Способ функциональной проверки течеискателя

Авторы патента:


Способ функциональной проверки течеискателя
Способ функциональной проверки течеискателя

 


Владельцы патента RU 2545355:

ИНФИКОН ГМБХ (DE)

Изобретение относится к области исследований устройство на герметичность и может быть использовано для функциональной проверки течеискателя (20). Сущность: течеискатель (20) содержит датчик (21) парциального давления, входное отверстие (24) которого является входным отверстием течеискателя (20), камеру (22) обнаружения с селективно проницаемым для тестового газа окном (23). В камере (22) обнаружения размещен датчик давления для выдачи индикации, соответствующей парциальному давлению тестового газа. К течеискателю (20) подключают испытательное устройство (30), имеющее пространство (33) и изменяемым объемом и шкалу для наблюдения за размером этого пространства. Изменяя размер пространства (33) испытательного устройства (30), изменяют парциальное давление содержащегося в атмосферном воздухе тестового газа у входного отверстия (24) датчика (21) парциального давления. Проверяют, показывает ли течеискатель (20) изменение парциального давления. Технический результат: упрощение функциональной проверки течеискателя, снижение трудозатрат и затрат времени. 4 з.п. ф-лы, 2 ил.

 

Изобретение относится к способу функциональной проверки течеискателя, имеющего входное отверстие для газа.

Течеискатели служат для определения наличия тестового газа в потоке газа. Поток газа стандартно создается за счет отсасывания газа из резервуара; но также может использоваться поток только за счет диффузии. Если тестовый газ, обычно гелий, снаружи распрыскивается на резервуар, то в случае утечки тестовый газ проникает вовнутрь резервуара, за счет чего тестовый газ является устанавливаемым в извлеченном газовом потоке. Другой метод предусматривает, что тестовый газ вводится в проверяемый на герметичность резервуар. С наружной стороны резервуара течеискателем для работы методом щупа производится откачивание для того, чтобы распознать выходящий тестовый газ.

Если в вакуумной установке, которая имеет вакуумируемый резервуар и соответствующее вакуумное насосное устройство, должна быть произведена проверка на предмет утечек, то течеискатель необходимо подключить к всасывающей линии вакуумного насосного устройства. В то время как дорогостоящие течеискатели для выявления тестового газа содержат масс-спектрометр, также известны и датчики парциального давления, которые менее дорогостоящи и имеют относительно легкий вес. Такой датчик парциального давления для гелия или водорода в качестве тестового газа описан в WO 2002003057 (Inficon). Датчик имеет окно с, например, селективно проницаемой для гелия мембраной, которая ограничивает камеру датчика, и датчик давления внутри камеры датчика. Датчик работает при любом давлении окружающей среды.

Еще один пример датчика парциального давления описан в DE 102006047856 A1 (Inficon). Подобные датчики парциального давления известны под наименованием Wise Technology™.

В основу изобретения положена задача создания способа функциональной проверки течеискателя, в котором функциональная проверка может выполняться без перекачивающего насоса.

Объектом изобретения является способ функциональной проверки течеискателя, имеющего входное отверстие для газа, через которое к течеискателю подключают испытательное устройство, имеющее пространство с изменяемым объемом. В соответствии с изобретением для решения поставленной задачи течеискатель содержит датчик парциального давления, имеющий вышеупомянутое входное отверстие, камеру обнаружения с селективно проницаемым для тестового газа окном и датчик давления для выдачи индикации, соответствующей парциальному давлению тестового газа, причем, изменяя размер пространства испытательного устройства и наблюдая указывающую размер пространства шкалу, изменяют парциальное давление содержащегося в атмосферном воздухе тестового газа у входного отверстия датчика парциального давления и проверяют, показывает ли течеискатель изменение парциального давления.

Предлагаемый способ функциональной проверки отказывается от машинных вакуумных насосов и использует вместо этого испытательное устройство с пространством с изменяемым объемом. Такое испытательное устройство может легко транспортироваться и подключаться к течеискателю. Предпочтительным образом, его задействование выполняется вручную, поэтому также не требуются двигатели или прочие приводы.

Способ особенно подходит для гелиевого течеискателя для использования в вакуумных установках, которые имеют резервуар и вакуумное насосное устройство. Течеискатель подключается в подходящем месте к всасывающей магистрали. Ему не требуется собственный насос, так как поток всасывания создается вакуумным насосным устройством установки. Подобный мини-течеискатель особенно подходит для сервисных целей, так как из-за отсутствующих собственных насосов его легко транспортировать. Перед сервисным обслуживанием техник сервисного обслуживания должен проверить работу течеискателя, по возможности также с проверкой чувствительности. Так, он может предотвратить выезд с неисправным прибором или подключение неисправного прибора к установке. Поскольку течеискатель не имеет встроенного насоса, то функциональная проверка выполняется небольшим испытательным устройством малого веса.

Изобретение использует эффект, заключающийся в том, что тестовый газ, такой как гелий или водород, содержится в окружающем воздухе, и что доля тестового газа в воздухе относительно постоянна. За счет увеличения пространства испытательного устройства можно уменьшить давление, которое действует на входном отверстии датчика, за счет чего также соответствующим образом снижается парциальное давление тестового газа. Тем самым, возможна функциональная проверка течеискателя, во время которой проверяется, показывает ли течеискатель изменение парциального давления. Также возможна калибровка течеискателя, когда измеренное изменение парциального давления соотносится с содержащейся в окружающем воздухе долей гелия.

Технические результаты, достигаемые при осуществлении изобретения, заключаются в упрощении функциональной проверки течеискателя и соответствующих технических средств, а также в снижении трудозатрат и затрат времени, сопряженных с функциональной проверкой течеискателя.

Испытательное устройство может быть выполнено носимым, предпочтительно имеет ручной привод. Функциональную проверку течеискателя можно выполнять перед каждым применением последнего. Сопоставление изменения объема пространства проверочного устройства визуально по указывающей размер пространства шкале с изменением показаний течеискателя позволяет быстро сделать вывод о работоспособности течеискателя.

Предпочтительным образом испытательное устройство состоит из шприца, подобного тому, который используется при вводе медицинских жидкостей. Такой шприц имеет корпус шприца и перемещаемый в нем поршень, который связан с поршневым штоком. При втягивании поршня пространство внутри шприца увеличивается. На переднем конце корпуса шприца находится конус шприца. Он может быть герметично соединен с адаптером, который установлен на входном отверстии датчика парциального давления. При использовании шприца изменение объема пространства заключается в том, что путем перемещения поршня увеличивают объем пространства, находящегося внутри корпуса шприца.

Изобретение позволяет технику сервисного обслуживания выполнять простую функциональную проверку и калибровку течеискателя без необходимости в инструментах в любом месте. Все, что необходимо вести с собой, это приводимое вручную испытательное устройство. Вместо шприца испытательное устройство может состоять из блока поршневого цилиндра или иного пространства с изменяемым объемом.

Далее пример осуществления объясняется подробнее со ссылкой на чертежи.

Показано на:

Фиг. 1 - использование датчика парциального давления в установке, которая состоит из герметичного резервуара и вакуумного насосного устройства, и

Фиг. 2 - схематическое изображение использования испытательного устройства в случае датчика парциального давления, который должен использоваться согласно фиг. 1.

На фиг. 1 показана вакуумная установка, которая имеет резервуар 10, внутреннее пространство которого должно быть вакуумировано. Резервуар 10 может быть реактором для вакуумной обработки заготовок, например для ионно-плазменного распыления, термического напыления, химического осаждения из газовой фазы и т.п.

Вакуумная проверка должна установить, проникает ли тестовый газ, в данном случае - гелий, снаружи в вакуумируемый резервуар 10. Скорость утечки гелия обозначена QHe.

Резервуар 10 подключен к вакуумному насосу 11, например роторно-щелевому насосу. Выходное отверстие вакуумного насоса 11 соединено с всасывающим входным отверстием вакуумного насоса 12. Выходное отверстие 13 насоса 12 предварительного разрежения выходит в окружающий воздух, в котором действует атмосферное давление.

На всасывающем входном отверстии вакуумного насоса 11 присутствует скорость откачки SI и давление PI. Там находится вывод 14, к которому может быть подключен течеискатель.

На всасывающем входном отверстии насоса 12 предварительного разрежения присутствует скорость откачки SII и давление PII. Там находится вывод 15, к которому по выбору также может быть подключен течеискатель.

На выходном отверстии насоса 12 предварительного разрежения действует давление PIII. Там находится вывод 16, к которому по выбору также может быть подключен течеискатель.

На фиг. 1 течеискатель 20 подключен к выводу 15.

Типичные примеры параметров QHe, V, Р и S во время эксплуатации вакуумной установки таковы:

QHe=10-7…10-4…10-3…10-1 мбарл/с (прим.)

V=[0,5 л] 0,5 м3…80 м3

PI=10-2…15 мбар

SI=…800 л/с (3000 м3/ч)

PII=10-2…0,1…45 мбар

SII=1…350 л/с (1260 м3/ч)

PIII=атм.

На фиг. 2 показана функциональная проверка течеискателя 20. Течеискатель имеет датчик 21 парциального давления, который выполнен таким же образом, как описано в DE 10031882 А1, который тем самым включается в данную заявку путем ссылки. Датчик парциального давления имеет камеру 22 обнаружения, которая имеет селективно проницаемое для гелия окно, которое образует входное отверстие 24 датчика парциального давления. В камере 22 обнаружения находится датчик давления, например в форме датчика давления Пеннинга, как также описывается в DE 102004034831 А1. Он обеспечивает соответствующую парциальному давлению гелия индикацию на блоке 25 анализа.

К входу 24 подключен адаптер, который обеспечивает возможность герметичного подключения испытательного устройства 30. В данном случае испытательное устройство 30 состоит из шприца, который имеет корпус 31 шприца и выполненный в нем с возможностью смещения поршень 32. Перед поршнем 32 находится пространство 33 с изменяемым пространством. За счет смещения поршня 32 вручную размер пространства 33 изменяется. На переднем конце шприца находится конус 34 шприца, который герметично соединен с адаптером 26.

Датчик 21 парциального давления измеряет парциальное давление гелия. К датчику парциального давления подключено испытательное устройство 30, при этом должен быть определен закрытый объем между окном 23 и передним концом пути поршня для того, чтобы при изменении объема создать стабильное заданное изменение давления.

Сначала на датчике присутствует давление воздуха в 100 мбар и парциальное давление гелия примерно в 5Е-3 мбар. Если теперь увеличивают за счет поршня шприца пространство корпуса до известного объема, с наблюдением нанесенной на корпус шприца шкалы, то давление воздуха и парциальное давление гелия на датчике понижается на соотношение, которое зависит от закрытого объема и объема шприца. Шприц используется, так сказать, как "насос". За счет этого падения давления индикация скорости утечки на течеискателе изменится. Тем самым можно проверить работу течеискателя и при известном парциальном давлении гелия даже количественно проверить чувствительность течеискателя.

Изобретение предлагает следующие преимущества:

- не требуется ни насос, ни дополнительные газы (такие как азот или гелий);

- необходимые средства измерения очень экономичны; запасной шприц можно найти где угодно;

- измеряется действительно чувствительность гелия, а не какая-то эквивалентная величина. За счет этого проверяется весь измерительный участок;

- можно получить и количественные параметры.

1. Способ функциональной проверки течеискателя, имеющего входное отверстие (24) для газа, через которое к течеискателю (20) подключают испытательное устройство (30), имеющее пространство (33) с изменяемым объемом, отличающийся тем, что течеискатель (20) содержит датчик (21) парциального давления, имеющий вышеупомянутое входное отверстие (24), камеру обнаружения с селективно проницаемым для тестового газа окном (23) и датчик давления для выдачи индикации, соответствующей парциальному давлению тестового газа, причем, изменяя размер пространства (33) испытательного устройства и наблюдая указывающую размер пространства шкалу, изменяют парциальное давление содержащегося в атмосферном воздухе тестового газа у входного отверстия (24) датчика парциального давления и проверяют, показывает ли течеискатель изменение парциального давления.

2. Способ по п.1, отличающийся тем, что испытательное устройство состоит из шприца с корпусом (31) шприца и выполненного с возможностью перемещения в нем поршня (32).

3. Способ по п.2, отличающийся тем, что изменение объема пространства (33) заключается в том, что путем перемещения поршня (32) увеличивают объем пространства, находящегося внутри корпуса (31) шприца.

4. Способ по одному из пп.1-3, отличающийся тем, что испытательное устройство (20) приводят в действие вручную.

5. Способ по п.2 или 3, отличающийся тем, что входное отверстие (24) датчика (21) парциального давления оснащено адаптером (26), который обеспечивает возможность герметичного подключения шприца.



 

Похожие патенты:

Изобретение относится к устройствам-течеискателям. Сущность: устройство содержит щуп (10), соединенный посредством шланга (11) через дроссель (D2) с вакуумным насосом (16), и датчик тестового газа (15).

Изобретение относится к области неразрушающего контроля и предназначено для использования в диагностике состояния механизмов и машин, испытывающих статические и динамические нагрузки и требующих повышенных мер контроля и обеспечения безопасности, например, погрузо-разгрузочных строительных машин (башенных кранов).

Изобретение относится к средствам для испытания фильтров и может найти применение в любых отраслях промышленности, где они используются. .
Изобретение относится к средствам испытаний на герметичность днищ крупногабаритных резервуаров, в частности, на АЭС. .

Изобретение относится к высокоэффективной жидкой среде с распределенными наночастицами для охлаждения ядерного реактора в качестве основного материала, с которым смешаны наночастицы, к способу и устройству для изготовления жидкой среды и к способу обнаружения утечки жидкой среды.

Изобретение относится к области испытательной техники и предназначено для контроля герметичности полых изделий, например роликов ленточных конвейеров. .

Изобретение относится к области поиска течей в изделиях, имеющих свободный объем, который перед герметизацией заполняется гелием. .

Изобретение относится к области испытания устройств на герметичность. Сущность: устройство включает в себя: масс-спектрометрическую трубку (2), выполненную с возможностью обнаружения газа для поиска утечки, и турбомолекулярный насос (3). Турбомолекулярный насос (3) имеет множество ступеней роторов (33) и статоров (34), поочередно размещенных в корпусе (31), причем роторы (33) прикреплены к вращающемуся валу (32). Кроме того, турбомолекулярный насос (3) включает в себя источник (35) привода, выполненный с возможностью приведения во вращение вращающегося вала (32). Впускное отверстие (36), сообщающееся с испытательным образцом (TP), и соединительное отверстие (37), с которым соединена масс-спектрометрическая трубка (2), отстоят друг от друга на поверхности (31а) стенки корпуса (31). Причем поверхность (31а) стенки обращена к ротору (33а) самой верхней ступени. Обнаружение утечки выполняется, побуждая газ для поиска утечки входить в масс-спектрометрическую трубку (2) изнутри испытательного образца (ТР). Технический результат: повышение чувствительности и оперативности при обнаружении утечки. 4 ил.

Использование: для отделения определенных газов от других газов и установления наличия интересующих газов. Сущность изобретения заключается в том, что тело мембраны образовано первой пластиной и второй пластиной. Вторая пластина имеет тонкий слой, обладающий селективной газопроницаемостью. В зоне нахождения окошек этот слой обнажен. В этих местах поддержка обеспечена пористым донышком в первой пластине или узкими отверстиями во второй пластине. Мембрана содержит нагреватель, обеспечивающий нагрев окошек излучением. Технический результат: упрощение конструкции и простота изготовления мембраны. 3 н. и 6 з.п. ф-лы, 3 ил.

Изобретение относится к области исследования устройств на герметичность и может быть использовано для проверки герметичности устройства, содержащего конденсируемый газ, прежде всего хладагент. Сущность: отсасывают газ (15) из окружающей устройство (10) среды. Направляют упомянутый газ (15) через адсорбер (22). Активируют адсорбер (22) для десорбции накопившегося на нем газа. Направляют десорбированный газ посредством высоковакуумного насоса (32) к газовому счетчику (30) для селективного распознавания. При этом десорбция происходит непосредственно в вакуум, создаваемый высоковакуумным насосом (32). Технический результат: повышение надежности контроля, обеспечение простоты конструкции. 2 н. и 8 з.п. ф-лы, 1 ил.

Изобретение относится к области исследований на герметичность. Сущность: течеискатель имеет испытательное впускное отверстие (10) для соединения проходящей испытание тестовой камеры. Высоковакуумный насос (12) создает в детекторе (11) тестового газа высокий вакуум. Форвакуумный насос (20) содержит две насосные ступени (22, 23). Для откачки тестовой камеры насосные ступени (22, 23) приводятся в действие параллельно, причем их скорости откачки складываются. После достижения необходимого вакуума насосные ступени (22, 23) приводятся в действие последовательно для создания в детекторе (11) тестового газа необходимого высокого вакуума. Технический результат: создание течеискателя с возможностью упрощенного переключения между режимами откачки и детектирования. 5 з.п. ф-лы, 1 ил.

Изобретение относится к области оптических методов контроля и касается устройства для проведения течеискания в нескольких точках контроля. Устройство включает в себя несколько измерительных ячеек для оптического обнаружения пробного газа, каждая из которых имеет средство возбуждения для перевода пробного газа в метастабильное состояние, источник излучения и приемник излучения, а также базовый блок, соединенный с измерительными ячейками с помощью оптических волокон. Базовый блок включает в себя перестраиваемый по частоте лазер и фотодетектор. Лазер приводится в действие посредством двухтональной частотной модуляции (ДТЧМ) путем генерации для испускаемого лазерного излучения, боковых полос (ω0-ω1)±1/2Ω и (ω0+ω1)±1/2Ω, где ω0 - центральная частота лазера, ω1 - первая частота модуляции, которая больше или равна 1 ГГц, a Ω - вторая частота модуляции, которая меньше или равна 10 МГц. Технический результат заключается в обеспечении возможности обнаружения утечек в нескольких точках контроля и в повышении чувствительности устройства. 2 з.п. ф-лы, 6 ил.

Изобретение относится к способам контроля герметичности устройств и может быть использовано для контроля целостности второго уплотнителя (2) электрического изолятора. Сущность: заполняют первый объем (10) изолятора газом, содержащим обнаруживаемый компонент. Закрывают второе закрывающееся отверстие (4). Освобождают второй объем (11) через первое закрывающееся отверстие (5). Обнаруживают, что второй уплотнитель (6) между вторым уплотнительным элементом (2) и корпусом (8) или закрытым вторым закрывающимся отверстием (4) протекает, если обнаруживаемый компонент обнаружен в откачанном газе из второго объема (11). Технический результат: контроль целостности второго уплотнителя электрического изолятора. 11 з.п. ф-лы, 5 ил.

Изобретение относится к области оптических методов контроля и касается течеискателя. Течеискатель включает в себя ячейку с входом пробного газа, селективно или исключительно проницаемую для пробного газа мембрану и оптический измерительный участок, образованный лазером и фотодетектором. Ячейка содержит возбуждающее устройство, способное переводить пробный газ в энергетически более высокое метастабильное состояние. В качестве возбуждающего устройства применяется источник электронов, использующий электронные удары для перевода пробного газа в метастабильное состояние. Технический результат заключается в упрощении устройства, повышении чувствительности и быстродействия. 4 з.п. ф-лы, 5 ил.
Наверх