Способ определения момента встречи объекта испытания с преградой

Изобретение относится к области испытательной и измерительной техники. Достигаемый технический результат - высокая разрешающая способность, обеспечивающая определение моментов встречи с преградой нескольких объектов испытания, а также простота и компактность используемых средств. Указанный результат достигается за счет того, что способ включает регистрацию в измерительной точке (ИТ) с известными координатами сигнала, содержащего информацию о подходе ОИ к преграде, определение времени его регистрации в ИТ (tрег) и расчет момента встречи ОИ с преградой. В качестве сигнала, содержащего информацию о подходе ОИ к преграде, регистрируют баллистическую ударную волну, возбуждаемую полетом ОИ со сверхзвуковой скоростью. На основании фактической или априорной информации о величинах углов, образуемых траекторией его движения с осями выбранной прямоугольной системы координат, и координатах точки встречи ОИ с преградой рассчитывают расстояние от ИТ до траектории движения ОИ, с использованием которого и значения угла между образующей конуса возмущения и траекторией движения ОИ, полученного на основании фактической или априорной информации о скорости полета ОИ, рассчитывают расстояние R от поверхности конуса возмущения в момент встречи ОИ с преградой до ИТ. Момент встречи ОИ с преградой определяют по формуле , где сзв - скорость распространения звука в воздушной среде, соответствующая метеоусловиям в момент проведения испытания. 3 ил.

 

Изобретение относится к области испытательной и измерительной техники и может быть использовано при испытаниях объектов, движущихся со сверхзвуковой скоростью.

Известен мобильный комплекс траекторных измерений ZETLab (www.zetlab.ru / ЗАО «Электронные технологии и метрологические системы». Мобильный комплекс траекторных измерений ZETLab), который представляет собой техническую систему на базе видеорегистраторов и сейсмостанций, предназначенную для проведения измерений при испытаниях высокоскоростных изделий ракетных комплексов.

Мобильный комплекс траекторных измерений позволяет определять координаты места встречи объекта с землей, а также время момента встречи.

При работе комплекса осуществляется способ, заключающийся в оптическом наблюдении за движущимся объектом, регистрации получаемого при этом видеоизображения, регистрации сейсмических волн, возникающих в момент соприкосновения объекта с землей и последовательно воздействующих на все сейсмодатчики, установленные в измерительных точках (ИТ) с известными координатами и определении момента времени и координат места встречи объекта с землей, по результатам обработки зарегистрированной информации.

Несмотря на достоинства способа, он характеризуется низким разрешением по времени, то есть не позволяет определять времена встречи с преградой нескольких ОИ, подходящих к ней с малой разновременностью. Это обусловлено особенностями распространения сейсмических волн в грунтах. Кроме того, применяемость способа может быть ограничена погодными условиями, обеспечивающими оптическую непрозрачность воздушной среды (туман, запыленность атмосферы, осадки и пр.). Этот способ выбран в качестве прототипа.

Заявляемый способ направлен на решение технической задачи определения момента встречи объекта испытания (ОИ), летящего со сверхзвуковой скоростью, с преградой (в частном случае с поверхностью земли) по результатам регистрации возбуждаемой им в воздушной среде баллистической ударной волны (скачка уплотнения) (Фабрикант Н.Я. «Аэродинамика», Издательство «Наука»; 1964 г., Красильников В.А. «Звуковые волны в воздухе, воде и твердых телах», М., 1954 г.).

Техническим результатом осуществления способа является его высокая разрешающая способность, обеспечивающая определение моментов встречи с преградой нескольких ОИ, подходящих к ней с малой разновременностью, вне зависимости от массогабаритных характеристик объектов, а также относительная простота и компактность используемых средств измерений, малые затраты на постановку и проведение измерений.

Технический результат достигается за счет того, что в заявляемом способе определения момента встречи ОИ с преградой, включающем регистрацию по крайней мере в одной измерительной точке с известными координатами сигнала, содержащего информацию о подходе ОИ к преграде, определение времени его регистрации в ИТ (tрег) и расчет момента встречи ОИ с преградой, в отличие от прототипа в качестве сигнала, содержащего информацию о подходе ОИ к преграде, регистрируют баллистическую ударную волну (БУВ), возбуждаемую полетом ОИ со сверхзвуковой скоростью, на основании фактической или априорной информации о величинах углов, образуемых траекторией его движения с осями выбранной прямоугольной системы координат, и координатах точки встречи ОИ с преградой рассчитывают расстояние от ИТ до траектории движения ОИ, с использованием которого и значения угла между образующей конуса возмущения и траекторией движения ОИ, полученного на основании фактической или априорной информации о скорости полета ОИ, рассчитывают расстояние R от поверхности конуса возмущения в момент встречи ОИ с преградой до ИТ, а момент встречи ОИ с преградой определяют по формуле:

t = t р е г R с з в , ( 1 )

где сзв - скорость распространения звука в воздушной среде в момент проведения испытания.

Регистрация БУВ, возбуждаемой полетом ОИ со сверхзвуковой скоростью, позволяет решить техническую задачу даже в условиях плохого прогнозирования места встречи ОИ с преградой, когда реальная точка встречи ОИ с преградой может располагаться от ИТ дальше, чем ожидаемая. Это возможно благодаря относительно большому уровню давления во фронте БУВ и ее слабому затуханию при распространении на большие расстояния от траектории. Наличие у БУВ крутого фронта (длительность единицы микросекунд) позволяет определять время его регистрации в ИТ (tрег) с высокой точностью. Характерная N-образная форма БУВ позволяет легко ее идентифицировать среди прочих сигналов. В конечном итоге эти преимущественные особенности БУВ в отличие от сейсмических волн позволяют повысить разрешающую способность способа, что обеспечивает определение моментов встречи с преградой нескольких ОИ, подходящих к ней с малой разновременностью.

Измерительные средства и вспомогательное оборудование для осуществления заявляемого способа компактны и могут быть в короткие сроки развернуты и подготовлены к измерениям, в том числе и на необорудованных специальным образом площадках. Для повышения надежности измерений можно использовать несколько датчиков, но для решения задачи достаточно получить измерения всего одним.

Способ поясняется чертежами. На фигуре 1 приведен результат регистрации баллистической ударной волны в ИТ датчиком давления, на фигуре 2 - схема распространения конуса возмущения после встречи ОИ с преградой, на фигуре 3 - схема, поясняющая алгоритм расчета момента встречи ОИ с преградой.

Способ определения момента встречи ОИ с преградой реализуется следующим образом.

По крайней мере в одной измерительной точке, размещаемой в районе подхода ОИ к преграде, устанавливают датчик избыточного давления, регистрирующий возмущения воздушной среды. Точку установки датчика выбирают таким образом, чтобы он оказался в «перелетной» зоне относительно прогнозируемой точки встречи ОИ с преградой (фиг.2). Перед проведением испытаний выполняют геодезическую привязку датчика к системе пространственных координат измерительной площадки (полигона). Датчик давления подключают к автономному устройству регистрации информации или через адаптер сбора данных к ПЭВМ. Метеостанцией измеряют параметры невозмущенной воздушной среды (не показано).

В ходе проведения испытания регистрируют баллистическую ударную волну, возбуждаемую полетом ОИ со сверхзвуковой скоростью. Регистрируемый сигнал представлен на фиг.1.

В момент встречи ОИ с преградой (фиг.2) огибающая баллистических ударных волн, возбужденных ОИ на траектории, имеет форму конуса, называемую конусом возмущения. Его осью является траектория движения ОИ. Угол α между образующей конуса и его осью связан с числом Маха М соотношением: sin α=1/M (Фабрикант Н.Я. «Аэродинамика», Издательство «Наука»; 1964 г.) После встречи ОИ с преградой образующая конуса возмущения продолжает распространяться в пространстве со скоростью звука по нормали к своей поверхности, достигая датчика давления, расположенного в точке В.

По результатам регистрации баллистической ударной волны определяют момент времени tрег, соответствующий достижению БУВ измерительной точки В (фиг.1).

Точкой возбуждения волны, достигшей измерительной точки В, является точка А, принадлежащая траектории движения ОИ, а в момент встречи ОИ с преградой фронт БУВ, распространяющийся в направлении точки В, находится в точке N.

Траекторию движения ОИ в пространстве на конечном участке его полета (фиг.3) можно описать уравнением (2) с использованием следующих параметров: |Vou| - величина скорости движения ОИ; βx, βy, βz - углы между положительными направлениями осей выбранной прямоугольной системы координат и траекторией движения ОИ, рассчитываемые с использованием значений азимута и угла подхода ОИ к поверхности преграды; Xo, Yo, Zo - координаты точки О встречи ОИ с преградой

В ходе расчетов предполагается, что скорость движения ОИ на конечном участке траектории является постоянной.

Координаты точки встречи ОИ с преградой (Xo, Yo, Zo) определяют путем координирования воронки, образованной при встрече ОИ с преградой. Остальные параметры движения ОИ (|Vou|, βx, βy, βz) могут быть получены как расчетным путем с использованием математической модели движения объекта по траектории, так и экспериментально, путем измерения необходимых параметров непосредственно в ходе испытания.

Используя уравнение прямой (2) и уравнение перпендикуляра, опущенного на нее из точки В (фиг.3), составляют систему уравнений (3). Путем решения системы (3) с использованием набора известных параметров Xo, Yo, Zo, βx, βy, βz, |Vou| находят координаты основания перпендикуляра P(XP, YP, ZP):

Затем находят длину отрезка NB (dNB=R), величина которой необходима для определения времени встречи изделия с преградой.

Расстояние R - это расстояние, преодолеваемое БУВ с момента встречи ОИ с преградой до момента ее появления в ИТ (фиг.2). Полагая скорость распространения БУВ равной скорости звука (Красильников В.А. «Звуковые волны в воздухе, воде и твердых телах», М., 1954 г.), определяют время, за которое БУВ преодолевает расстояние R, то есть время распространения БУВ с момента встречи ОИ с преградой до момента ее регистрации в ИТ (tраспр):

С использованием формулы (1) определяют момент времени встречи ОИ с преградой.

Для отработки и применения предлагаемого способа использовались общеизвестные технические средства:

1. Датчики измерения импульсных давлений воздушной среды (например, содержащиеся в Государственном реестре средств измерений, датчики АДИД.406233.001).

2. Адаптер сбора аналоговых данных (ADLINK Technology Inc., 64-канальный адаптер аналогового ввода-вывода DAQ-2204).

3. Экранированные измерительные линии, соединяющие датчики и схему запуска с регистратором (кабель ГПЭУ 6/012).

4. Электронный тахеометр для геодезической привязки ИТ к выбранной системе координат (TRIMBLE М3).

5. Автоматическая метеорологическая станция АМС-2000.

Работоспособность способа и его возможности подтверждены в ряде экспериментов. При этом результаты, полученные с использованием данного способа, согласуются с данными, полученными другими измерительными средствами.

Решение задачи определения момента встречи ОИ с преградой при его полете со сверхзвуковой скоростью производилось следующим образом.

Согласно заявляемому способу на измерительной площадке в одной ИТ был размещен датчик избыточного давления воздушной среды и выполнена его геодезическая привязка к системе пространственных координат измерительной площадки (XB=-100 м, YB=0 м, ZB=-60 м). Датчик был подключен к адаптеру сбора аналоговых данных DAQ-2204, входящему в состав регистрирующей ПЭВМ. Метеостанцией были измерены параметры воздушной среды (температура воздуха Тв=13°C).

В ходе проведения испытания датчиком была зарегистрирована БУВ, порожденная полетом ОИ со сверхзвуковой скоростью, и определен момент времени tрег=113.9399 с, соответствующий достижению баллистической ударной волной ИТ.

После проведения эксперимента было выполнено координирование воронки, образованной при падении объекта (Xo=340.27 м, Yo=0 м, Zo=-166.08 м).

Используя координаты точки встречи ОИ с преградой и расчетные параметры его движения при подходе к поверхности преграды (βx=135°, βy=45°, βz=90° |Vou|=1200 м/с), путем решения системы уравнений (3) были найдены координаты основания перпендикуляра (XP,YP,ZP), опущенного из ИТ на траекторию движения ОИ. При дальнейших расчетах было найдено расстояние R=144.01 м. С использованием времени регистрации возмущения в ИТ (tрег), скорости звука сзв=339.65 м/с для соответствующих метеоусловий (Тв) и расстояния R по формуле (1) был определен момент встречи ОИ с преградой (t=113.5159 с). Рассчитанное значение времени встречи ОИ с преградой хорошо согласуется с временем срабатывания контактного датчика, установленного на преграде (113.5169 с).

При практическом применении способа подтверждены надежность регистрации БУВ и технический результат, заключающийся в надежном определении момента встречи ОИ с преградой, возможности его применения на необорудованных площадках, при его относительной простоте и малых затратах на применение. В ряде экспериментов применение этого способа обеспечило определение момента встречи с преградой каждого из группы ОИ, подходящих к ней с малой разновременностью.

Способ определения момента встречи объекта испытания (ОИ) с преградой, включающий регистрацию по крайней мере в одной измерительной точке (ИТ) с известными координатами сигнала, содержащего информацию о подходе ОИ к преграде, определение времени его регистрации в ИТ (tрег) и последующий расчет момента встречи ОИ с преградой, отличающийся тем, что в качестве сигнала, содержащего информацию о подходе ОИ к преграде, регистрируют баллистическую ударную волну, возбуждаемую полетом ОИ со сверхзвуковой скоростью, на основании фактической или априорной информации о величинах углов, образуемых траекторией его движения с осями выбранной прямоугольной системы координат, и координатах точки встречи ОИ с преградой рассчитывают расстояние от ИТ до траектории движения ОИ, с использованием которого и значения угла между образующей конуса возмущения и траекторией движения ОИ, полученного на основании фактической или априорной информации о скорости полета ОИ, рассчитывают расстояние R от поверхности конуса возмущения в момент встречи ОИ с преградой до ИТ, момент встречи ОИ с преградой определяют по формуле , где сзв - скорость распространения звука в воздушной среде в момент проведения испытания.



 

Похожие патенты:

Изобретение относится к гидроакустическим разностно-дальномерным навигационным системам. .

Изобретение относится к мишенным средствам для определения координат положения в пространстве и во времени пуль и снарядов в различных средах с возможностью восстановления их траектории при стрельбе в тире или на полигоне.

Изобретение относится к области жизненных потребностей человека, а более конкретно - к способам и устройствам для спасения жизни людей, терпящих бедствие на море, в том числе - людей, катапультировавшихся с летательных аппаратов, и может быть использовано для поиска и спасения этих людей в сложных гидрометеорологических условиях - низкой облачности, тумане, в условиях полярной ночи, и при отсутствии у этих людей возможности определения своих координат, а также в условиях отсутствия прямой связи (радиосвязи) со спасателями.

Изобретение относится к области испытательной и измерительной техники, в частности к акустической локации, и позволяет определить координаты и вектор скорости объекта, движущегося со сверхзвуковой скоростью.

Изобретение относится к области испытательной и измерительной техники и позволяет определять координаты объекта в характерных точках траектории движения или на местности.

Изобретение относится к области испытательной и измерительной техники. .

Изобретение относится к области морской навигации, в частности к способу использования навигационной гидроакустической системы для определения мест автономных подводных аппаратов относительно точки на дне моря, например, при выполнении научно-исследовательских, поисковых и других работ под водой.

Изобретение относится к области морской навигации, в частности к способу определения места автономного подводного аппарата относительно точки на дне моря, например, при выполнении научно-исследовательских, поисковых и других работ под водой.

Изобретение относится к измерительной технике, в частности к определению местоположения объекта с использованием звуковых волн, в частности местоположения стрелка на местности.

Изобретение относится к средствам для проверки и тренировки в прицеливании. .

Изобретение относится к системам дистанционного управления подводными объектами. Надводный носитель выпускает подводный аппарат (ПА) и вместе с ним буй-ретранслятор, оборудуемый антенной приема команд и передатчиком-ретранслятором. Для осуществления пуска и управления ПА на носителе установлены счетно-решающий прибор (СРП), пусковая установка и устройства каналов контроля объектов и управления ПА. Дополнительно включают три канала: канал контроля носителем буя-ретранслятора с линией связи и устройствами, облегчающими его контроль; канал контроля объекта-цели и ПА дополнительными источниками информации; канал контроля носителем дополнительных источников информации. ПА контролируют гидроакустическими средствами носителя и/или дополнительными источниками информации, а также выполнением расчетов в СРП по скорости, курсу и времени движения. Линию связи «корабль-буй» канала управления ПА выполняют с использованием радиотехнических, гидроакустических или оптических (лазерных) средств. Достигается возможность носителя ПА (надводного или подводного) осуществлять дистанционное управление им и при этом не иметь ограничений в маневрировании для обхода навигационных опасностей, уклонения от столкновения с опасными предметами или других целей. 2 ил., 2 табл.

Способ коррекции линейных и угловых координат заключается в том, что на шлеме оператора в реперных точках размещают четыре нашлемных ультразвуковых приемников, а в кабине над шлемом оператора в связанной системе координат кабины - четыре ультразвуковых излучателя. По краям рабочей зоны возможных положений шлема размещают четыре ультразвуковых приемника четырех корректирующих каналов, осуществляют излучение и прием импульсных ультразвуковых сигналов. Измеряют время задержки сигналов от каждого ультразвукового излучателя до каждого нашлемного ультразвукового приемника и до четырех ультразвуковых приемников корректирующих каналов. Определяют направление с учётом данных указанных корректирующих каналов. Технический результат заключается в повышении точности определения координат шлема оператора в условиях вибрации и изменяющихся внешних условиях. 2 н.п. ф-лы, 4 ил.

Изобретение относится к области обработки данных и может быть использовано для создания систем локального позиционирования объектов, в частности для определения местонахождения оборудования и людей в помещениях и на прилегающих площадках. Достигаемый технический результат - повышение точности позиционирования системы. Указанный результат достигается за счет того, что система локального позиционирования объектов содержит идентификаторы и устройство контроля, при этом в устройство контроля входит блок контроля, приемо-передающие устройства, расположенные на известном расстоянии друг от друга, вычислительное устройство. Идентификаторы установлены на объектах и соединены по радиоканалу приема и ультразвуковому каналу передачи с приемо-передающими устройствами, которые по шине управления и шине данных соединены с вычислительным устройством. Местоположение объектов определяется по времени задержки распространения ультразвукового сигнала относительно радиосигнала. 1 ил.

Изобретение относится к измерительной технике, в частности к определению местоположения стрелка на местности с использованием звуковых волн. .Достигаемый технический результат – повышение точности определения координат стрелка. Указанный результат достигается за счет расположения трех датчиков, включая базовый, на одной прямой линии в горизонтальной плоскости на известных расстояниях одного от другого и одного датчика на вертикали от базового датчика также на определенном, известном расстоянии, при этом измерение промежутков времени рассогласования прихода звуковой волны до базового датчика и всех остальных датчиков позволяет сформировать три линейных уравнения и рассчитать координаты точки местонахождения стрелка по звуку выстрела за счет решения этой системы уравнений. 3 ил..

Изобретение относится к измерительной технике, в частности к пеленгаторам. Предложено устройство для определения местоположения источника сигналов, содержащее персональную электронно-вычислительную машину (ПЭВМ), а также первый и второй идентичные каналы, каждый из которых включает первый блок магнитных антенн и последовательно соединенные первый усилитель и первый фильтр, дополнительно содержит подключенные к ПЭВМ блок системы единого времени и блок связи с абонентами, последовательно соединенные второй блок магнитных антенн, первый блок усилителей, первый пороговый блок, первый блок схем ИЛИ, первый таймер, первую схему И и первый блок счетчиков, последовательно соединенные приемник радиации, второй усилитель и первый пороговый элемент, последовательно соединенные блок приемников температуры, второй блок усилителей, второй пороговый блок и первый блок схем И, а также первый тактовый генератор, подключенный ко второму входу первой схемы И и первый блок аналого-цифровых преобразователей (АЦП), подключенный входами к первому и второму блокам усилителей, а выходами подключенный к ПЭВМ, причем выход первого таймера подключен к ПЭВМ и ко вторым входам первого блока схем И, выходы первого блока схем И подключены ко входам останова первого блока счетчиков, выход первого порогового элемента подключен к первому блоку схем ИЛИ и к ПЭВМ, выходы первого и второго пороговых блоков, выходы первого блока счетчиков, третьи входы первого блока схем И, управляющие входы первого и второго блоков усилителей, второго усилителя, первого и второго пороговых блоков, первого порогового элемента и первого таймера подключены к ПЭВМ, а в каждом канале дополнительно содержатся последовательно соединенные блок датчиков света, третий блок усилителей, первый блок фильтров, четвертый блок усилителей, третий пороговый блок и второй блок схем ИЛИ, последовательно соединенные пятый блок усилителей, второй блок фильтров, шестой блок усилителей, четвертый пороговый блок и третий блок схем ИЛИ, последовательно соединенные первый блок цифроаналоговых преобразователей (ЦАП) и первый блок калибраторов, последовательно соединенные второй блок ЦАП и второй блок калибраторов, последовательно соединенные первый ЦАП, первый калибратор и сейсмометр, последовательно соединенные третий усилитель, второй фильтр, второй пороговый элемент и вторую схему И, последовательно соединенные второй таймер, третью схему И и счетчик, последовательно соединенные второй ЦАП и второй калибратор, последовательно соединенные блок микробарометров, седьмой блок усилителей, третий блок фильтров, восьмой блок усилителей, четвертый блок фильтров, пятый пороговый блок и второй блок схем И, последовательно соединенные третий таймер, четвертую схему И и второй блок счетчиков, а также АЦП и второй блок АЦП, подключенные входами соответственно к первому фильтру и третьему блоку фильтров, а выходами подключенные к ПЭВМ, третий и четвертый блоки АЦП, подключенные входами соответственно к первому и ко второму блокам фильтров, а выходами подключенные к ПЭВМ, четвертый и пятый таймеры, подключенные выходами соответственно ко вторым входам второй схемы И и второго блока схем И, а входами запуска и управляющими входами подключенные к ПЭВМ, второй тактовый генератор, подключенный выходом ко вторым входам третьей и четвертой схем И, схему ИЛИ, подключенную входами ко второму пороговому элементу и к первому блоку ИЛИ, а выходом подключенную к третьему таймеру, и пятую схему И, подключенную первым и вторым входами соответственно к третьему таймеру и к первому блоку ИЛИ, инверсным входом подключенную ко второму таймеру, а выходом подключенную к управляющим входам второго и третьего таймеров. Причем выходы первого блока магнитных антенн подключены к пятому блоку усилителей, выходы первого и второго блоков калибраторов подключены соответственно к первому блоку магнитных антенн и к блоку датчиков света, входы первого и третьего усилителей подключены соответственно к сейсмометру и к первому фильтру, входы останова счетчика и второго блока счетчиков подключены к выходам соответственно второй схемы И и второго блока схем И, выходы второго и третьего таймеров подключены соответственно к третьим входам второй схемы И и второго блока схем И, входы блока микробарометров акустически связаны со вторым калибратором, входы обнуления счетчика и второго блока счетчиков подключены к выходу пятой схемы И, выходы счетчика и второго блока счетчиков, второго и третьего таймеров, третьего, четвертого и пятого пороговых блоков, второго порогового элемента, входы первого и второго блоков ЦАП, входы первого и второго ЦАП, а также управляющие входы второго и третьего таймеров, всех усилителей, фильтров, пороговых элементов, пороговых блоков, блоков усилителей и блоков фильтров подключены к ПЭВМ, выходы второго и третьего блоков схем ИЛИ подключены к первому блоку схем ИЛИ, выход первого блока схем ИЛИ подключен ко второму таймеру, а первый блок магнитных антенн выполнен в виде трех взаимно перпендикулярных магнитных антенн, второй блок магнитных антенн выполнен в виде трех взаимно перпендикулярных низкочастотных магнитных антенн, блок датчиков света выполнен в виде трех взаимно перпендикулярных оппозитных пар датчиков света, блок приемников температуры выполнен в виде 2n (n≥2) размещенных равномерно по окружности в горизонтальной плоскости теплоизолированных друг от друга приемников температуры, второй блок усилителей, второй пороговый блок, первый блок схем И и первый блок счетчиков выполнены 2n-канальными, первый блок АЦП выполнен (2n+3)-канальным, блок микробарометров выполнен в виде 2m (m≥2) размещенных равномерно по окружности в горизонтальной плоскости акустически изолированных друг от друга микробарометров, седьмой и восьмой блоки усилителей, третий и четвертый блоки фильтров, пятый пороговый блок, второй блок схем И, второй блок АЦП и второй блок счетчиков выполнены 2m-канальными, первый, третий, четвертый, пятый и шестой блоки усилителей, первый и второй блоки фильтров, первый, третий и четвертый пороговые блоки, первый и второй блоки калибраторов, третий и четвертый блоки АЦП и первый и второй блоки ЦАП выполнены трехканальными, второй и третий блоки схем ИЛИ выполнены с тремя входами и одним выходом, первый блок схем ИЛИ выполнен с восемью входами и одним выходом, пороговые блоки, первый, второй и третий пороговые элементы выполнены с управлением по порогу, усилители и блоки усилителей выполнены с управлением по фазе, полосе пропускания и чувствительности, таймеры выполнены с управлением по длительности выходного сигнала, и фильтры и блоки фильтров выполнены с управлением по полосе пропускания. Технический результат - уменьшение погрешности при использовании устройства на ближних расстояниях и повышение помехоустойчивости устройства. 1 ил.

Изобретение относится к области способов и устройств акустической пассивной локации и может быть использовано в системах управления огнем артиллерии. Изобретение относится к методам и средствам прицеливания и наводки. Определение местоположения наземной и надводной артиллерии противника осуществляется путем точной регистрации времени прихода звука выстрела на каждый датчик звука (микрофон), которых должно быть не менее трех. По известной скорости звука, расстояниям между датчиками и их месторасположениям вычисляется местоположение артиллерии противника. Устройство для определения местоположения артиллерии противника относится к области артиллерийской разведки и предназначено для фиксации местоположения каждого орудия противника, произведшего выстрел. Предлагаемое устройство осуществляет измерение и оцифровывание сигналов с датчиков звука и затем преобразовывает их в Фурье-образы (амплитуды, фазы и частоты гармоник сигнала). Фурье-образы звука выстрела сравниваются с базовыми Фурье-образами звука выстрела известных типов орудий, с различными уровнями достоверности оценки. По выявленному базовому Фурье-образу и определяется тип орудия, произведшего выстрел, с соответствующей достоверностью оценки. В устройстве также вычисляется точное местоположение данного орудия противника и проводятся необходимые статистические исследования. Предлагаемое устройство может использоваться также для определения местоположения снайперов противника и подводных целей. 2 н.п. ф-лы, 17 ил.

Изобретение относится к области подводной навигации и может быть использовано для определения координат группы подводных объектов, преимущественно подводников и подводных пловцов при отработке совместных действий в бассейне или водолазной башне. Достигаемый технический результат - идентификация и непрерывное определение координат и параметров движения группы подводных объектов, в том числе и при частичном взаимном перекрытии объектов Указанный результат достигается тем, что на каждом из объектов устанавливают оптические маяки, количество которых и места их расположения на подводном объекте выбирают из условия обеспечения непрерывного наблюдения по крайней мере двумя видеокамерами. Фиксируют излучения оптических маяков объектов с помощью четырех видеокамер, расположенных на концах взаимно перпендикулярных осевых линий горизонтального сечения контролируемого объема. Инициацию излучения оптических маяков осуществляют с помощью излучаемого четырьмя излучателями-инициаторами в оптическом диапазоне волн сигнала, длительность которого равна длительности видеокадра Δt, период следования которого равен T=Δt*(N+1), где N - количество объектов в группе, а начало излучения синхронизировано с импульсами кадровой синхронизации видеокамер. В качестве идентифицирующего признака объекта используют предустановленный номер видеокадра, в котором оптический маяк данного объекта излучает сигнал. Выделяют видеопоследовательности в видеокадрах, соответствующих каждому идентифицированному объекту, по которым вычисляют координаты и параметры движения каждого объекта. Обработку видеоинформации с видеокамер производят на вычислительном комплексе, размещенном на пункте контроля за действиями подводных объектов вне контролируемого водного объема. 2 н. и 12 з.п. ф-лы, 5 ил.

Изобретение относится к средствам для определения позиции микрофона. Технический результат заключается в повышении точности определения позиции микрофона. Устройство содержит приемник (203), принимающий многоканальный сигнал, содержащий два канала для воспроизведения первым динамиком (101) в первой позиции и вторым динамиком (103) во второй позиции соответственно. Первый генератор (207) сигналов генерирует коррелированный сигнал и второй генератор (209) сигналов генерирует некоррелированный сигнал из многоканального сигнала, причем сигналы содержат соответственно коррелированные и некоррелированные компоненты сигнала для каналов. Приемник (201) принимает сигнал микрофона от микрофона (107). Первое средство (213) корреляции определяет первый корреляционный сигнал из корреляции сигнала микрофона и коррелированного сигнала, и второе средство (215) корреляции определяет второй корреляционный сигнал из корреляции сигнала микрофона и некоррелированного сигнала. Средство (219) оценки позиции оценивает позицию микрофона из первого и второго корреляционных сигналов. 2 н. и 10 з.п. ф-лы, 6 ил.

Изобретение относится к области испытательной и измерительной техники. Достигаемый технический результат - высокая разрешающая способность, обеспечивающая определение моментов встречи с преградой нескольких объектов испытания, а также простота и компактность используемых средств. Указанный результат достигается за счет того, что способ включает регистрацию в измерительной точке с известными координатами сигнала, содержащего информацию о подходе ОИ к преграде, определение времени его регистрации в ИТ и расчет момента встречи ОИ с преградой. В качестве сигнала, содержащего информацию о подходе ОИ к преграде, регистрируют баллистическую ударную волну, возбуждаемую полетом ОИ со сверхзвуковой скоростью. На основании фактической или априорной информации о величинах углов, образуемых траекторией его движения с осями выбранной прямоугольной системы координат, и координатах точки встречи ОИ с преградой рассчитывают расстояние от ИТ до траектории движения ОИ, с использованием которого и значения угла между образующей конуса возмущения и траекторией движения ОИ, полученного на основании фактической или априорной информации о скорости полета ОИ, рассчитывают расстояние R от поверхности конуса возмущения в момент встречи ОИ с преградой до ИТ. Момент встречи ОИ с преградой определяют по формуле, где сзв - скорость распространения звука в воздушной среде, соответствующая метеоусловиям в момент проведения испытания. 3 ил.

Наверх