочей температурой пара до 650°C.
Изобретение относится к термической обработке стали, применяемой для изготовления сложнонагруженных деталей в судовом машиностроении, воспринимающих значительные разнонаправленные динамические нагрузки, например, крепежа, поковок.
Изобретение относится к области машиностроения и может быть использовано для реализации процессов термической обработки деталей, к поверхности которых предъявляются особые требования.

Изобретение относится к области термической обработки деталей и предназначено для использования в судовом машиностроении для изготовления штамповок кривошипных валов.

Изобретение относится к области металлургии и термической обработки сплавов и может быть использовано в точном приборостроении и машиностроении. .

Изобретение относится к области термической обработки деталей и предназначено для использования в судовом и энергетическом машиностроении при изготовлении силовых крепежных элементов систем и узлов высокого давления.

Изобретение относится к области машиностроения и может быть использовано в различных отраслях промышленности при термической обработке деталей из мартенситностареющих сталей, например, 08Х15Н5Д2Т, 06Х14Н6Д2МБТ, 10Х14Н4АМЗ и 07Х16Н6.

Изобретение относится к технологии обработки низко- и среднеуглеродистой легированной стали. .

Изобретение относится к металлургии, в частности к термической обработке мартенситных дисперсионно-твердеющих сталей. .

Изобретение относится к области металлургии. Для повышения механической прочности и обеспечения предела упругости более 1300 МПа полуфабрикат из стали содержит, мас.%: 0,15≤C≤0,40, 1,5≤Mn≤3, 0,005≤Si≤2, 0,005≤Al≤0,1, S≤0,05, P≤0,1, 0,025≤Nb≤0,1 и необязательно: 0,01≤Ti≤0,1, 0≤Сr≤4, 0≤Мо≤2, 0,0005≤В≤0,005, 0,0005≤Ca≤0,005, остальное железо и неизбежные примеси нагревают до температуры T1, составляющей от 1050° до 1250°C, затем производят черновую прокатку при температуре T2, составляющей от 1050° до 1150°C, с общим коэффициентом обжатия εa более 100% с получением листа с не полностью рекристаллизованной аустенитной структурой со средним размером зерна менее 40 микрометров. Лист охлаждают до температуры T3, составляющей от 970° до Ar3+30°C, со скоростью VR1, превышающей 2°C/с, затем производят горячую чистовую прокатку указанного охлажденного листа при температуре T3 с общим коэффициентом обжатия εb более 50% для получения листа, затем лист охлаждают со скоростью VR2, превышающей критическую скорость закалки на мартенсит. 3 н. и 2 з.п. ф-лы, 1 пр.

Изобретение относится к области термообработки поковок из легированных сталей и предназначено для использования в судовом машиностроении при изготовлении гребных валов. Для получения требуемой категории прочности металла с пределом текучести не менее 800 МПа и повышения коррозионной стойкости поковку из стали, содержащей, мас.%: углерод 0,08-0,10, хром 15,0-16,0, никель 4,0-4,5, марганец 0,2-0,5, кремний не более 0,6, ниобий 0,2-0,4, молибден 0,20-0,30, азот 0,10-0,15, сера не более 0,020, фосфор не более 0,025, железо и примеси остальное, подвергают гомогенизации при температуре 1150°C с выдержкой 1,5 мин на мм глубины сечения и охлаждением на воздухе, отпуску при температуре 650°C с выдержкой 6 мин на мм глубины сечения и охлаждением на воздухе, закалке в масле при температуре 1050°C с выдержкой 2 мин на мм глубины сечения и охлаждением в масле, последующему отпуску при температуре 600°C с выдержкой 4 мин на мм глубины сечения и охлаждением на воздухе. Химический состав стали мартенситного класса в совокупности со способом термической обработки формирует оптимальную структуру стали, необходимую для обеспечения высокой работоспособности гребных валов в условиях длительной эксплуатации, в частности, при изготовлении поковок для гребных валов диаметром до 250 мм и длиной 9,0 м. 2 табл.

Изобретение относится к области металлургии, а именно к составу низкохромистой инструментальной стали, предназначенной для работы при высоких температурах. Сталь содержит, мас.%: C 0,08-0,40, N 0,015-0,30, C+N 0,30-0,50, Cr 1-4, Mo 1,0-3, V 0,8-1,3, Mn 0,5-2, Si 0,1-0,5, факультативно Ni <3, Co ≤5, B <0,01, остальное - Fe и неизбежные примеси. Сталь обладает высокой отпускной стойкостью при высоких температурах. 2 н. и 13 з.п. ф-лы, 11 ил., 4 табл., 2 пр.

Изобретение относится к изготовлению листа. Для получения стального листа с мартенситной структурой, в которой средний размер реек меньше 1 микрометра, средний коэффициент удлинения реек составляет от 2 до 5, предел упругости - более 1300 МПа, предел прочности превышает (3220(C)+958) мегапаскалей, где (С) содержание углерода в мас.%, поставляют полуфабрикат из стали, содержащей, мас.%: 0,15≤С≤0,40; 1,5%≤Mn≤3%; 0,005≤Si≤2; 0,005≤Al≤0,1; 1,8≤Cr≤4; 0≤Mo≤2, при этом 2,7≤0,5(Mn)+(Cr)+3(Mo)≤5,7; S≤0,05; Р≤0,1, и необязательно: 0≤Nb≤0,050; 0,01≤Ti≤0,1; 0,0005≤В≤0,005; 0,0005≤Са≤0,005, остальное железо и неизбежные примеси. Полуфабрикат нагревают до температуры T1, составляющей от 1050 до 1250°C, затем производят черновую прокатку полуфабриката при температуре Т2, составляющей от 1000 до 880°C, с коэффициентом обжатия εa более 30% и получением листа с полностью рекристаллизованной аустенитной структурой со средним размером зерна менее 40 микрометров и предпочтительно менее 5 микрометров. Лист охлаждают до температуры Т3, составляющей от 600 до 400°C, со скоростью VR1, превышающей 2°C/c, затем производят горячую чистовую прокатку не полностью охлажденного листа при указанной температуре Т3 с коэффициентом обжатия εb более 30%, полученный лист охлаждают со скоростью VR2, превышающей критическую скорость закалки на мартенсит. 6 н. и 7 з.п. ф-лы, 3 ил., 4 табл., 2 пр.
Наверх