Сейсмографическое судно для сейсморазведки по 2d технологии в арктических морях вне зависимости от ледовых условий



Сейсмографическое судно для сейсморазведки по 2d технологии в арктических морях вне зависимости от ледовых условий

 


Владельцы патента RU 2539430:

Российская Федерация, от имени которой выступает государственный заказчик (Министерство промышленности и торговли Российской Федерации) (RU)

Изобретение относится к области сейсморазведки подводных месторождений нефти и газа в арктических морях. Предложено судно с конструкцией, объединяющей преимущества надводного корабля (высокий уровень обитаемости, безопасность, большие площади палуб, позволяющие производить обслуживание и ремонт сейсмооборудования) и преимущества многоцелевой подводной станции в части применения гидроакустических излучателей и буксируемых в толще воды подо льдом сейсмокос для 2D технологии сейсморазведки. Выпуск буксируемой сейсмокосы и г/а излучателей осуществляется при помощи выдвижных конструкций, установленных в вертикальных шахтах в днищевой части судна вне зоны воздействия льда. Технический результат заключается в повышении надежности проведения сейсморазведки в ледовых условиях, уменьшении отрицательного влияния сейсморазведки на окружающую среду и экологию моря. 3 з.п. ф-лы, 1 ил.

 

Изобретение относится к области первичной разведки подводных месторождений нефти и газа в арктических морях.

Первоочередной задачей разведки любого нового нефтегазоконденсатного месторождения является поиск его места, который осуществляется методом 2D технологии сейсморазведки.

Для морской 2D сейсморазведки используются специализированные суда. Технология морской сейсморазведки основана на анализе отраженных звуковых сигналов от пластов грунта морского дна. Для излучения звука применяются буксируемые пневмоисточники (пневмопушки). Прием отраженных сигналов осуществляется при помощи приемных кабельных антенн-сейсмокос, которые также буксируются за судном.

Для получения 2D карты изучаемого района количество буксируемых сейсмокос может быть до 4 штук. Длина сейсмокосы может достигать нескольких километров.

В настоящее время одной из основных задач освоения новых месторождений нефти и газа является задача разведки месторождений углеводородов на шельфе арктических морей.

Акватории арктических морей характеризуются штормовыми условиями, а в зимнее время покрыты сплошными дрейфующими льдами. Данные обстоятельства делают невозможным проведение сейсморазведочных работ по 2D технологии судами с надводной буксировкой системы сейсмокос и пневмоизлучателей и требуют разработки судов новой конструкции для работы по новым технологиям сейсморазведки, не зависящим от ледовых условий.

Известны специализированные морские сейсмические суда типа «Polarcus Asima», «Polarcus Samur», «Polarcus Nadia», «Pacific Explorer», «Western Trident», «WG Vespucci», способные буксировать до 14 сейсмокос по 6-8 км.

В Российской Федерации используются сейсморазведочные суда «Академик Лазарев» и «Профессор Полшков» (Р.Н. Караваев, А.С. Портной, В.Н. Разуваев «Суда и плавучие технические средства для освоения морских нефтегазовых месторождений», СПб.: Моринтех, 2009). На судах прекрасные условия обитаемости, значительные площади палуб под установку сейсмооборудования позволяют производить обслуживание и ремонт.

Недостатком этих судов является то, что они не могут работать в ледовых условиях в виду обрыва льдом буксируемой аппаратуры.

На сейсмографических судах для возбуждения сейсмоволн используются пневмоизлучатели (пневмопушки) типа Bolt (производство компании Bolt Technology Corporation, США), G-Gun (производства компании Sercel, Франция) с общим объемом 3000-4500 куб. дюймов. Для получения необходимой мощности излучения пневмоизлучатели собираются в 4 линии, в каждой линии устанавливаются до 4 сдвоенных пневмоизлучателя (http://polarcus.com, http://www.pgs.com).

Недостатком известных сейсмических судов для морской сейсморазведки является использование пневмоизлучателей для возбуждения сейсмоволн:

- Пневмоизлучатели требуют установки на судах воздушных компрессоров. Под установку этих компрессоров на судах предусматриваются компрессорные помещения по габаритам соизмеримые с машинными отделениями;

- Пневмоизлучатели являются широкополостными акустическими источниками, имеют круговую диаграмму направленности и низкий КПД. КПД в лучших конструкциях достигают нескольких процентов. Для получения необходимой мощности излучения требуется установка по несколько сдвоенных пневмоизлучателей в горизонтальные линии;

- Большое количество излучателей требует применения мощных компрессоров и соответственного увеличения мощности судовых электростанций, что в конечном итоге ведет к увеличению запасов топлива для дизельгенераторов и водоизмещения судна;

- Для обслуживания пневмоизлучателей, их хранения, спуска-подъема на главной палубе требуются специальные помещения. На современных судах эти помещения представляют собой высокомеханизированные производственные участки - цеха с огромным количеством вспомогательного и обслуживающего оборудования;

- Спуск-подъем пневмоизлучателей производится с открытого участка кормы судна. При волнении моря проведение спуско-подъемных операций с излучателями, представляющих из себя изделия длиной до 15 м и массой в несколько тонн, становится опасным для персонала, что ограничивает их выполнение в этих условиях;

- Пневмоисточники, являясь мощными источниками широкополостного гидроакустического (г/а) шума, наносят вред экологии морей и океанов.

Данные недостатки полностью устраняются за счет замены пневмоисточников на низкочастотные г/а излучатели (электромагнитные или пьезокерамические), применение которых дает следующие преимущества:

- Г/а излучатели работают на заданной частоте излучения и могут быть установлены в вертикальную интерференционную решетку, с помощью которой можно получить диаграмму направленности в виде луча строго вниз в сторону исследуемого участка, тем самым значительно снизить потребляемую мощность;

- Г/а излучатели электромагнитного типа, имеющие в основе конструкции подвижные диафрагмы, колеблющиеся за счет электромагнитов, могут быть выполнены резонансного типа за счет выбора жесткости диафрагм, что резко снижает потребляемую мощность и повышает КПД излучателя (до 40-60%);

- Г/а излучатели на пьезокерамике позволяют формировать излучающий сигнал заданного вида по времени и управлять пространственными характеристиками излучения;

- Использование г/а излучателей, позволяющих формировать временные сигналы сложной формы (М-последовательности, сигналы ЛЧМ), обеспечивает получение при последующей математической обработке повышенной пространственной разрешающей способности сейсмоакустической разведки за счет исключения помеховых составляющих, присутствующих в широкополостных принимаемых сигналах;

- Использование гидроакустических сигналов с управляемой формой сигнала и возбуждением сигнала с высоким акустическим КПД за счет резонансных особенностей г/а существенно снижает интегральный уровень акустического излучения в отличие от пневмопушек, работающих в широкой полосе и имеющих малый коэффициент преобразования энергии в акустическую, что снижает отрицательное воздействие на экологию обследуемых акваторий.

Указанные преимущества г/а излучателей по сравнению с пневмоизлучателями послужили основанием для разработчиков сейсмооборудования и проектантов сейсмических судов искать решения применения г/а излучателей в морской сейсморазведке.

Известен способ проведения подводно-подледной сейсмоакустической разведки с использованием подводного судна (З. №2011153344/28 (080273) от 26.12.2011 г.). Данный способ заключается в использовании когерентных широкополостных низкочастотных г/а излучателей, установленных на подводном судне, для получения сейсмоволн.

Известна многоцелевая подводная станция МПС (патент №2436705 МПК B63G 8/00, B63G 8/41, опубл. 20.12.2011 г.), предназначенная для проведения сейсморазведки по указанному выше способу в Арктических морях. Сейсмокоса для 2D сейсморазведки выпускается через кормовой верхний стабилизатор и буксируется в толще воды подо льдом.

Недостатком многоцелевой подводной станции (МПС) является то, что она, по сути представляет собой подводную лодку и, соответственно, сверхдорогое техническое средство повышенной опасности. Кроме этого, на подводной лодке по сравнению с надводными судами значительно ниже уровень обитаемости, ограниченное пространство, а режим подводной работы МПС требует разработки всего сейсмического оборудования в погружном забортном исполнении с расчетом на работу при полном рабочем давлении воды. Проведение ремонтов забортного оборудования во время подводного рейса невозможно.

Целью настоящего изобретения является предложить судно с конструкцией, объединяющей преимущества надводного корабля (высокий уровень обитаемости, безопасность, большие площади палуб, позволяющие производить обслуживание и ремонт сейсмооборудования) и преимущества многоцелевой подводной станции в части применения г/а излучателей и буксируемых в толще воды подо льдом сейсмокос для 2D технологии сейсморазведки.

Технический результат в предлагаемом изобретении достигается тем, что внутри корпуса судна устанавливаются две шахты для выдвижения устройства подводного выпуска буксируемой сейсмокосы и устройства выдвижения блока с г/а излучателями.

Оба устройства выдвигаются из днища корпуса судна, тем самым защищаются от воздействия льда, а для снижения сопротивления при ходе судна они выполняются крыльевой формы.

На схеме фиг.1 представлена принципиальная компоновка сейсмографического судна. В корпусе судна 1 размещаются шахта 2 для устройства 3 выпуска буксируемой сейсмокосы 4 и шахта 5 для выдвижной конструкции 6 г/а излучателей 7. Спуск-подъем выдвижных устройств 3 и 6 осуществляется при помощи лебедок 8 и 9. Г/а излучатели 7 в выдвижной конструкции 6 устанавливаются вертикально с шагом, равным 1 4 или 3 4 длины излучающей волны для получения диаграммы направленности излучения в виде луча, направленного вниз.

Расстояние между г/а излучателями внутри выдвижной конструкции регулируется за счет крепления в зависимости от длины излучающих сейсмоволн и позволяет использовать излучатели разной частоты излучения для решения различных сейсмографических задач.

Для повышения надежности системы и возможности получения дополнительной информации от отраженных сигналов от разных грунтов в подводной части судна устанавливаются не менее двух бортовых приемных антенн, которые не требуют обслуживания. Антенны устанавливаются стационарно в днищевой части корпуса судна вне зоны воздействия льда, что не требует контроля их положения при работе и обслуживании.

Применение коротких бортовых антенн длиной около 2/3 длины судна допускается вследствие реализации синтеза апертуры при использовании когерентных г/а излучателей.

1. Сейсмографическое судно для проведения сейсморазведки по 2D технологии в арктических морях вне зависимости от ледовых условий, оборудованное акустичекими излучателями и средствами и устройствами выпуска сейсмокос, отличающееся тем, что в качестве источников сейсмоволн используются гидроакустические излучатели, а выпуск буксируемой сейсмокосы и г/а излучателей, осуществляется при помощи выдвижных конструкций, установленных в вертикальных шахтах в днищевой части судна вне зоны воздействия льда.

2. Сейсмографическое судно по п.1, отличающееся тем, что гидроакустические излучатели в выдвижной конструкции устанавливаются вертикально с шагом, равным ¼ или ¾ длины излучающих сейсмоволн, что определяет диаграмму направленности излучения строго вниз.

3. Сейсмографическое судно по п.1, отличающееся тем, что расстояние между г/а излучателями внутри выдвижной конструкции регулируется за счет крепления в зависимости от длины излучающих сейсмоволн и позволяет использовать излучатели разной частоты излучения для решения различных сейсмографических задач.

4. Сейсмографическое судно по п.1, отличающееся тем, что для приема отражаемых от грунта сейсмоволн на судне устанавливаются не менее 2-х бортовых линейных приемных антенн в днищевой части судна вне зоны воздействия льда, что не требует их обслуживания во время рейса судна.



 

Похожие патенты:

Изобретение относится к области геофизики и может быть использовано при проведении морских сейсморазведочных работ. Заявлены способ и устройство для водной сейсморазведки.

Система параметрического приема гидрофизических и геофизических волн в морской среде отличается тем, что протяженность рабочей зоны системы соответствует половине протяженности обследуемой акватории, для чего излучающий преобразователь размещен в центре обследуемой акватории и содержит низкочастотный и инфранизкочастотный излучатели, первый из которых размещен в водной среде с возможностью горизонтального ориентирования его диаграммы направленности в сторону приемного преобразователя, а инфранизкочастотный излучатель размещен на дне с возможностью накачки морского грунта, причем тракт формирования и усиления излучаемых сигналов накачки водной среды и грунта сформирован как двухканальный, содержащий низкочастотный и инфранизкочастотный каналы, каждый из которых включает последовательно соединенные генератор стабилизированной частоты, усилитель мощности, блок согласования выходов усилителей с подводными кабелями, которые подключены к соответствующим излучающим преобразователям, при этом приемный преобразователь установлен на судне-носителе с возможностью перемещения по периметру акватории и включает два вертикально разнесенных приемных блока, каждый из которых соединен с приемным трактом системы, содержащим последовательно соединенные двухканальный широкополосный усилитель информационных сигналов, блок измерения разности фаз параметрически преобразованных просветных сигналов, преобразователь временного масштаба информационных сигналов в высокочастотную область, блок узкополосного спектрального анализа и функционально связанный с ним регистратор спектров выделяемых информационных сигналов.

Изобретение относится к области геофизики и может быть использовано при разведочных мероприятиях в водной среде. Система содержит одно или несколько объединенных в комплекс автономных подводных транспортирующих средств, каждое из которых имеет один или несколько автономных морских источников акустических сигналов с самодвижущимися ударными поршнями.

Изобретение относится к области гидроакустики и может быть использовано для оценки потока газа, например, для оценки потока метана газовых «факелов». Сущность: излучают в направлении дна акустический сигнал.

Изобретение относится к области геофизики и гидроакустики и может быть использовано для изучения структуры донных отложений в шельфовой зоне мирового океана, а также для изучения особенностей распространения звука в придонном слое мелкого моря.

Изобретение относится к области геофизики и гидроакустики и может быть использовано для изучения структуры донных отложений в шельфовой зоне мирового океана, а также для изучения особенностей распространения звука в придонном слое мелкого моря.

Изобретение относится к области сейсморазведки и может быть использовано для поиска углеводородов под дном морей и океанов, в том числе и в ледовых условиях на шельфе Северных морей.

Изобретение относится к области геофизики и может быть использовано при проведении морских прибрежных сейсморазведочных работ. Предлагаются способ и система для управления формой и расстояниями в схеме расположения сейсмических кос, буксируемых позади исследовательского судна (10).

Изобретение относится к области геофизики и может быть использовано для сейсмической разведки районов, покрытых водой. Система содержит приемники 1.i (i=1, 2, …, n) колебаний атмосферного давления (микробарографы), схему 2 сравнения, систему 3 оповещения, блок 4 памяти, первый 5 и второй 6 корреляторы, первый 3.1 и второй 3.2 преобразователи аналог-код, первый 3.3 и второй 3.4 ключи, формирователь 3.6 модулирующего кода, задающий генератор 3.6, фазовый манипулятор 3.7, усилитель 3.8 мощности, передающую антенну 3.0, перемножители 5.1 и 6.1, фильтры 5.2 и 6.2 нижних частот, экстремальные регуляторы 5.3 и 6.3, регулируемые линии задержки 5.4 и 6.4.

Система поиска подводных морских месторождений углеводородов, включающая в себя размещенные в среде излучающий и приемный акустические преобразователи, выполненные с возможностью формирования между ними параметрической антенны, соединенные с ними соответственно, тракт формирования и усиления излучаемых сигналов накачки среды, а также тракт приема усиления, обработки, выделения и регистрации информационных сигналов, отличается тем, что излучающий и приемный преобразователи акустических сигналов разнесены на противоположные границы контролируемого участка акватории, при этом излучающий преобразователь размещен на подвижном носителе и содержит низкочастотный и высокочастотный излучатели, первый из которых выполнен с возможностью горизонтального ориентирования его диаграммы направленности в сторону приемного преобразователя, при этом высокочастотный излучатель выполнен с возможностью ориентирования его диаграммы направленности на морское дно, кроме того, тракт формирования и усиления излучаемых сигналов накачки среды сформирован как двухканальный, содержащий низкочастотный и высокочастотный каналы, каждый из которых включает последовательно соединенные генератор стабилизированной частоты, усилитель мощности, блоки согласования выходов усилителей с подводными кабелями, которые подключены к соответствующим излучающим преобразователям, кроме того, приемный преобразователь включает два горизонтально разнесенных приемных блока, каждый из которых соединен с расположенным на поверхности моря радиомодулем, который по радиоканалу связан с приемным трактом системы, содержащим последовательно связанные с соответствующим каналом двухканального приемного радиоблока информационных сигналов, двухканальный широкополосный усилитель информационных сигналов, блок измерения разности фаз информационных сигналов, преобразователь временного масштаба информационных сигналов в высокочастотную область, блок узкополосного спектрального анализа и функционально связанный с ним региcтратор спектров выделяемых информационных сигналов, кроме того, система содержит средства определения местоположения излучающего преобразователя и приемных блоков приемного преобразователя в режиме реального времени, кроме того, она включает в себя блок спутниковой связи с центральным постом, выполненный с возможностью дистанционного управление ее работой. Изобретение обеспечивает мобильность поиска углеводородных залежей на шельфе, при повышении надежности поиска на протяженных акваториях.

Изобретение относится к области судостроения и касается проектирования обводов корпуса судна повышенной ледопроходимости, имеющего форштевень с бульбом. Предложена носовая оконечность корпуса судна, имеющего в районе мидель-шпангоута днище с малой или нулевой килеватостью и борта, близкие к вертикальным, содержащая бульб, имеющий в своей верхней части прямое или слегка изогнутое ребро, образованное в диаметральной плоскости при соединении правой и левой поверхностей бульба под пространственным углом 30-150°, имеющее наклон вперед до 30° к плоскости ватерлинии и пересекающее плоскости (уровни) самого верхнего и самого нижнего положений расчетной ватерлинии судна в носу для разных вариантов его загрузки.

Изобретение относится к морским транспортным средствам, предназначенным для эксплуатации в ледовых полях Арктики. Сущность предлагаемого изобретения состоит в том, что носовая оконечность ледокола, включающая оптимальной формы обводы носовой части корпуса, содержит бортовые поворотные рабочие органы для образования скважин в толстом льду по ходу продвижения ледокола.

Изобретение относится к области судостроения и касается разрушения ледяного покрова морскими ледокольными судами для перевозки грузов. Предложен способ разрушения ледяного покрова, при котором при движении полупогружного судна создают выталкивающую архимедову силу, давящую на нижнюю поверхность льда в вертикальном направлении, и разрушают лед заведенным под него тараном с ледоразрушающим ребром, связанным с корпусом судна.
Изобретение относится к проведению предупредительных работ для предотвращения заторообразования на участке реки и может быть использовано для разупрочнения ледяного покрова в местах подводных коммуникаций.

Изобретение относится к области судостроения и касается эксплуатации судов в ледовых условиях. При ледовом плавании судов ледового и неледового класса предварительно суда неледового класса размещают в суда-доки ледового класса, после чего все суда ледового класса вместе с ледоколом соединяют в кильватерную колонну «в упор» введением носовой части судна в кормовую выемку впереди идущего судна и стыковки с помощью унифицированного стыковочного узла.

Изобретение относится к ледотехнике, в частности, к выполнению ледокольных работ судами на воздушной подушке. Во время морского отлива судно на воздушной подушке движется с резонансной скоростью вдоль береговой линии на расстоянии от кромки примерзшего к берегу льда и возбуждает во льду резонансные изгибно-гравитационные волны, при этом судну сообщают поперечные периодические перемещения с амплитудой, не превышающей половину длины волны статического прогиба льда, и частотой, равной частоте резонансных изгибно-гравитационных волн.

Изобретение относится к области судостроения и касается судна или плавучей конструкции, работающей в покрытых льдом водах. Судно содержит корпус или ему подобную конструкцию (1, 1'), включающий по меньшей мере один дугообразный конец или подобный участок (2, 2') корпуса, который подвержен нагружающему воздействию льда при перемещении льда или судна.

Изобретение относится к области судостроения и касается защиты корпуса морских ледостойких платформ от внешнего ледового воздействия. Корпус морской ледостойкой платформы имеет усиленную, преимущественно вертикальную ледовую обшивку с подкрепляющим набором, снабжен жесткими элементами, имеющими в поперечном сечении треугольную форму, установленными на поверхности обшивки и размещенными по ее поверхности с образованием многозаходной спирали, которая имеет угол наклона образующей к горизонту 10÷70 градусов, и с шагом спирали - не более 1/3 максимальной толщины льда в районе эксплуатации платформы.

Изобретение относится к области судостроения, в частности к морским технологическим ледостойким платформам для эксплуатации в арктических условиях. Морская технологическая ледостойкая платформа содержит надводную часть с горизонтальными площадками и установленным на них технологическим оборудованием, подводную часть, выполненную в виде водоизмещающего корпуса, якорную систему удержания, обеспечивающую возможность платформе разворачиваться относительно вертикальной оси, балластные цистерны, расположенные в водоизмещающем корпусе.

Изобретение относится к области судостроения, а именно к морским судам, предназначенным для транспортировки и хранения сжиженного природного газа (СПГ) при низких температурах, и решает задачу по повышению технико-экономической эффективности судна-газовоза для перевозки СПГ.

Изобретение относится к гидроакустической технике и касается создания устройств постановки и выборки гибких протяженных буксируемых антенн на подводных лодках и надводных кораблях.
Наверх