Способ экспериментального определения статико-динамических характеристик бетона в условиях циклических нагружений

Изобретение относится к строительству, в частности к определению параметров деформирования бетона в условиях циклических нагружений до уровня, не превышающего предела прочности бетона на сжатие Rb и на растяжение Rbt. Сущность: осуществляют закрепление опытного бетонного образца в виде призмы в зажимах испытательного стенда с использованием центрирующего устройства, обеспечивающего центральное приложение нагрузки в процессе нагружения. Регистрируют усилие и деформации призмы во времени с использованием динамометра и тензостанции. Многократное статическое или динамическое нагружение осуществляют посредством вращения и кратковременного изменения диаметра оси в месте соединения рычага и компенсирующего элемента. Технический результат: упрощение способа испытания, расширение функциональных возможностей экспериментального определения статико-динамических характеристик бетона в условиях циклических нагружений, заключающееся в чередовании приложения статических и динамических нагрузок на образец. 4 ил.

 

Изобретение относится к строительству, в частности к определению параметров деформирования бетона в условиях циклических нагружений до уровня, не превышающего предела прочности бетона на сжатие Rb и на растяжение Rbt.

Проектирование железобетонных конструкций ведут с учетом статического приложения нагрузки, при этом используя призменную прочность бетона, определяемую в ходе постепенного (ступенями) нагружения бетонных образцов с использованием пресса. Определение прочности бетона на растяжение осуществляется с использованием разрывной машины [1]. Недостатками данных способов являются как относительно невысокая скорость нагружения бетонных образцов, так и невозможность приложения кратковременных динамических или статических нагрузок на образец.

При расчете строительных конструкций на взрывные и ударные нагрузки используют величины предела прочности и предельных деформаций бетонных образцов, определяемые в момент их разрушения при динамическом нагружении и превосходящие аналогичные величины, найденные в ходе статического испытания. При многократном приложении нагрузок на конструкцию работа бетона характеризуется величинами, получаемыми в результате экспериментальных испытаний в условиях циклических статико-динамических нагружений.

Одним из решений, позволяющих проводить испытание бетона на динамические нагружения, является пневмодинамическая установка для высокоскоростного нагружения бетонных призм [2]. Недостатком этого решения является невозможность создания условий кратковременных циклических нагружений бетонного образца.

Существует решение, позволяющее проводить испытание материала в условиях многократных нагружений, - способ циклического нагружения материала, заключающийся в том, что создают в трубчатом образце материала растягивающие напряжения по различным осям путем приложения к нему осевой силы, внутреннего давления и крутящего момента. В данном способе к торцу образца прикладывают осевые усилия, уравновешивающие осевую составляющую внутреннего давления, осевую силу и внутреннее давление прикладывают в противофазе к нулевому циклу, а крутящий момент - с отставанием по фазе [3].

Недостаток этого решения заключается в том, что для получения призменной прочности бетона необходима дополнительная математическая обработка данных, полученных в результате эксперимента, что повышает погрешность вычислений. Кроме того, состав рабочей жидкости, используемый для создания нагружения, может повлиять на прочностные характеристики испытываемого материала. Данный способ не позволяет также осуществлять кратковременные динамические нагружения.

Наиболее близким решением к заявленному изобретению является способ экспериментального определения статико-динамических диаграмм бетона, в котором мгновенное или ступенчатое динамическое догружение осуществляется падающим при уменьшении силы тока в электромагните грузом [4]. Условия циклического нагружения создаются посредством многократного догружении грузами.

Недостаток данного решения заключается в ограниченном количестве циклов; в невозможности осуществления многократных статических нагружений; в невозможности заранее задавать последовательность и величину прилагаемых нагрузок.

Технический результат изобретения - упрощение способа испытания, расширение функциональных возможностей экспериментального определения статико-динамических характеристик бетона в условиях циклических нагружений, заключающееся в чередовании приложения статических и динамических нагрузок на образец.

Технический результат достигается тем, что в способе экспериментального определения статико-динамических характеристик бетона в условиях циклических нагружений, заключающемся в закреплении опытного бетонного образца в виде призмы в зажимах испытательного стенда с использованием центрирующего устройства, обеспечивающего центральное приложение нагрузки в процессе нагружения, и регистрации усилия и деформаций призмы во времени с использованием динамометра и тензостанции, согласно изобретению нагружение осуществляют через рычажную систему в два этапа: на первом - ступенчатое статическое нагружение образца до заданного уровня посредством укладки штучных грузов на грузовую платформу, на втором - многократное мгновенное или ступенчатое динамическое нагружение посредством вращения и кратковременного изменения диаметра оси в месте соединения рычага и компенсирующего элемента. Чередование динамических и статических циклических нагрузок осуществляется посредством смещения оси.

На фиг.1а представлена схема устройства для реализации предлагаемого способа при испытании на растяжение. На фиг.1б представлена схема устройства для испытании на сжатие. На фиг.2а представлены схемы вариантов поперечного сечения оси. На фиг.2б представлены схемы взаимодействия рычага и оси. На фиг.4 представлена схема нагрузок, действующих на рычаг при испытании на растяжение.

Специально сконструированная установка включает станину 1, устройства для центрирования и захвата образца 2, рычаг 4 для передачи усилия на испытуемый образец 3, соединенный через стойку 5 со станиной 1, компенсирующий элемент 6, опирающийся на станину 1 и соединенный с рычагом 4 посредством оси 7, металлический шар 10, болт 9, грузовую платформу 8 для приложения статической нагрузки, штучные грузы.

Компенсирующий элемент 6 представляет собой пружину либо динамометрическое кольцо, жесткость которого заранее определяется тарировкой.

Ось 7 представляет собой металлический стержень с разными формами поперечных сечений.

Диаметр отверстия в рычаге 4 превышает больший диаметр сечения оси 7.

Металлический шар 10 и различность форм поперечных сечений оси 7 необходимы для осуществления кратковременного статического или динамического нагружения образца 3.

Болт 9 необходим для ограничения перемещения металлического шара 10 в момент резкого нагружения и разгружения при повороте оси 7.

Способ осуществляется следующим образом.

Нагружение осуществляют через рычажную систему в два этапа. На первом этапе создают усилие в компенсирующем элементе 6 посредством укладки штучных грузов 11 на грузовую платформу 8. При этом шар 10 опирается на ось 7. На втором этапе закрепляют испытуемый образец 3 в зажимах 2, затем осуществляют многократное статическое или динамическое нагружение посредством вращения и кратковременного изменения диаметра оси в месте соединения рычага и компенсирующего элемента. В случае необходимости испытания образца в условиях статических циклических нагрузок после испытания в условиях динамических циклических нагрузок осуществляют смещение оси.

В процессе проведения испытаний динамометром измеряют усилие, действующее на образец, а параметры деформирования самого образца при статическом или динамическом нагружении в условиях циклических нагрузок измеряются при помощи тензостанции, оборудованной встроенным тензоусилителем, позволяющим подключать тензодатчики без использования промежуточных усилителей, и имеющей возможность при подключении к компьютеру и использовании специализированного программного обеспечения записывать и отображать преобразованные сигналы нескольких входных каналов в зависимости от времени.

В случае статического нагружения при испытании на растяжение нагрузка, действующая на образец, определяется по формуле:

N = P ( l a ) K b a ,

где P - приложенная нагрузка; K - усилие в компенсирующем элементе; l - длина рычага 4; a, b - расстояния от стойки 5 до образца 3 и до упругого элемента 6 соответственно.

В случае динамического нагружения происходит резкое перераспределение нагрузки с компенсирующего элемента 6 на образец 3.

На фиг.3 представлены диаграммы «напряжение (σ) - деформация (ε)» для бетона, работающего в условиях циклических нагружений для разных типов сечений оси 7.

Источники информации

1. ГОСТ 24452-80 Бетоны. Методы определения призменной прочности, модуля упругости и коэффициента Пуассона - М.: НИИЖБД982. - 15 с.

2. Баженов Ю.М. Бетон при динамическом нагружений. - М.: Стройиздат, 1970. - 272 с.

3. Авторское свидетельство СССР №1619117 A1, кл. G01N 3/32, 1987.

4. Патент РФ №2482480, кл. G01N 3/00, 2006.

Способ экспериментального определения статико-динамических характеристик бетона в условиях циклических нагружений, заключающийся в закреплении опытного бетонного образца в виде призмы в зажимах испытательного стенда с использованием центрирующего устройства, обеспечивающего центральное приложение нагрузки в процессе нагружения, и регистрации усилия и деформаций призмы во времени с использованием динамометра и тензостанции, отличающийся тем, что многократное статическое или динамическое нагружение осуществляют посредством вращения и кратковременного изменения диаметра оси в месте соединения рычага и компенсирующего элемента.



 

Похожие патенты:

Изобретение относится к области строительства, в частности к испытанию строительных материалов на прочность при растяжении и сжатии, и может быть использовано для определения параметров деформирования бетона при статическом и динамическом приложении нагрузки.

Способ относится к методам испытаний пористых водонасыщенных тел. Он предусматривает изготовление серии бетонных образцов, насыщение образцов водой, измерение образцов, определение начального их объема, их замораживание-размораживание до нормативных температур и регистрацию при этом деформации.

Изобретение относится к теоретическому и прикладному материаловедению и может быть использовано в различных областях науки и техники в целях создания новых и совершенствования известных методик создания сухих строительных смесей для бетона с заданными эксплуатационными свойствами.

Изобретение относится к способам испытаний прочностных свойств изделий из хрупкого материала путем приложения к ним повторяющихся механических, температурных и иных усилий и может использоваться, в частности, для определения долговечности керамических изделий.

Изобретение относится к области испытаний цементных штукатурных составов на предельную растяжимость при статическом нагружении. Сущность: величину предельной растяжимости определяют испытанием стальных балочек с нанесенным штукатурным составом по схеме двухточечного изгиба с плавным нагружением малыми ступенями и фиксацией ступени нагружения, соответствующей моменту трещинообразования, а значение предельной растяжимости рассчитывают по формуле.

Изобретение относится к строительству и может быть использовано при проведении тепловой обработки бетонных конструкций. Способ включает определение температуры твердеющего бетона в заданные моменты времени и расчет прочности, при этом определяют трехсуточную прочность бетона при твердении в нормальных условиях, а прочность бетона определяют по формуле: , где R, % - прочность бетона, набранная за время τ, сут. Kt - температурный коэффициент, определяемый в зависимости от температуры твердения бетона и трехсуточной прочности.

Изобретение относится к области исследования физико-химических свойств бетона в условиях воздействия на образец углекислого газа заданной концентрации. Установка содержит не менее 2-х герметичных камер с заполненной водой U-образной трубкой для сброса избыточного давления в камере, впускным и выпускным газовыми распределительными коллекторами, фильтрами для очистки забираемой из камер газовоздушной среды и с установленными внутри каждой камеры вентилятором и ванной с насыщенным раствором соли для создания и постоянного поддержания заданной относительной влажности воздуха внутри камеры, подсоединенный к герметичным камерам через впускной газораспределительный коллектор и установленные на трубопроводах электромагнитные клапаны источник углекислого газа, автоматический газоанализатор с побудителем расхода газа, газовый распределительный коммутатор для попеременного забора пробы из камер и передачи ее в газоанализатор через побудитель расхода газа, кроме того, газоанализатор соединен с ЭВМ для автоматизации контроля за концентрацией газа в герметичных камерах и подачей в них газа через электромагнитные клапаны.

Изобретение относится к способам исследования свойств строительных материалов и предназначено для выбора максимально допустимого: водоцементного отношения по требуемой марке морозостойкости на стадии проектирования бетона.

Изобретение относится к контролю качества бетонов, растворов и цементного камня. .

Изобретение относится к определению параметров деформирования бетона и направлено на получение диаграмм деформирования бетона при статическом приложении нагрузки и динамическом догружении.

Изобретение относится к области вибрационной техники и предназначено для исследования образцов горных пород и моделей из эквивалентных материалов на воздействие механических колебаний, а именно, волн Рэлея.

Изобретение относится к области строительства и предназначено для контроля жесткости балок, изготовленных из материала, обладающего физически нелинейными свойствами (в частности, железобетонных балок), и нагруженных равномерно распределенной нагрузкой.

Изобретение относится к испытательной технике, в частности к установкам для испытания образцов материалов на изгиб. Установка содержит основание, установленную на нем поворотную платформу, установленный на ней захват образца, центробежный груз для закрепления на конце образца, привод вращения платформы, включающий вал с приводом вращения и пару катков, установленных с эксцентриситетом относительно оси вала по разные стороны от оси вращения платформы и предназначенных для фрикционного взаимодействия с ней.

Изобретение относится к испытательной технике, к испытаниям на прочность. Установка содержит основание, установленные на нем соосно торцевые и центральный захваты с общей осью вращения и отверстиями для образца, привод вращения торцевых захватов, толкатель, одним концом связанный с центральным захватом, и нагружатель, соединенный с другим концом толкателя.

Изобретение относится к испытательной технике, к исследованию образцов и изделий на прочность при циклическом нагружении. Установка содержит корпус, установленную на нем платформу с приводом вращения, расположенные на ней дополнительные платформы, захват для образца, размещенный на одной из дополнительных платформ.

Изобретение относится к области строительства, а именно к механическим испытаниям материалов, в частности к способам испытания строительных конструкций, и может быть использовано для испытания балочных конструкций на изгиб.

Изобретение относится к испытательной технике, к установкам для испытания образцов материалов на изгиб. Установка содержит основание, установленную на нем поворотную платформу, захват образца, закрепленный на платформе, два центробежных груза, предназначенные для закрепления на концах образца, привод вращения платформы, включающий вал с приводом вращения, пару катков, установленных с эксцентриситетом по разные стороны от оси вращения платформы и предназначенных для фрикционного взаимодействия с ней, один из которых установлен на валу.

Изобретение относится к испытательной технике, к центробежным установкам для испытания образцов на прочность при исследовании энергообмена. Центробежная установка содержит основание, установленную на нем платформу вращения, радиально размещенные на платформе захваты для образца, один из которых соединен с платформой, центробежный груз, соединенный со вторым захватом, и два соосно установленных привода вращения, кинематически связанных с платформой.

Изобретение относится к области дорожного строительства, а именно к оборудованию для испытаний материалов, в частности асфальтобетона, на усталость при циклических динамических воздействиях, и может быть использовано в автодорожном хозяйстве, строительстве аэродромов, строительной индустрии.

Изобретение относится к испытательной технике, к испытаниям на прочность. Установка содержит станину, установленные на ней захваты образца и механизм циклического нагружения, выполненный в виде зубчатого колеса, взаимодействующей с ним зубчатой рейки, установленной с возможностью перемещения и связанной с одним из захватов, штанги, торцом соединенной с зубчатым колесом, и груза, установленного на другом торце штанги.

Изобретение относится к способам испытания материалов. Сущность: образец сначала растягивают до максимальной заданной деформации, выдерживают при этой деформации заданное время, сжимают до исходного ненагруженного состояния, выдерживают заданное время, затем циклически деформируют с выдержкой по времени на каждой ступени деформации при растяжении и сжатии, при этом деформация на каждом цикле растяжения задается меньшей, чем на предыдущем цикле, а деформация на каждом цикле разгрузки задается большей, чем на предыдущем цикле. Технический результат: получение большей информации о свойствах материала при испытании одного образца, а также получение новой информации - построение равновесной кривой растяжения, диссипативных потерь, размягчения материала после каждого цикла растяжения-сжатия и кривых релаксации и кривых восстановления структуры материала при разных деформациях. 1 з.п. ф-лы, 1 ил.
Наверх