Способ получения n-арилпирролидинов и n-арилпиперидинов

Изобретение относится к области органического синтеза, в частности к способу получения N-арилпирролидинов и N-арилпиперидинов. N-арилпирролидины и N-арилпиперидинов являются синтонами в производстве фармацевтических препаратов, агрохимикатов, гербицидов, фунгицидов, красителей и т.д. Сущность способа заключается во взаимодействии анилинов общей формулы R-C6H4NH2 (где R=H, о-, м-, n-CH3, о-C2H5, о-, м-, n-Cl, n-F) с α,ω-диолами (1,4-бутандиол, 1,5-пентандиол) в присутствии катализатора FeCl3·6H2O в среде четыреххлористого углерода при 180°C в течение 4-8 ч при мольном соотношении [FeCl3·6H2O]:[RC6H4NH2]:[диол]:[CCl4]=0.2-0.5:100:100-400:20-100. При температуре 180°C и продолжительности реакции 6 ч выход N-арилпирролидинов достигает 45-88%, а N-арилпиперидинов - 33-85%. Синтез проводят в атмосфере аргона. Способ позволяет сократить время реакции и использовать более доступный катализатор. 1 табл., 33 пр.

 

Предлагаемое изобретение относится к области органического синтеза, в частности к способу получения N-арилпирролидинов и N-арилпиперидинов.

Циклические амины ряда N-арилпирролидинов и N-арилпиперидинов находят широкое применение в производстве фармацевтических препаратов, агрохимикатов, гербицидов, фунгицидов, красителей и т.д. [Tan W., Li С, Zheng J., Shi L., Sun Q., He Y. Nat. Gas Chem.,2008, 17 (4), 383].

N-Фенилпирролидин и N-фенилпиперидин получают взаимодействием анилина с 1,4-бутан- и 1,5-пентандиолами в присутствии 1,3,5-триазо-2,4,6-трифосфин-2,2,4,4,6,6-гексанхлорида (TAPC тример фосфонитрилхлорида, стоимость 5 г 38€ [http://www.acros.com]). Реакция проходит в жестких условиях: 200°C, 36 ч в 1,2,4-триметилбензоле [Du Y., Oishi S., Saito S. Chem. Eur. J., 2011, 17, 12262].

Недостатки метода:

1. Значительная продолжительность реакции (36 ч).

2. Проведение реакции при повышенной температуре (200°C).

3. Использование в качестве растворителя высококипящего 1,2,4-триметилбензола, который создает трудности при выделении и очистке целевых продуктов.

4. Применение в качестве катализатора высокотоксичного и дорогостоящего 1,3,5-триазо-2,4,6-трифосфин-2,2,4,4,6,6-гексанхлорида (TAPC).

В работе [Tan W., Li СМ., Zheng J., Shi L., Sun Q., He Y.H. J. Nat. Gas Chem., 2008, 17 (4), 383; Li С.М., Miao Z.L., Shi L., Sun Q., He Y.H. Chin. Chem. Lett., 2006, 17(12), 1540] синтез N-фенилпиперидина осуществлен взаимодействием анилина с 1,5-пентандиолом в присутствии γ-Al2O3. Катализатор γ-Al2O3 (SBET=290 м2/г, 20-40 меш) получают в результате обжига активного оксида алюминия при 500°C в течение 4 часов. Выход продукта зависит от микроструктуры Al2O3, он выше для катализатора с большим общим объемом пор.

Недостатки метода:

1. Необходимость проведения реакции при повышенной температуре (300°C).

2. Активация Al2O3 перед использованием проводится прокаливанием при высокой температуре (500°C), что приводит к большим энергозатратам.

3. Реакция проходит под давлением.

Снизить температуру реакции удается за счет использования нанесенных катализаторов. Так, циклические амины были получены N-гетероциклизацией анилинов с α,ω-диолами под действием гетерогенного катализатора Pt-Sn/γ-Al2O3 (0,5 мас % Pt, Pt/Sn соотношения=1:3), обладающего дегидрирующими свойствами [Не W., Wang L, Sun С, Wu К., Не S., Chen J., Wu P., Z. Yu, Chem. Eur. J., 2011, 17, 13308].

Для синтеза N-арилпирролидинов и N-арилпиперидинов широко используются гомогенные катализаторы. Так, взаимодействие анилинов с 1,4-бутандиолом под действием пентаметилциклопентадиенильного комплекса иридия Cp∗Ir в присутствии основания NaHCO3 (эквимолярное количество по отношению к катализатору) приводит к N-фенилпирролидину и N-(4-метоксифенил)пирролидину с выходом 70% и 90% соответственно. Электронодорный заместитель в фенильном кольце анилина способствует значительному увеличению выхода целевого продукта [Fujita K. - I., Fujii Т., Yamaguchi R. Org. Lett., 2004, 6 (20), 3525].

Недостатки метода:

1. Необходимость использования дорогостоящего иридиевого катализатора.

2. Значительная продолжительность реакции (17-40 ч).

Для синтеза циклических аминов ряда пирролидина и пиперидина гетероциклизацией анилинов с диолами широко используются рутенийсодержащие катализаторы.

Так, N-фенилпиперидин получают реакцией анилина с 1,5-пентандиолом. Реакция катализируется комплексами рутения RuCl2(PPh3)3 [Tsuji Y., Huh K. - T., Ohsugi Y., Watanabe Y., J. Org. Chem., 1985, 50 (9), 1985].

N-фенилпирролидин и N-фенилпиперидин получают реакцией анилина с 1,4-бутандиолом и 1,5-пентандиолом под действием комплексов рутения(II) RuCl2(PPh3)3 и RuCl3·xH2O/3PPh3 [Abbenhuis R., Boersma J., Koten G. J. Org. Chem., 1998, 63, 4282].

Недостатки метода:

1. Дороговизна рутенийсодержащих катализаторов.

2. Необходимость проведения процесса под давлением.

Циклические амины (N-фенилпирролидин и N-фенилпиперидин) были получены взаимодействием анилина с диолами в присутствии катализатора [Ru(p-cymene)Cl2]2, активированного бидентатным фосфиновым лигандом - бис [(2-дифенилфосфин)фениловым] эфиром (DPEphos), [Hamid M.H.S.A, Allen C.L., Lamb G.W., Maxwell A.C., Maytum H.C., Watson AJ.A., Williams J.M.J. J. Am. Chem. Soc, 2009, 131, 1766].

Использование микроволнового излучения позволяет сократить продолжительность реакции с 24 до 1,5 ч. Избыток диола способствует увеличению выхода целевого продукта. [Watson A., Maxwell A.,J. Williams J. Org. Chem., 2011, 76, 2328].

N-фенилпиперидин получают реакцией 1,5-пентандиола с анилином под действием рутенийсодержащего катализатора [Ru(p-cymene)Cl2]2, активированного лигандом 1,1′-бис(дифенилфосфин)ферроценом (dppf) и в присутствии молекулярных сит. При использовании катализатора менее 5 мол.% наряду с N-фенилпиперидином образуются лактоны и другие побочные продукты [Hamid М., Williams J. Chem. Commun., 2007, 725].

Недостатки методов:

1. Значительная продолжительность реакции (24 ч).

2. Необходимость использования дорогостоящего рутениевого катализатора.

3. Использование дорогостоящих лигандов: dppf- и DPEphos.

4. Трудность масштабирования из-за использования микроволнового излучения.

Авторами предлагается способ получения циклических аминов, не имеющий вышеперечисленных недостатков.

Сущность способа заключается во взаимодействии анилинов общей формулы R-C6H4NH2 (где R=H, o-, м-, n-CH3, o-C2H5, о-, м-, n-Cl, n-F) с α,ω-диолами (1,4-бутандиол, 1,5-пентандиол) в присутствии катализатора FeCl3·6H2O в среде четыреххлористого углерода при 180°C в течение 4-8 ч при мольном соотношении [FeCl3·6H2O]:[RC6H4NH2]:[диол]:[CCl4]=0.2-0.5:100:100-400:20-100. Оптимальными для проведения реакции являются следующие соотношения катализатора и реагентов: [FeCl3·6H2O]:[RC6H4NH2]:[диол]:[CCl4]=0.5:100:200:30. При температуре 180°C и продолжительности реакции 6 ч выход N-арилпирролидинов (1-9) достигает 45-88%, а N-арилпиперидинов (10-18) - 33-85%. Синтез проводят в атмосфере аргона.

В отсутствие катализатора и CCl4 реакция не проходит.

Оптимальные условия реакции отрабатывали на примере взаимодействия анилина с 1,5-пентандиолом под действием FeCl3·6H2O в среде CCl4. Примеры, подтверждающие способ, приведены в таблице 1.

Существенные отличия предлагаемого способа от прототипа.

Для получения циклических аминов из замещенных анилинов и α,ω-диолов используют катализатор FeCl·6H2O, реакция проводится в среде СС14.

Преимущества предлагаемого метода.

1. Высокий выход целевых продуктов.

2. Селективность процесса.

3. Доступность и дешевизна исходных реагентов и катализатора.

4. Удешевление себестоимости и упрощение технологии в целом за счет уменьшения энерго- и трудозатрат.

Строение полученных N-арилпирролидинов (1-9) и N-арилпиперидинов (10-18) доказано методами ЯМР, масс-спектрометрии, а также сравнением с известными образцами и литературными данными.

Предлагаемый способ поясняется примерами:

ПРИМЕР 1. Получение N-фенилпиперидина (10).

В ампулу в токе аргона загружали 2.9 мг (0.5 ммоль) FeCl3·H2O, 0.2 мл (100 ммоль) анилина, 0.45 мл (200 ммоль) 1,5-пентандиола, 0.06 мл (30 ммоль) CCl4. Запаянную ампулу помещали в автоклав, автоклав герметично закрывали и нагревали при 180°C в течение 6 ч, затем автоклав охлаждали до ~20°C, ампулу вскрывали, реакционную массу нейтрализовали 10% водным раствором Na2CO3, органический слой экстрагировали хлористым метиленом и отфильтровывали. Растворители отгоняли, остаток перегоняли под вакуумом.

N-Фенилпиперидин (10)

Выход 85%. Бесцв. масло, т. кип. 73-74°C/0.4 мм рт.ст. (Tкип 86°C/1 мм рт.ст. [Abbenhuis R., Boersma J., Koten G. J. Org. Chem., 1998, 63, 4282-4290]).

Спектр ЯМР 13C (δ, м.д.): 152.22 (C-1), 129.04 (C-3, C-5), 119.36 (C-4), 116.66 (C-2, C-6), 50.81 (C-2′, C-6′), 25.88 (C-3′, C-5′), 24.34 (C-4′). Спектр ЯМР 1H (CDCl3, δ, м.д.): 7.25-7.35 м (2H, C3,5H), 7.00 д (2H, C2,6H, J 8.0 Гц), 6.80-6.96 м (1H, C4H), 3.15-3.26 м (4H, C2′,6′H2), 1.70-1.80 м (4Н, C3′,5′H2), 1.55-1.68 м (2H, C4′H2).

ПРИМЕРЫ 2-16 (см. табл.1). Аналогично примеру 1.

ПРИМЕР 17. Получение N-(2-метилфенил)пиперидина (11).

Аналогично примеру 1, но вместо анилина использовали 0.2 мл (100 ммоль) 2-метиланилина.

N-(2-метилфенил)пиперидин (11)

Выход 42%. Светло-желт. масл. ж., т. кип. 96-97°C/2 мм рт.ст. (Tкип 274.8°C/760 мм рт.ст. [http://www.lookchem.com]).

Спектр ЯМР 13C (δ, м.д.): 149.87 (C-1), 131.56 (C-3), 126.74 (C-5), 132.41 (C-2), 124.31 (C-4), 119.32 (C-6), 18.31 (C-7), 54.08 (C-2′, C-6′), 25.74 (C-3′, C-5′), 23.76 (C-4′). Спектр ЯМР 1H (CDCl3, δ, м.д.): 6.80-6.92 м (1H, C5H), 7.08-7.20 м (1H, C3H), 7.09-7.28 м (1H, C4H), 6.91-7.05 м (1H, C6H), 2.41 с (3H, C7H3), 2.99 уш с (4H, C2′,6′H2), 1.86 уш с (4H, C3′,5′H2), 1.50-1.70 м (2H, C4′H2).

Масс-спектр, m/z (Iотн. (%)): 175 [M]+ (86), 176 (11), 174 (100), 146 (28), 134 (12), 132 (18), 130 (7), 120 (15), 119 (21), 118 (86), 117 (12), 91 (38), 77 (8), 65 (22), 55 (6).

ПРИМЕР 18. Получение N-(3-метилфенил)пиперидина (12).

Аналогично примеру 1, но вместо анилина использовали 0.2 мл (100 ммоль) 3-метиланилина.

N-(3-метилфенил)пиперидин (12)

Выход 47%. Светло-желт. масл. ж., т. кип. 95-97°C/0.5 мм рт.ст.

Спектр ЯМР 13C (δ, м.д.): 148.34 (C-1), 139.45 (C-3), 129.32 (C-5), 124.56 (C-4), 119.90 (C-2), 115.62 (C-6), 53.49 (C-2′, C-6′), 24.69 (C-3′, C-5′), 23.18 (C-4′), 21.64 (C-7). Спектр ЯМР 1H (CDCl3, δ, м.д.): 7.05-7.30 м (1H, C5H), 6.80-6.90 м (1H, C6H), 6.53 с (1H, C2H), 6.45-6.70 м (1H, C4H), 3.23-3.26 м (4H, C2′,6′H2), 2.33 с (3H, C7H3), 2.14-2.25 м (4H, C3′,5′H2), 1.48-1.73 м(2H, C4′H2).

Масс-спектр, m/z (Iотн. (%)): 175 [M]+ (81), 174 (100), 160 (7), 146 (12), 134 (15), 120 (9), 119 (36), 118 (28), 91 (38), 65 (16).

ПРИМЕР 19. Получение N-(4-метилфенил)пиперидина (13).

Аналогично примеру 1, но вместо анилина использовали 0.2 г (100 ммоль) 4-метиланилина.

N-(4-метилфенил)пиперидин (13)

Выход 61%. Светло-желт. масл. ж., т. кип. 106-107°C/1 мм рт.ст.

Спектр ЯМР 13C (δ, м.д.): 142.18 (C-1), 137.94 (C-4), 129.92 (C-3, C-5), 120.42 (C-2, C-6), 56.15 (C-2′, C-6′), 23.17 (C-3′, C-5′), 21.94 (C-4′), 20.86 (C-7). Спектр ЯМР 1H (CDCl3, δ, м.д.): 7.56 д (1H, C3,5H, J 8.0 Гц), 7.11 д (1H, C2,6H, J 8.0 Гц), 3.30-3.45 м (4H, C2′,6′H2), 2.24 с (3H, C7H3), 1.70-2.15 м (4H, C3′,5′H2), 1.52-2.05 м (2H, C4′H2).

Масс-спектр, m/z (Iотн. (%)): 175 [M]+ (98), 174 (100), 160 (12), 146 (9), 134 (13), 120 (9), 119 (32), 118 (24), 91 (29), 64 (10).

ПРИМЕР 20. Получение N-(2-этилфенил)пиперидина (14).

Аналогично примеру 1, но вместо анилина использовали 0.2 мл (100 ммоль) 2-этиланилина.

N-(2-этилфенил)пиперидин (14)

Выход 38%. Желт. масл. ж., т. кип. 75-77°C/0.3 мм рт.ст.

Спектр ЯМР 13C (δ, м.д.): 152.29 (C-1), 139.26 (C-2), 128.87 (C-3), 126.36 (C-5), 123.62 (C-4), 119.85 (C-6), 54.36 (C-2′, C-6′), 26.60 (C-3′, C-5′), 24.36 (C-7), 23.44 (C-4′), 14.89 (C-8). Спектр ЯМР 1H (CDCl3, δ, м.д.): 7.27 м (1H, C5H), 7.19 м (1H, C3H), 7.10 м (1H, C4H), 6.81 м (1H, C6H), 3.51-3.69 кв (2H, C7H2), 2.69-3.02 м (4H, C2′,6′H2), 1.69-1.93 м (4H, C3′,5′H2), 1.51-1.69 м (2H, C4′H2), 1.30 т (3H, C8H3, J 7.6 Гц).

ПРИМЕР 21. Получение N-(2-хлорфенил)пиперидина (15).

Аналогично примеру 1, но вместо анилина использовали 0.16 мл (100 ммоль) 2-хлоранилина.

N-(2-хлорфенил)пиперидин (15)

Выход 33%. Светло-желт. масл. ж., т. кип. 89-90°C/0.2 мм рт.ст.

Спектр ЯМР 13C (δ, м.д.): 148.74 (C-1), 130.49 (C-3), 128.87 (C-4), 127.48 (C-5), 123.22 (C-2), 120.55 (C-6), 52.89 (C-2′, C-6′), 26.25 (C-3′, C-5′), 24.26 (C-4′). Спектр ЯМР 1H (CDCl3, δ, м.д.): 7.33 м (1H, C3H, J 8.0 Гц), 7.15-7.22 м (1H, C5H), 7.04 д (1H, C6H, J 8.0 Гц), 6.92 т (1H, C4H), 2.75-3.18 м (4H, C2′,6′H2), 1.65-1.88 м (4H, C3′,5′H2), 1.45-1.88 м (2H, C4′H2).

ПРИМЕР 22. Получение N-(3-хлорфенил)пиперидина (16).

Аналогично примеру 1, но вместо анилина использовали 0.17 мл (100 ммоль) 3-хлоранилина.

N-(3-хлорфенил)пиперидин (16)

Выход 35%. Светло-желт. масл. ж., т. кип. 115-116°C/0.08 мм рт.ст.

Спектр ЯМР 13C (δ, м.д.): 152.80 (C-1), 134.85 (C-3), 130.26 (C-5), 118.95 (C-4), 116.16 (C-6), 114.49 (C-2), 50.34 (C-2′, C-6′), 25.52 (C-3′, C-5′), 24.14 (C-4′). Спектр ЯМР 1H (CDCl3, δ, м.д.): 7.15 т (1H, C5H, J 8.0 Гц), 6.84 д (1H, C4H, J 8.0 Гц), 6.92 с (1H, C2H), 6.79 д (1H, C6H, J 8.0 Гц), 3.10-3.22 м (4H, C2′,6′H2), 1.53-1.78 м (4H, C3′,5′H2), 1.53-1.63 м (2H, C4′H2).

ПРИМЕР 23. Получение N-(4-хлорфенил)пиперидина (17).

Аналогично примеру 1, но вместо анилина использовали 0.2 г (100 ммоль) 4-хлоранилина.

N-(4-хлорфенил)пиперидин (17)

Выход 40%. Светло-желт. масл. ж., т. кип. 92-94°C/0.5 мм рт.ст.

Спектр ЯМР 13C (δ, м.д.): 144.90 (C-1), 128.95 (C-3, C-5), 123.07 (C-4), 118.11 (C-2, C-6), 51.19 (C-2′, C-6′), 25.46 (C-3′, C-5′), 23.94 (C-4′). Спектр ЯМР 1H (CDCl3, δ, м.д.): 6.93 д (2H, C3,5H, J 8.0 Гц), 6.60 д (2H, C2,6H, J 8.0 Гц), 3.07-3.20 м (4H, C2′,6′H2), 1.69-1.83 м (4H, C3′,5′H2), 1.52-1.66 м (2H, C4′H2).

Масс-спектр, m/z (Iотн. (%)): 195.5 [M]+ (91), 197 (36), 196 (41), 194 (100), 154 (25), 141 (16), 140 (30), 139 (42), 138 (37), 125 (14), 111 (50), 77 (18), 75 (32), 56 (15), 55 (39).

ПРИМЕР 24. Получение N-(4фторфенил)пиперидина (18).

Аналогично примеру 1, но вместо анилина использовали 0.17 мл (100 ммоль) 4-фторанилина.

N-(4фторфенил)пиперидин (18)

Выход 35%. Светло-желт. масл. ж., т. кип. 100-101°C/2 мм рт.ст.

Спектр ЯМР 13C (δ, м.д.): 143.02 (C-1), 160.09 (C-4, J13C19F 244 Гц), 116.28 (C-3, C-5, J13C19F 22 Гц), 121.47 (C-2, C-6), 55.00 (C-2′, C-6′), 24.20 (C-3′, C-5′), 22.35 (C-4′). Спектр ЯМР 1H (CDCl3, δ, м.д.): 7.46 уш с (2H, C3,5H), 6.59 уш с (2H, C2,6H), 3.22 уш с (4H, C2′,6′H2), 1.93 уш с (4H, C3′,5′H2), 1.59 уш с (2H, C4′H2). Спектр ЯМР 19F (CDCl3, δ, м.д.): 116.13.

ПРИМЕР 25. Получение N-фенилпирролидина (1).

Аналогично примеру 1, но вместо диола использовали 0.38 мл (200 ммоль) 1,4-бутандиола.

N-фенилпирролидин (1)

Выход 88%). Бесцв. масл. ж., т. кип. 89-90°C/1 мм рт.ст. (T. кип. 81°C/0.5 мм.рт.ст. [Abbenhuis R., Boersma J., Koten G. J. Org. Chem., 1998, 63, 4282-4290]).

Спектр ЯМР 13C (δ, м.д.): 148.06 (C-1), 129.22 (C-3, C-5), 115.53 (C-4), 111.81 (C-2, C-6), 47.72 (C-2′, C-5′), 25.56 (C-3′, C-4′). Спектр ЯМР 1H (CDCl3, δ, м.д.): 7.30-7.38 м (2H, C3,5H), 6.74-6.82 м (1H, C4H), 6.69 д (2H, C2,6H, J 8.0 Гц), 3.30-3.40 м (4H, C2′,5′H2), 2.05-2.15 м (4H, C3′,4′H2).

Масс-спектр, m/z (Iотн. (%)): 147 [M]+ (94), 148 (10), 146 (100), 119 (9), 118 (7), 104 (25), 92 (6), 91 (72), 77 (46), 65 (7), 51 (19).

ПРИМЕР 26. Получение N-(2-метилфенил)пирролидина (2).

Аналогично примеру 25, но вместо анилина использовали 0.2 мл (100 ммоль) 2-метиланилина.

N-(2-метилфенил)пирролидин (2)

Выход 50%. Светло-желт. масл. ж., т. кип. 122-124°C/10 мм рт.ст. (Т. кип. 255°C/760 мм рт.ст. [http://www.lookchem.com]).

Спектр ЯМР 13C (δ, м.д.): 148.14 (C-1), 131.92 (C-3), 129.20 (C-5), 126.56 (C-2), 121.68 (C-4), 116.59 (C-6), 49.74 (C-2′, C-5′), 24.52 (C-3′, C-4′), 20.35 (C-7). Спектр ЯМР 1H (CDCl3, δ, м.д.): 7.12-7.30 м (1H, C5H), 6.98-7.12 м (1H, C3H), 6.88-6.98 м (1H, C4H 6.60-6.80 м (1H, C6H), 3.25-3.45 м (4H, C2′,5′H2), 1.96-2.15 м (4H, C3′,4′H2).

ПРИМЕР 27. Получение N-(3-метилфенил)пирролидина (3).

Аналогично примеру 25, но вместо анилина использовали 0.2 мл (100 ммоль) 3-метиланилина.

N-(3-метилфенил)пирролидин (3)

Выход 63%). Светло-желт. масл. ж., т. кип. 93-95°C/0.08 мм рт.ст.

Спектр ЯМР 13C (δ, м.д.): 148.15 (C-1), 138.83 (C-3), 129.11 (C-5), 116.61 (C-4), 112.53 (C-2), 109.14 (C-6), 47.79 (C-2′, C-5′), 25.55 (C-3′, C-4′), 21.98 (C-7). Спектр ЯМР 1H (CDCl3, δ, м.д.): 7.20-7.35 м (1H, C5H), 6.63 д (1H, C6H, J 8.0 Гц), 6.53 с (H, C2H), 6.52 д (1H, C4H J 8.0 Гц), 3.37-3.40 м (4H, C2′,5′H2), 2.45 с (3H, C7H3), 2.08-2.11 м (4H, C3′,4′H2).

Масс-спектр, m/z (Iотн. (%)): 161 [M]+ (72), 160 (100), 118 (22), 117 (9), 105 (69), 91 (56), 89 (11), 77 (14), 65 (34), 63 (10), 51 (11).

ПРИМЕР 28. Получение N-(4-метилфенил)пирролидина (4).

Аналогично примеру 25, но вместо анилина использовали 0.2 г (100 ммоль) 4-метиланилина.

N-(4-метилфенил)пирролидин (4)

Выход 75%. Светло-желт. масл. ж., т. кип. 108-110°C/0.1 мм рт.ст. (Т. кип. 274.1°C/760 мм рт.ст. [http://www.weiku.com/chemicals/]).

Спектр ЯМР 13C (δ, м.д.): 145.85 (C-1), 129.68 (C-3, C-5), 124.98 (C-4), 112.19 (C-2, C-6), 48.26 (C-21, C-5′), 25.39 (C-3′, C-4′), 20.36 (C-7). Спектр ЯМР 1Н (CDCl3, δ, м.д.): 7.07 д (2H, C3,5H, J 8.0 Гц), 6.56 д (2H, C2,6H, J 8.0 Гц), 3.20-3.40 м (4H, C2′,5′H2), 2.28 с (3H, C7H3), 2.01 м (4H, C3′,4′H2).

Масс-спектр, m/z (Iотн. (%)): 161 [M]+ (76), 160 (100), 118 (31), 117 (12), 105 (79), 91 (64), 89 (16), 78 (9), 77 (18), 65 (38), 63 (10), 51 (13).

ПРИМЕР 29. Получение N-(2-этилфенил)пирролидина (5).

Аналогично примеру 25, но вместо анилина использовали 0.2 мл (100 ммоль) 2-этиланилина.

N-(2-этилфенил)пирролидин (5)

Выход 47%. Желт. масл. ж., т. кип. 88-90°C/0.8 мм рт.ст.

Спектр ЯМР 13C (δ, м.д.): 148.40 (C-1), 135.60 (C-2), 129.46 (C-3), 126.27 (C-5), 121.42 (C-4), 116.88 (C-6), 52.03 (C-2′, C-5′), 25.31 (C-3′, C-4′), 24.91 (C-7), 14.49 (C-8). Спектр ЯМР 1H (CDCl3, δ, м.д.): 7.22 д (1H, C3H, J 7.2 Гц), 7.14 д (1H, C6H, J 8.0 Гц), 6.94-7.01 м (1H, C4H), 6.63-6.77 м (1H, C5H), 3.12-3.40 уш с (4H, C2′,5′H2), 2.68-2.85 кв (2H, C7H2), 1.90-2.12 уш с (4H, C3′,4′H2), 1.29 т (3H, C8H3, J 7.6 Гц).

Масс-спектр, m/z (Iотн. (%)): 175 [M]+ (80), 174 (100), 160 (7), 146 (12), 134(15), 120 (9), 119(35), 118 (27), 91 (37), 65 (16).

ПРИМЕР 30. Получение N-(2-хлорфенил)пирролидина (6).

Аналогично примеру 25, но вместо анилина использовали 0.16 мл (100 ммоль) 2-хлоранилина.

N-(2-хлорфенил)пирролидин (6)

Выход 51%. Светло-желт. масл. ж., т. кип. 115-117°C/0.6 мм рт.ст.

Спектр ЯМР 13C (δ, м.д.): 146.98 (C-1), 131.29 (C-3), 127.29 (C-5), 126.44 (C-2), 123.59 (C-4), 120.91 (C-6), 51.26 (C-2′, C-5′), 25.20 (C-3′, C-4′). Спектр ЯМР 1H (CDCl3, δ, м.д.): 7.28-7.40 м (1H, C3H), 7.11-7.22 м (1H, C5H), 6.92-7.08 м (1H, C6H), 6.75-6.90 м (1H, C4H), 3.32-3.51 уш с (4H, C2′,5′H2), 1.88-2.08 уш с (4Н, C3′,4′H2).

Масс-спектр, m/z (Iотн. (%)): 181.5 [M]+ (100), 182 (29), 180 (95), 140 (24), 138 (42), 124 (85), 118 (17), 117 (37), 111 (45), 90 (29), 88 (31), 77 (36), 74 (25), 73 (20), 62 (16), 50 (30).

ПРИМЕР 31. Получение N-(3-хлорфенил)пирролидина (7).

Аналогично примеру 25, но вместо анилина использовали 0.17 мл (100 ммоль) 3-хлоранилина.

N-(3-хлорфенил)пирролидин (7)

Выход 50%. Светло-желт. масл. ж., т. кип. 120-122°C/0.4 мм рт.ст.

Спектр ЯМР 13C (δ, м.д.): 148.83 (C-1), 134.78 (C-3), 129.98 (C-5), 114.95 (C-4), 111.27 (C-2), 109.89 (C-6), 47.57 (C-2′, C-5′), 25.41 (C-3′, C-4′). Спектр ЯМР 1H (CDCl3, δ, м.д.): 7.04-7.08 м (1H, C5H), 6.55 д (1H, C4H, J 8.0 Гц), 6.46 с (1H, C2H), 6.37 д (1H, C6H, J 8.0 Гц), 3.05-3.32 уш с (4H, C2′,5′H2), 1.85-2.05 уш с (4H, C3′,4′H2).

ПРИМЕР 32. Получение N-(4-хлорфенил)пирролидина (8).

Аналогично примеру 25, но вместо анилина использовали 0.2 г (100 ммоль) 4-хлоранилина.

N-(4-хлорфенил)пирролидин (8)

Выход 60%. Светло-желт. масл. ж., т. кип. 132-134°C/0.3 мм рт.ст. (Т. кип. 288.4°C/760 мм рт.ст. [http://www.lookchem.com]).

Спектр ЯМР 13C (δ, м.д.): 146.51 (C-1), 128.90 (C-3, C-5), 120.04 (C-4), 112.73 (C-2, С-6), 47.78 (C-2′, C-5′), 25.56 (C-3′, С-4′). Спектр ЯМР 1H (CDCl3, δ, м.д.): 7.14 д (2H, C3,5H, J 8.0 Гц), 6.46 д (2H, C2,6H, J 8.0 Гц), 3.17-3.31 м (4H, C2′,5′H2), 1.96-2.09 м (4H, С3′,4′H2).

Масс-спектр, m/z (Iотн. (%)): 181.5 [M]+ (88), 183 (23), 182 (30), 180 (100), 138 (37), 127 (17), 125 (66), 111 (19), 110 (46), 91 (16), 89 (19), 75 (20), 63 (18), 52 (19), 51 (18).

ПРИМЕР 33. Получение N-(4-фторфенил)пирролидина (9).

Аналогично примеру 25, но вместо анилина использовали 0.17 мл (100 ммоль) 4-фторанилина.

N-(4-фторфенил)пирролидин (9)

Выход 45%. Светло-желт. масл. ж., т. кип. 92-94°C/1 мм рт.ст.

Спектр ЯМР 13C (δ, м.д.): 144.83 (C-1), 154.83 (C-4, J13C19F 232 Гц), 112.14 (C-3, C-5, J13C19F 8 Гц), 115.43 (C-2, C-6, J13C19F 22 Гц), 48.18 (C-2′, C-5′), 25.53 (C-3′, C-4′). Спектр ЯМР 1H (CDCl3, 5, м.д.): 6.91-7.00 м (2H, C3,5H), 6.44-6.53 м (2H, С2,6H), 3.18-3.32 м (4H, C2′,5′H2), 1.92-2.10 м (4H, C3′,4′H2).

Спектр ЯМР 19F (CDCl3, δ, м.д.): - 130.73.

Масс-спектр, m/z (Iотн (%)): 165 [M]+ (94), 164 (73), 136 (11), 124 (15), 123 (19), 122 (63), 111 (12), 110 (21), 109 (100), 95 (10), 94 (46), 75 (14), 64 (9). 50 (10).

Таблица 1
Результаты опытов по синтезу N-фенилпиперидинов реакцией анилина с 1,5-пентадиолом под действием FeCl·6H2O в среде четыреххлористого углерода∗
№ п/п Мольное соотношение [Fe]:[анилин]:[диол]:[CCl4] Продолжительность реакции, ч Выход N-фенилпиперидина, %
1 0.5:100:200:30 6 85
2 0:100:200:100 6 0
3 0.2:100:200:100 6 54
4 0.5:100:200:100 6 69
5 0.5:100:100:100 6 12
6 0.5:100:120:100 6 38
7 0.5:100:150:100 6 44
8 0.5:100:160:100 6 57
9 0.5:100:180:100 6 66
10 0.5:100:200:100 6 69
11 0.5:100:300:100 6 33
12 0.5:100:400:100 6 27
13 0.5:100:200:20 6 56
14 0.5:100:200:50 6 38
15 0.5:100:200:30 4 45
16 0.5:100:200:30 8 76
∗Все реакции проводились при температуре 180°С.

Способ получения N-арилпирролидинов и N-арилпиперидинов

взаимодействием анилинов с диолами в присутствии катализатора, отличающийся тем, что в качестве анилинов используют анилины общей формулы R-C6H4NH2 (где R=H, о-, м-, п-CH3, о-C2H5, о-, м-, п-Cl, п-F), в качестве катализатора - FeCl3·6H2O, реакцию проводят при мольном соотношении [FeCl3·6H2O]:[анилин]:[диол]:[CCl4]=0.2-0.5:100:100-400:20-100, в среде CCl4, при температуре 180°C в течение 4-8 ч в инертной атмосфере.



 

Похожие патенты:

Изобретение относится к усовершенствованному способу получения циклогексана и его производных общей формулы R=H, . .

Изобретение относится к способу получения гетероциклического соединения, который включает: реакцию смеси 1-метилпиперазина и 5-галоген-2-нитроанилина в первом растворителе и при первой температуре в диапазоне от около 90°С до около 110°С с получением соединения формулы VIH: где первый растворитель содержит спирт; охлаждение смеси, содержащей соединение формулы VIH, до второй температуры в диапазоне от около 85°С до около 95°С; добавление к смеси объема второго растворителя, отличного от первого растворителя, где второй растворитель содержит воду; и образование взвеси соединения формулы VIH; где второй растворитель нагревают до второй температуры.

Изобретение относится к способу получения циклоалкиламинов общей формулы Alk-R, где , , , , , , , Способ осуществляют путем взаимодействия циклического кетона с производным амина и муравьиной кислотой в присутствии катализатора.

Изобретение относится к способу получения замещенных аминобензгидролов, которые могут быть использованы в качестве полупродуктов в синтезе лекарственных препаратов, общей формулы где R1=R3=H, R 2=NH2, R4=Cl (1); R1=R 3=H, R2=NH2, R 4=Br (2); R1=R3=H, R2=NH 2, R4=OCH3 (3); R1=R 4=H, R2=NH2, R3=Cl (4); R1=H, R2=NH2, R3=Cl, R4=Cl (5); R1=NH2, R2 =Cl, R3=R4=H (6); R1=NH 2, , R3=R4=H (7); R 1=NH2, R2=Cl, R3=H, R 4=Cl (8); R1=NH2, , R3=H, R4=Cl (9); R1=NH2, R3=Cl, R2 =R4=H (10); R1=NH2, , R2=R4=H (11); R 1=NH2, R2=H, R3=Cl, R 4=Cl (12); R1=NH2, R2=H, , R4=Cl (13), заключающийся в одновременном восстановлении нитро- и карбонильной групп соответствующих нитробензофенонов общей формулы ,где R1=R3=H, R 2=NO2, R4=Cl; R1=R 3=H, R2=NO2, R4=Br; R 1=R3=H, R2=NO2, R 4=OCH3; R1=R4=H, R 2=NO2, R3=Cl; R1=H, R 2=NO2, R3=Cl, R4=Cl; R 1=NO2, R2=Cl, R3=R 4=H; R1=NO2, , R3=R4=H; R 1=NO2, R2=Cl, R3=H, R 4=Cl; R1=NO2, , R3=H, R4=Cl; R 1=NO2, R3=Cl, R2=R 4=H; R1=NO2, , R2=R4=H; R 1=NO2, R2=H, R3=Cl, R 4=Cl; R1=NO2, R2=H, , R4=Cl, восстанавливающей системой Zn-NaBH4 в спирте при мольном соотношении субстрат: цинк: тетрагидридоборат натрия, равном 1:3.5:0.25.

Изобретение относится к соединению, применимому для профилактики и лечения вирусных инфекционных заболеваний, особенно заболеваний печени, вызванных инфекцией вирусом гепатита С (HCV), вследствие его ингибирующей активности против HCV, имеющего высокую степень репликации, способу его получения, промежуточному соединению, применимому для его получения, и фармацевтической композиции, содержащей эти соединения.

Изобретение относится к новому способу получения 2-амино-2-цианоадамантана или его производных общей формулы R=-NH2, -NHCH 2CH2OH, -NHCH2 C6H5, -NHNHC 6H3(NO2) 2, -NHNH2, -NHNHC 6H5, -NHCH2 СН2NH2. .

Изобретение относится к химии производных адамантана, а именно к новому способу получения аминопроизводных адамантана общей формулы AdR, где R=NH2, NHBu-t, которые являются биологически активными веществами и могут найти применение в фармакологии, а адамант-1-иламин является основой лекарственного препарата "мидантан".

Изобретение относится к способу получения вторичных амидов. Способ осуществляют путем карбонилирования соответствующих третичных аминов с помощью монооксида углерода в присутствии катализатора, содержащего менее чем 750 частей на миллион (ppm) палладия, и промотора, содержащего галоген.

Изобретение относится к амиду -амино- -гидрокси- -арилалкановой кислоты формулы (I) и его фармацевтически приемлемым солям, обладающему способностью ингибировать ренин.
Изобретение относится к способу получения полифосфатов органических оснований, к смеси полифосфатов органических азотистых оснований и к применению полифосфатом и смеси полифосфатов в качестве антипиренов для пластмасс, предпочтительно термопластов, прежде всего полиамидов и сложных полиэфиров.

Изобретение относится к области химии азотсодержащих гетероциклов и фосфорорганических соединений, а именно к пиперазиновой соли бис(оксиметил)фосфиновой кислоты общей формулы (I), обладающей антгельминтной активностью, не оказывающей токсического и местного реактогенного действия на организм больного животного.

Изобретение относится к новым кетобензамидам формулы (1), где R1 означает фенил, нафтил, хинолил, пиридил, хиназолил, хиноксалил, бензотиенил, изохинолин, тетрагидроизохинолин или тетрагидрохинолин, которые могут быть как незамещены, так и замещены, R2 означает водород или алкил, R3 означает алкил, который может нести фениловое кольцо, Х означает связь, -(СH2)m-, -(СН2)m-O-(CH2)0-, -(CH2)n-S-(CH2)m-, -CH= CH-, -CO-CH=CH-, -(CH2)m-NHCO-(CH2)0-, -(CH2)m-CONH-(CH2)0-, -(CH2)m-NHSO2-(CH2)0-, -(CH2)m-SO2NH-(CH2)0-; R4 означает группы OR6, NR7R8; n - число от 0 до 2.

Изобретение относится к новым соединениям формулы I Y-(CmH2m-CHR1)n-CO- (NH-CHR2CO)r-Z где Y обозначает или Z обозначает или если Y обозначает также R1, R2 и R7 каждый означает -CtH2t-R9, R3 означает H или H2N-C(=NH)-, R4 и R6 каждый означает (H,H) или =O, R5 означает H2N-C(=NH)- или H2N-C(=NH)-NH, R8 означает OH или OA, R9 означает H или COOH, A означает алкил с 1-4 C-атомами, m и t каждый означает 0, 1 или 2, n и r каждый означает 0 или 1 и p означает 0, 1 или 2, а также их соли.

Изобретение относится к новым циклоалкенам и циклоалканам, пригодным в качестве фармацевтически активных веществ, более конкретно к производным 1,3-замещенного циклоалкена и циклоалкана формулы (I) Z-CH2-Y (I) где Z означает группу где где R - арил, 2-, 3- или 4-пиридинил, незамещенный или замещенный низшим алкилом, низшим алкоксилом, гидроксилом или галоидом, 2-, 4- или 5-пиримидинил, незамещенный или замещенный низшим алкилом, низшим алкоксидом, гидроксилом или галоидом, 2-пиразинил, незамещенный или замещенный низшим алкилом, низшим алкоксилом, гидроксилом или галоидом, 2- или 3-тиенил, незамещенный иди замещенный низшим алкилом или галоидом, 2- или 3-фуранил, незамещенный или замещенный низшим алкилом или галоидом, 2-, 4- и 5-тиазолил, незамещенный или замещенный низшим алкилом или галоидом, 3-индолил, 2-, 3- или 4-хинолинил, а m - число 1, 2, или 3, или группы в которых R и m имеют указанные выше значения; Y - группы где R имеет указанное значение, смеси их изомеров или индивидуальным изомерам, их гидратам и солям, в частности к фармацевтически приемлемым кислотно-аддитивным солям.

Изобретение относится к области химии, к способу получения химического вещества, которое проявляет антигельминтные свойства, и может быть использовано в сельском хозяйстве для лечения животных.

Изобретение относится к органической химии, а именно к способам получения 1-этил-6-фтор-7-(пиперазинил-1)-4-оксо-1,4-дигидро-3-хинолинкарбоновой кислоты (норфлоксацина) формулы 1 который является синтетическим антибиотиком с широким спектром антибактериальной активности, входит в число пяти наиболее активных фторхинолонов (ципрофлоксацин, пефлоксацин, норфлоксацин, эноксацин, офлоксацин) и используется в качестве антибактериального препарата четвертого поколения.

Изобретение относится к области органического синтеза, в частности к способу получения N-арилпирролидинов и N-арилпиперидинов. N-арилпирролидины и N-арилпиперидинов являются синтонами в производстве фармацевтических препаратов, агрохимикатов, гербицидов, фунгицидов, красителей и т.д. Сущность способа заключается во взаимодействии анилинов общей формулы R-C6H4NH2 с α,ω-диолами в присутствии катализатора FeCl3·6H2O в среде четыреххлористого углерода при 180°C в течение 4-8 ч при мольном соотношении [FeCl3·6H2O]:[RC6H4NH2]:[диол]:[CCl4]0.2-0.5:100:100-400:20-100. При температуре 180°C и продолжительности реакции 6 ч выход N-арилпирролидинов достигает 45-88, а N-арилпиперидинов - 33-85. Синтез проводят в атмосфере аргона. Способ позволяет сократить время реакции и использовать более доступный катализатор. 1 табл., 33 пр.

Наверх