Научно-исследовательское ледокольное судно для сейсморазведки по 3d технологии в арктических морях


 


Владельцы патента RU 2549303:

Российская Федерация, от имени которой выступает государственный заказчик (Министерство промышленности и торговли Российской Федерации) (RU)

Изобретение относится к области судостроения, в частности к надводным научно-исследовательским судам. Предложено научно-исследовательское ледокольное судно для проведения сейсморазведки по 3D технологии вне зависимости от ледовых условий, имеющее корпус, в котором размещается сейсмическое оборудование, а также шахту для выпуска и укладки на дно донной сейсмокосы. Для перемещения источника акустических волн используется самоходный автономный необитаемый подводный аппарат, базирующийся на судне, спуск-подъем которого осуществляется через отдельную вертикальную шахту при помощи спуско-подъемного устройства. Технический результат заключается в улучшении эксплуатационных характеристик научно-исследовательского судна для проведения сейсморазведки. 2 з.п. ф-лы, 1 ил.

 

Изобретение относится к области разведки подводных месторождений нефти и газа в арктических морях.

Первоочередной задачей разведки любого нового нефтегазоконденсатного месторождения является поиск места месторождения и задача получения его 3D томографической карты для определения геометрии продуктивных пластов месторождения, мест для бурения эксплуатационных скважин.

Для морской 3D сейсморазведки используются специализированные суда, оборудованные специальными средствами для сейсморазведки.

Технология морской сейсморазведки основана на анализе отраженных звуковых сигналов от пластов грунта морского дна. Для излучения звука применяются пневмопушки. Прием отраженных сигналов осуществляется на систему приемных кабельных антенн-сейсмокос, которая буксируется за судном.

Для получения 3D карты изучаемого района количество буксируемых сейсмокос - минимум 6…8 штук. Длина каждой сейсмокосы - до 6 км.

Лидер в постройке и эксплуатации судов, предназначенных для буксировки системы кабельных приемных антенн-сейсмокос, - фирма «Petroleum Gea-Services» (PGS), Норвегия.

При буксировке для получения качественного приема отраженных сигналов необходимо обеспечивать правильную геометрию всей системы сейсмокос по глубине, по расстоянию между косами, по направлению движения. Для этого сейсмокосы снабжаются стабилизаторами глубины и направления («птичками»), которые устанавливаются с шагом около 100 м. Между собой косы связываются поперечными связями.

Сейсмокосы выполняются из отдельных частей, которые соединяются герметичными муфтами. Замена вышедшей из строя части сейсмокосы на новую производится на палубе судна.

Основным недостатком надводной технологии сейсморазведки является ограничение по волнению - не более 3 баллов. Отсюда - огромные финансовые потери из-за простоев по погодным условиям.

В настоящее время одной из основных задач освоения новых месторождений нефти и газа является задача разведки месторождений углеводородов на шельфе арктических морей.

Акватории арктических морей характеризуются штормовыми условиями, а в зимнее время покрыты сплошными дрейфующими льдами. Данные обстоятельства делают невозможным проведение сейсморазведочных работ по 3D технологии судами с надводной буксировкой системы сейсмокос. Требуется разработка судов новой конструкции для работы по новым технологиям сейсморазведки, не зависящим от ледовых условий.

Известна многоцелевая подводная станция МПС (патент РФ №2436705, МПК B63G 8/00, B63G 8/41, опубл. 20.12.2011 г.), предназначенная для использования и проведения 3D сейсморазведки по указанному выше способу в арктических условиях.

Недостатком многоцелевой подводной станции (МПС) является то, что она, в сущности, представляет собой атомную подводную лодку и, соответственно, сверхдорогое техническое средство повышенной опасности, требующее, к тому же, разработки всего сейсмического оборудования, рассчитанного на работу при полном рабочем давлении воды, в забортном исполнении. Кроме этого, у многоцелевой подводной станции по сравнению с надводными судами значительно ниже уровень обитаемости и отсутствует возможность ремонтов во время рейса.

Известно надводное судно «COSL720» для глубоководных трехмерных сейсмологических исследований, способное буксировать 12 сейсмоприемных антенн длиной по 8 км (Зарубежная информация // Судостроение. 2012. №2. С.71), которое можно рассматривать в качестве аналога.

Но надводное судно «COSL720» не может выполнять сейсморазведку в ледовых и штормовых условиях.

Кроме того, и многоцелевая подводная станция, и надводные суда сами являются буксировщиками сейсмоакустических излучателей, что требует значительных затрат мощности главной энергетической установки, особенно при движении во льдах.

Предлагаемое научно-исследовательское ледокольное судно объединяет преимущества надводного судна (высокий уровень обитаемости, безопасность, существующая инфраструктура по эксплуатации) и многоцелевой подводной станции в части применения донных сейсмокос для проведения 3D сейсморазведки вне зависимости от ледовых условий.

Для выпуска и укладки донных сейсмокос на судне имеется как минимум одна вертикальная шахта, выходящая в днищевую часть. В целях экономии запасов топлива судна в качестве носителя сейсмоизлучателей используется один или несколько малых самоходных автономных необитаемых подводных аппаратов (НПА), базирующихся на судне.

Спуск и подъем НПА-носителей сейсмоизлучателей осуществляется через вертикальную шахту, выходящую в днищевую часть. С целью снижения расхода электроэнергии бортовых источников энергии и, соответственно, массогабаритных характеристик НПА сейсмоизлучатели выполняются в виде системы из когерентных широкополосных низкочастотных акустических излучателей, что обеспечивает направленность диаграммы излучения строго вниз, а за счет положительной интерференции сигналов достигается снижение мощности самих излучателей.

Сейсморазведка выполняется следующим образом:

1. Судно следует в район разведки.

2. По прибытии с судна через шахту вытравливается донная коса, длина косы может составлять 10 км и более. После чего судно встает и удерживается в точке.

3. С судна через вертикальную шахту спускается самоходный автономный НПА-носитель сейсмоакустических излучателей.

4. НПА по программе движется галсами вдоль донной сейсмокосы и выполняет облучение дна.

5. Отраженные от слоев грунта сейсмоакустические волны фиксируются акустическими датчиками на донной сейсмокосе, с которых информация передается на судно, где производится их математическая обработка для получения 3D карты обследуемого участка.

6. После обследования первого участка НПА поднимается на судно, которое, двигаясь в обратную сторону вдоль уложенной на дно косы, поднимает сейсмокосу при помощи сейсмолебедки.

7. После подъема сейсмокосы судно следует на второй участок обследуемого района и цикл повторяется.

Для ускорения обследования района месторождения на судне может быть установлено несколько автономных НПА-носителей излучателей, причем часть НПА находится в работе, а в это время другая часть НПА на борту судна проходит техническое обслуживание.

При отсутствии тяжелых льдов судно само может производить облучение обследуемого района дна за счет дополнительного излучателя, установленного в днищевой части судна. В этом случае сейсмокоса отсоединяется от судна, регистрация данных производится в отдельном устройстве накопления информации, установленном на косе.

После обследования одного участка района судно поднимает сейсмокосу на борт, где производится передача данных с сейсморегистратора в систему их обработки. После чего судно переходит на следующий участок района обследования и процесс повторяется.

Для повышения эффективности сейсморазведки участка дна с судна может выпускаться несколько сейсмокос, укладываемых на грунт либо перпендикулярно друг другу, когда используются две сейсмокосы, либо их располагают на дне в виде прямоугольника, когда используются четыре сейсмокосы. В этих случаях сейсмокосы снабжаются индивидуальными накопителями-регистраторами информации и являются автономными изделиями.

Для их подъема на судно предусматриваются необитаемые телеуправляемые подводные аппараты с манипуляторными устройствами для подсоединения донных кос к тросам вытяжных сейсмолебедок.

При отсутствии тяжелых льдов судно само может производить облучение обследуемого района дна за счет дополнительного излучателя, установленного в днищевой части судна. В этом случае сейсмокоса отсоединяется от судна, регистрация данных производится в отдельном устройстве накопления информации, установленном на косе. После обследования одного участка района судно поднимает сейсмокосу на борт, где производится передача данных с сейсморегистратора в систему их обработки. После чего судно переходит на следующий участок района обследования и процесс повторяется.

Изобретение поясняется, фиг.1, на которой представлена принципиальная компоновочная схема сейсмического судна для арктических морей. Судно включает в себя корпус 1 с надстройкой, имеющий шахты 2 для выпуска сейсмокос 3 и шахты 4 для выпуска-подъема самоходных автономных НПА 5 с акустическими излучателями 6. Сейсмокосы выпускаются и поднимаются при помощи лебедок 7. Подъем-выпуск НПА осуществляется при помощи спуско-подъемных устройств 8.

1. Научно-исследовательское ледокольное судно для проведения сейсморазведки по 3D технологии в арктических условиях вне зависимости от ледовых условий, имеющее корпус, в котором размещается сейсмическое оборудование, отличающееся тем, что судно оборудовано шахтой для выпуска и укладки на дно донной сейсмокосы, а для перемещения источника акустических волн используется самоходный автономный необитаемый подводный аппарат (НПА), базирующийся на судне, спуск-подъем которого осуществляется через отдельную вертикальную шахту при помощи спуско-подъемного устройства.

2. Судно по п.1, отличающееся тем, что на судне устанавливаются несколько НПА-носителей излучателей, причем часть НПА находится в работе, а в это время другая часть НПА на борту судна проходит техническое обслуживание.

3. Судно по п.2, отличающееся тем, что для подъема автономных донных сейсмокос используются отдельные телеуправляемые необитаемые аппараты с манипуляторными устройствами для подсоединения донной косы к тросам вытяжных сейсмолебедок.



 

Похожие патенты:

Изобретение относится к области геофизики и может быть использовано при проведении морских сейсморазведочных работ. Заявлена подводная сейсмическая система для снижения шума в сейсмических сигналах, вызванного отраженными волнами-спутниками или движением сквозь толщу воды.

Изобретение относится к области геофизики и может быть использовано при проведении морских сейсморазведочных работ. Предложена методика морской сейсмической разведки с использованием одного или более морских сейсмических вибраторов.

Изобретение относится к области гидро- и геоакустики и может быть использовано в морях, океанах, пресноводных водоемах в качестве донной кабельной антенны для проведения исследований и мониторинга сейсмоакустической эмиссии на шельфе в обеспечение инженерно-геофизических работ на морском дне.

Изобретение относится к устройствам для подводных геофизических исследований морей и океанов. Заякоренная профилирующая подводная обсерватория сочленена с диспетчерской станцией и состоит из: подповерхностного буя, заякоренного с помощью стального буйрепа, который служит ходовым тросом для профилирующего носителя, содержащего комплект измерительных датчиков, модуль центрального микроконтроллера, электропривод, и передвигающегося по ходовому тросу; системы цифровой связи посредством бесконтактной индуктивной врезки в ходовой трос, поверхностного буя-вехи с модемами передачи данных и телеметрической информации по радиоканалу, гидроакустического размыкателя якорного балласта.

Изобретение относится к области гидро- и геоакустики и может быть использовано в морях, океанах, пресноводных водоемах для проведения исследований и мониторинга сейсмоакустической эмиссии на шельфе в обеспечение инженерно-геофизических работ на морском дне.

Изобретение относится к области геофизики и может быть использовано для сейсмоакустических исследований на шельфе при выполнении разведочных работ нефтегазоносных месторождений.
Изобретение относится к области геофизики и может быть использовано для контроля, оптимизации и повышения безопасности разработки месторождений углеводородов на акваториях Арктики и других морей.
Изобретение относится к области геофизики и может быть использовано для контроля разработки месторождений углеводородов на морском шельфе. Согласно заявленному способу проводят трехмерную сейсморазведку и строят по ее данным модель резервуара, прогнозируют ориентацию систем субвертикальных трещин и размещение эксплуатационных и нагнетательных скважин.

Изобретение относится к области сейсморазведки подводных месторождений нефти и газа в арктических морях. Предложено судно с конструкцией, объединяющей преимущества надводного корабля (высокий уровень обитаемости, безопасность, большие площади палуб, позволяющие производить обслуживание и ремонт сейсмооборудования) и преимущества многоцелевой подводной станции в части применения гидроакустических излучателей и буксируемых в толще воды подо льдом сейсмокос для 2D технологии сейсморазведки.

Изобретение относится к области геофизики и может быть использовано при проведении морских сейсморазведочных работ. Заявлены способ и устройство для водной сейсморазведки.

Изобретение относится к области сейсморазведки подводных месторождений нефти и газа в арктических морях. Предложено судно с конструкцией, объединяющей преимущества надводного корабля (высокий уровень обитаемости, безопасность, большие площади палуб, позволяющие производить обслуживание и ремонт сейсмооборудования) и преимущества многоцелевой подводной станции в части применения гидроакустических излучателей и буксируемых в толще воды подо льдом сейсмокос для 2D технологии сейсморазведки.

Изобретение относится к области судостроения и касается проектирования обводов корпуса судна повышенной ледопроходимости, имеющего форштевень с бульбом. Предложена носовая оконечность корпуса судна, имеющего в районе мидель-шпангоута днище с малой или нулевой килеватостью и борта, близкие к вертикальным, содержащая бульб, имеющий в своей верхней части прямое или слегка изогнутое ребро, образованное в диаметральной плоскости при соединении правой и левой поверхностей бульба под пространственным углом 30-150°, имеющее наклон вперед до 30° к плоскости ватерлинии и пересекающее плоскости (уровни) самого верхнего и самого нижнего положений расчетной ватерлинии судна в носу для разных вариантов его загрузки.

Изобретение относится к морским транспортным средствам, предназначенным для эксплуатации в ледовых полях Арктики. Сущность предлагаемого изобретения состоит в том, что носовая оконечность ледокола, включающая оптимальной формы обводы носовой части корпуса, содержит бортовые поворотные рабочие органы для образования скважин в толстом льду по ходу продвижения ледокола.

Изобретение относится к области судостроения и касается разрушения ледяного покрова морскими ледокольными судами для перевозки грузов. Предложен способ разрушения ледяного покрова, при котором при движении полупогружного судна создают выталкивающую архимедову силу, давящую на нижнюю поверхность льда в вертикальном направлении, и разрушают лед заведенным под него тараном с ледоразрушающим ребром, связанным с корпусом судна.
Изобретение относится к проведению предупредительных работ для предотвращения заторообразования на участке реки и может быть использовано для разупрочнения ледяного покрова в местах подводных коммуникаций.

Изобретение относится к области судостроения и касается эксплуатации судов в ледовых условиях. При ледовом плавании судов ледового и неледового класса предварительно суда неледового класса размещают в суда-доки ледового класса, после чего все суда ледового класса вместе с ледоколом соединяют в кильватерную колонну «в упор» введением носовой части судна в кормовую выемку впереди идущего судна и стыковки с помощью унифицированного стыковочного узла.

Изобретение относится к ледотехнике, в частности, к выполнению ледокольных работ судами на воздушной подушке. Во время морского отлива судно на воздушной подушке движется с резонансной скоростью вдоль береговой линии на расстоянии от кромки примерзшего к берегу льда и возбуждает во льду резонансные изгибно-гравитационные волны, при этом судну сообщают поперечные периодические перемещения с амплитудой, не превышающей половину длины волны статического прогиба льда, и частотой, равной частоте резонансных изгибно-гравитационных волн.

Изобретение относится к области судостроения и касается судна или плавучей конструкции, работающей в покрытых льдом водах. Судно содержит корпус или ему подобную конструкцию (1, 1'), включающий по меньшей мере один дугообразный конец или подобный участок (2, 2') корпуса, который подвержен нагружающему воздействию льда при перемещении льда или судна.

Изобретение относится к области судостроения и касается защиты корпуса морских ледостойких платформ от внешнего ледового воздействия. Корпус морской ледостойкой платформы имеет усиленную, преимущественно вертикальную ледовую обшивку с подкрепляющим набором, снабжен жесткими элементами, имеющими в поперечном сечении треугольную форму, установленными на поверхности обшивки и размещенными по ее поверхности с образованием многозаходной спирали, которая имеет угол наклона образующей к горизонту 10÷70 градусов, и с шагом спирали - не более 1/3 максимальной толщины льда в районе эксплуатации платформы.

Изобретение относится к области судостроения, в частности к морским технологическим ледостойким платформам для эксплуатации в арктических условиях. Морская технологическая ледостойкая платформа содержит надводную часть с горизонтальными площадками и установленным на них технологическим оборудованием, подводную часть, выполненную в виде водоизмещающего корпуса, якорную систему удержания, обеспечивающую возможность платформе разворачиваться относительно вертикальной оси, балластные цистерны, расположенные в водоизмещающем корпусе.

Изобретение относится к области судостроительной техники, а именно к транспортным судам, предназначенным для погрузки, транспортировки и выгрузки самоходной и плавающей техники и базирования вертолетов.
Наверх