Способ определения компонентного состава и криолитового отношения твердых проб калийсодержащего электролита алюминиевого производства методом рфа

Изобретение относится к способу определения компонентного состава и криолитового отношения калийсодержащего электролита и может быть использовано в цветной металлургии, а именно при технологическом контроле состава электролита методом количественного рентгенофазового анализа. Способ включает отбор пробы электролита из ванны, размол образца и добавление к размолотому образцу фторида натрия. Затем проводят спекание образца и определение криолитового отношения и концентрации фторидов в образце. После спекания образец подвергают дополнительной термической обработке до достижения равновесного фазового состава Na3AlF6, K2NaAlF6, CaF2, NaF, а определение криолитового отношения и концентрации фторидов в образце проводят количественным рентгенофазовым анализом. Достигаемый при этом технический результат заключается в повышении точности определения криолитового отношения. 2 з.п. ф-лы, 1 ил., 3 табл.

 

Изобретение относится к электролитическому получению алюминия и может быть использовано при определении состава калийсодержащего электролита для регулирования технологических параметров процесса.

Контроль состава электролита является важной технологической процедурой при электролитическом производстве алюминия. В процессе работы электролизной ванны состав и свойства электролита изменяются. В связи с этим электролит примерно раз в три дня анализируется, на основании чего выполняется коррекция состава электролита каждой ванны. К числу контролируемых характеристик состава относят: криолитовое отношение (КО) - отношение общего содержания фторида натрия к фториду алюминия ([NaF]/[AlF3]), содержание KF и, в некоторых случаях, CaF2, MgF2. Криолитовое отношение отвечает за такие важные параметры электролита, как температура кристаллизации, растворимость глинозема, электропроводность, вязкость и некоторые другие. Определение состава производится методом количественного рентгенофазового анализа (РФА) на отобранных из ванн закристаллизованных пробах электролита. Необходимая точность определения КО составляет Δ=±0,04 ед. КО.

Фазовый состав твердых проб калийсодержащих электролитов в основном включает фазы Na5Al3F14, K2NaAl3F12, K2NaAlF6. Однако, как показывает РФА, в пробах дополнительно могут присутствовать фазы, состав которых неизвестен. Игнорирование последних при анализе искажает результат определения КО.

Искажение результата анализа может быть устранено применением метода допирования состава анализируемых образцов. Метод заключается в том, что в анализируемые образцы добавляется известное количество другого вещества с последующей термической обработкой, с целью изменения фазового состава образцов и получения образцов с известными кристаллическими фазами.

Известен способ подготовки проб кальцийсодержащих электролитов для последующего анализа состава методом РФА (Патент РФ №2418104, м. кл. C25C 3/06, 3/20, опубл. 10.05.2011), заключающийся в том, что отобранные пробы электролита проходят термическую обработку в печи при температурах 480-520°C в течение 20-40 минут для улучшения дифракционных свойств закристаллизовавшихся фаз перед тем, как производится количественный РФА.

Этот метод не ориентирован на анализ калийсодержащего электролита, поскольку применяемая термическая обработка не позволяет улучшить измерительные условия для метода количественного РФА.

Известен способ определения криолитового отношения электролита алюминиевых электролизеров (Авторское свидетельство СССР №548809, м. кл. G01N 31/16, C01F 7/54, опубл. 28.02.1977), который заключается в том, что пробу исходного электролита, содержащего добавки фторида магния и лития, спекают со фтористым натрием при температурах 600-650°C, выщелачивают полученный пек и титрованием полученного раствора 0,05 н. раствором азотнокислого тория определяют количество непрореагировавшего NaF. Далее рассчитывается КО исходной пробы.

Способ не может быть применен к анализу электролитов, содержащих фторид калия, и не позволяет определить компонентный состав пробы электролита.

Известен способ определения криолитового отношения электролита (Патент РФ №2424379, м. кл. C25С 3/06, опубл. 20.07.2011), который заключается в том, что пробы электролита, содержащие добавки фторидов магния и кальция, анализируются рентгенофлуоресцентным методом и по измерению интенсивности флуоресцентного излучения по Ко, линиям Na, F, Ca, Mg проводят определение концентраций элементов Na, F, Ca, Mg и проводят определение криолитового отношения по концентрациям Na, F, Ca, Mg. Для построения градуировочных характеристик по Na, F, Ca, Mg используют отраслевые стандартные образцы электролита электролизеров производства алюминия. Данный способ не может быть применен к анализу электролитов, содержащих фторид калия, и не позволяет определить концентрацию K.

Известны публикации, посвященные определению криолитового отношения в электролитах рентгенодифрактометрическим методом (Кирик С.Д., Куликова Н.Н., Якимов И.С., Клюева Т.И., Баранов И.А., Бузунов В.Ю., Голощапов В.Г. Цветные металлы, 1996, №9, стр.75-77; С.Н. Архипов, А.А. Стекольщиков, Г.А. Лютинская, Л.Н. Максимова, Л.А. Пьянкова. Заводская лаборатория. Диагностика материалов, 2006, том 72, №9, стр.34-36). Метод заключается в определении кристаллических фаз компонентов в охлажденной пробе электролита с последующим пересчетом в соответствии со стехиометрией в значения КО и содержания CaF2 и MgF2. В основу количественного дифрактометрического анализа содержания фторидов положен метод внешнего стандарта, который предполагает расчет концентраций фаз по заранее построенным калибровочным зависимостям, общее содержание фторида кальция определяется по флуоресцентному каналу. Данный метод не может быть применен к калийсодержащим электролитам, поскольку в пробах калийсодержащих электролитов имеются фазы неизвестного состава.

Известна методика анализа калийсодержащих электролитов [«Method for determining molecular ratio of acidic KF-NaF-AlF3 electrolyte systems Yan, Hengwei; Yang, Jianhong; Li, Wangxing; Chen, Shazi; Bao, Shengchong; Liu, Dan From Faming Zhuanli Shenqing (2012), CN 102507679 A 20120620], которая заключается в том, что к твердой пробе электролита добавляется навеска NaF в соотношении 1:2 к массе исходного образца с последующим спеканием образца при температуре 600-700°C в течение 15-50 мин, далее выщелачивают полученный пек и по измерению проводимости раствора определяют количество непрореагировавшего NaF. Далее рассчитывается КО исходной пробы. Данный метод не позволяет определить компонентный состав пробы электролита. Данный способ анализа калийсодержащего электролита принят за прототип.

Задачей предлагаемого способа является повышение точности определения КО до величины ±0,04 ед. абс. КО.

Техническим результатом, на достижение которого направлено предлагаемое изобретение, является контролируемое изменение фазового состава пробы, основанное на допировании пробы и последующей термической обработке, для получения пробы с известными кристаллическими фазами, что необходимо для определения состава электролита с требуемой точностью.

Указанный технический результат достигается тем, что в способе определения компонентного состава и криолитового отношения калийсодержащего электролита, включающем отбор пробы электролита из ванны, размол образца, добавление к размолотому образцу фторида натрия, спекание образца и определение криолитового отношения и концентрации фторидов в образце, согласно заявляемому способу после спекания образец подвергают дополнительной термической обработке до достижения равновесного фазового состава Na3AlF6, K2NaAlF6, CaF2, NaF, а определение криолитового отношения и концентрации фторидов в образце проводят количественным рентгенофазовым анализом.

Способ уточняют дополнительные пункты.

Фторид натрия добавляют в соотношении 1:2 к массе образца, а спекание образца проводят при 650-750°C в течение 20-40 минут.

Образец подвергают дополнительной термической обработке при 420-450°C в течение 15-30 минут.

Заявляемый способ отличается от прототипа тем, что в отобранные из ванн закристаллизованные пробы добавляется известное количество фторида натрия. Образцы спекаются при температурах 650-750°C в течение 20-40 минут и при 420-450°C в течение 15-30 минут.

В твердых пробах калийсодержащих электролитов наблюдаются следующие фазы: K2NaAl3F12, Na5Al3F14, K2NaAlF6, KCaAl2F9, также присутствуют фазы с неизвестным составом. В качестве допанта был использован фторид натрия (NaF) марки «хч». При спекании пробы с фторидом натрия происходят следующие химические реакции:

K2NaAl3F12+6NaF→K2NaAlF6+2Na3AlF6,

Na5Al3F14+4NaF→3Na3AlF6,

2KCaAl2F9+10NaF→2CaF2+K2NaAlF6+3Na3AlF6,

а при наличии фторида магния также

Na2MgAlF7+2NaF→NaMgF3+Na3AlF6.

Конечный фазовый состав допированного фторидом натрия образца представлен двумя основными фазами: Na3AlF6, K2NaAlF6 и избыточным NaF, в образцах, содержащих кальций, ионы кальция присутствуют в фазе CaF2, в образцах, содержащих магний, ионы магния присутствуют в фазе NaMgF3.

Образующиеся фазы являются кристаллическими.

Опытным путем установлено, что для областей с составами, лежащими в области КО≥0,8, достаточно введение добавки фторида натрия, равного половине массы исходного образца. Введение меньшего количества фторида натрия не позволяет получить желаемый фазовый состав с величиной КО≈3.

Необходимость в дополнительной термической обработке была вызвана тем, что рентгенограммы допированных образцов массой до 3 г, спеченных при температурах 650-750°C, имеют уширенные аналитические линии, малопригодные для количественного РФА. Дополнительная термическая обработка допированных образцов при температуре 420-450°C позволяет получить рентгенограмму с узкими, разрешенными аналитическими линиями.

На чертеже представлены фрагменты рентгенограмм твердой пробы калийсодержащего электролита исходного, допированного и допированного с дополнительной термической обработкой, где: нижняя рентгенограмма - калийсодержащий электролит (исходный); средняя рентгенограмма - допированный калийсодержащий электролит, термическая обработка при 750°C (широкие аналитические линии); верхняя рентгенограмма - последующая термическая обработка при 450°C (аналитические линии узкие, с большей интенсивностью).

Исходный образец является многофазным, в нем помимо основных соединений Na5Al3F14, K2NaAl3F12, K2NaAlF6 имеются фазы, состав которых неизвестен (на рентгенограмме линии неизвестных фаз отмечены знаками вопроса). При контролируемом допировании и дополнительной термообработке образца происходит изменение его фазового состава. После этой операции образцы состоят только из известных кристаллических фаз (Na3AlF6, K2NaAlF6, CaF2, NaF). Дополнительная термообработка приводит к улучшению рентгенографических характеристик фаз - линии становятся узкими, их интенсивность увеличивается.

В ходе проведенных исследований установлено, что оптимальными условиями при спекании образца электролита с фторидом натрия являются температуры 650-750°C и время прокаливания 20-40 минут.

Повышение температуры термообработки более 750°C может привести к отлету соединений NaAlF4, AlF3, KAlF4 и изменению состава образца. Температура термообработки менее 650°C требует излишне большего времени для полного протекания реакций между фазами, входящими в состав пробы, и фторидом натрия.

Экспериментально установлено, что 20 минут недостаточно для полного протекания всех реакций между фазами, входящими в состав пробы, и фторидом натрия. Увеличение продолжительности термообработки более 40 минут нецелесообразно, поскольку этого времени достаточно для протекания всех реакций между фазами, входящими в состав пробы, и фторидом натрия при любой степени смешения.

Последующая термообработка допированного образца при температуре 420-450°C приводит к улучшению рентгенографических характеристик (уменьшению полуширины и возрастанию интенсивности аналитических линий). Температура термообработки менее 420°C является нецелесообразной, поскольку экспериментально установлено, что улучшение кристалличности происходит значительно медленнее. Температура термообработки более 450°C не приводит к значительному улучшению рентгенограмм.

Экспериментально установлено, что времени термообработки менее 15 минут недостаточно для улучшения кристалличности допированного образца. Термообработка более 30 минут нецелесообразна из-за увеличения продолжительности анализа.

Таким образом, допирование следует проводить в следующих условиях: навеску перемолотого образца перемешивают с навеской фторида натрия, взятую в соотношении 1:2 к массе образца. Смесь помещают в закрытом тигле в печь, нагревают до температуры 650-750°C и выдерживают в ней течение 20-40 минут. Далее допированный образец помещают в печь, нагревают до температуры 420-450°C и выдерживают в ней в течение 15-30 минут. После этого образец вынимают, охлаждают на воздухе и проводят анализ фазового состава любым методом количественного РФА с учетом количества внесенного фторида натрия. Применение допирования с последующей термической обработкой допированного образца позволяет получить образцы равновесного фазового состава и хорошей окристаллизованностью фаз, что является необходимым условием применения методов количественного РФА.

Данные выводы были сделаны для проб электролитов, синтезированных в лабораторных условиях, и проб электролитов, отобранных из опытных электролизеров. Потери массы при термической обработке проб в данных условиях не превышали 1 мас.%.

Расчет КО и концентраций KF и CaF2 исходных образцов калий- и кальцийсодержащих электролитов может производиться из данных количественного РФА допированных образцов по следующей методике:

1) методом РФА, например, используя градуировочные графики, определяются концентрации фаз допированного образца Cd(Na3AlF6), Cd(K2NaAlF6), Cd(CaF2), Cd(NaF);

2) рассчитываются концентрации (мас.%) фторидов в допированном образце Cd(NaF), Cd(KF), Cd(AlF3), C(CaF2):

3) массы фторидов md(NaF), md(KF), md(AlF3), md(CaF2) в допированном образце:

m(пробы) - масса пробы,

m(доб.NaF) - масса добавленного в пробу фторида натрия;

4) криолитовое отношение (КО) и концентрации фторидов в исходном образце:

Примеры осуществления способа.

В качестве тестируемых материалов были использованы пробы калийсодержащего электролита с добавками фторида кальция, отобранные из опытных электролизеров в коническую изложницу.

Пример 1

Пробы электролита, отобранные в коническую изложницу из опытного электролизера, были тщательно размолоты и перетерты с навеской NaF марки «хч». Масса фторида натрия была в 2 раза меньше, чем масса исходной пробы. Далее компоненты помещались в закрытый платиновый тигель в печь при температуре 650-750°C и выдерживались в ней 20-40 мин. Исходные и конечные массы фиксировались. Потери массы составляли менее 1 мас.%. Контроль состава образцов проводили с помощью РФА по бесстандартной методике «корундовых чисел» (дифрактометр X'pert Pro (PANalytical, Нидерланды)). В качестве арбитражного метода для контроля состава образцов использовали рентгеноспектральный метод анализа, основанный на определении элементного состава по соответствующим калибровкам (автоматизированный волновой рентгенофлуоресцентный спектрометр фирмы Shimadzu XRF-1800 (с Rh-анодом)).

В таблице 1, в качестве примера, приведены фазовые составы четырех проб калийсодержащих электролитов с добавками фторида кальция и фазовые составы соответствующих им допированных образцов. Исходные пробы являются многофазными (более 6 фаз), в том числе они содержат фазы, состав которых неизвестен, практически все фазы содержат фториды натрия и/или алюминия. Для расчета КО необходимо определить содержание каждой фазы и знать ее химический состав. В допированных образцах содержится всего четыре кристаллические фазы, и состав этих фаз известен.

Таблица 1
Фаза Исходные образцы Допированные образцы
1 2 3 4 1 2 3 4
Na5Al3F14 + + + +
K2NaAlF6 + + + + + + + +
K2NaAl3F12 + + + +
AlF3 + + +
KCaAl2F9 + + + +
KAlF4 + +
NaCaAlF6 +
неизв. фазы + + + +
Na3AlF6 + + + +
CaF2 + + + +
NaF + + + +

В таблице 2 приведены величины КО (ед. КО) проб калийсодержащих электролитов с добавками фторида кальция, полученных по формуле 4 из состава допированных образцов. Ниже проведена оценка точности определения КО в исходных пробах.

Таблица 2
КО, полученное по формуле 4
РСА РФА
1 0,86 0,91
2 1,02 1,09
3 0,9 0,98
4 1,03 0,99
5 0,82 0,89
6 1,16 1,2
7 1,19 1,22
8 1,12 1,17
9 1,11 1,13
10 1,24 1,2
11 1,15 1,19
12 1,27 1,31
13 1,27 1,29
14 1,31 1,33
1. 1,33 1,38
Ср.знач. ΔКО (РСА-РФА) -0,03
СКО ΔКО 0,03

КО проб, рассчитанное по данным РФА допированных образцов с учетом внесенного фторида натрия, завышено на 0,03 ед. КО относительно значений КО по РСА, при этом СКО составило 0,03 ед. КО.

В таблице 3 приведены значения концентраций фторидов калия и кальция (мас.%) для проб калийсодержащих электролитов, полученные по формуле 3 из состава допированных образцов. Ниже проведена оценка точности определения содержания фторидов калия и кальция в исходных пробах.

Таблица 3
C (KF) C (CaF2)
РСА РФА РСА РФА
1 17,56 15,66 1,10 1,1
2 16,50 16,12 1,30 1,3
3 18,07 15,14 3,34 3,5
4 16,16 13,85 3,46 3,5
5 17,89 17,20 2,85 2,9
6 9,20 6,10 3,88 3,82
7 16,68 13,66 4,12 4,17
8 8,07 5,59 4,53 3,98
9 7,80 6,31 4,52 4,00
10 11,96 11,07 5,66 5,70
11 12,55 9,95 5,84 6,11
12 9,47 6,41 4,76 4,78
13 8,02 5,39 5,27 5,33
14 7,25 6,22 5,48 5,49
15 8,68 6,76 5,05 5,32
Ср.знач. С (РСА-РФА) 2,03 0,01
СКО АС 0,93 0,23

Полученные СКО отражают совокупную погрешность 2-х методик и РФА и РСА.

Метод допирования фторидом натрия твердых проб электролитов при температуре 650-750°C с последующей термической обработкой 420-450°C может быть успешно использован для анализа калийсодержащих электролитов.

Как следует из приведенных примеров, использование допирования проб электролита с последующей термической обработкой позволяет добиться хорошей окристаллизованности фаз и воспроизводимости фазового состава анализируемых образцов, что необходимо для применения методов количественного РФА.

Результаты экспериментов по допированию с последующей термической обработкой промышленных электролитов позволяют рекомендовать данный метод при подготовке и анализе образцов с требуемой точностью определения КО Δ=±0,04 ед. КО.

1. Способ определения компонентного состава и криолитового отношения калийсодержащего электролита, включающий отбор пробы электролита из ванны, размол образца, добавление к размолотому образцу фторида натрия, спекание образца и определение криолитового отношения и концентрации фторидов в образце, отличающийся тем, что после спекания образец подвергают дополнительной термической обработке до достижения равновесного фазового состава Na3AlF6, K2NaAlF6, CaF2, NaF, а определение криолитового отношения и концентрации фторидов в образце проводят количественным рентгенофазовым анализом.

2. Способ определения по п.1, отличающийся тем, что добавляют фторид натрия в соотношении 1:2 к массе образца, а спекание образца проводят при 650-750°C в течение 20-40 минут.

3. Способ определения по п.1, отличающийся тем, что образец подвергают дополнительной термической обработке при 420-450°C в течение 15-30 минут.



 

Похожие патенты:

Использование: для измерения уровня зольности биологического материала автоматическим или полуавтоматическим способом. Сущность изобретения заключается в том, что способ включает этапы сканирования биологического материала электромагнитным излучением на по меньшей мере двух уровнях энергии; определения объема излучения, переданного через указанный образец биологического материала на указанных уровнях энергии и оценки уровня влажности биологического материала на основе соотношения между указанным определенным объемом излучения, переданного через биологический материал на указанных уровнях энергии.

Использование: для определения пространственного распределения в керновом материале эффективного порового пространства. Сущность изобретения заключается в том, что в образец керна закачивают контрастное рентгеновское вещество, сканируют образец посредством рентгеновской томографии, получают гистограммы.

Изобретение относится к строительству, а именно к способу исследования процесса дисперсного армирования и микроармирования бетонов для повышения их трещиностойкости.

Изобретение относится к медицине, диагностике, оценке эффективности препаратов для лечения остеопороза. Диагностику остеопороза и контроль его динамики проводят рентгенабсорбционным методом на остеометре, причем за диагностический критерий остеопороза принимают наличие полостных образований в трабекулярных отделах костей, по динамике закрытия которых судят об эффективности препарата или препаратов.

Использование: для количественного определения насыщенности образцов горной породы. Сущность: заключается в том, что выполняют приготовление образца керна, моделирование пластовых условий в образце керна, совместную фильтрацию минерализованной воды и нефти через образец керна, измерение в процессе фильтрации промежуточной интенсивности рентгеновского излучения, прошедшего через образец, и установление по математическим формулам водонасыщенности, при этом измеряют интенсивность рентгеновского излучения, прошедшего через образец с начальной и конечной водонасыщенностью, получают опорный сигнал, значение остаточной водонасыщенности получают после фильтрационного эксперимента выпариванием воды из образца при температуре 110-160°C, значения начальной, остаточной водонасыщенности и опорного сигнала используют для определения промежуточной водонасыщенности по определенной математической зависимости.

Изобретение относится к области рентгенографической техники и может быть использовано при проверке багажа, ручной клади и других объектов контроля во время таможенного и специального досмотра.

Изобретение относится к устройствам для определения пространственно-спектральных характеристик рентгеновского излучения, генерируемого плазменными образованиями, источниками рентгена с широким спектральным диапазоном, и может быть использовано в научных и прикладных задачах, например в области термоядерных исследований или при разработке источников рентгеновского излучения для литографических систем и т.п.

Изобретение относится к способам неразрушающего анализа образцов пористых материалов, в частности, оно может быть использовано для анализа распределения остаточной нефти, а также определения концентрации естественной глины в образце керна или глины, проникшей в керн в ходе закачки бурового раствора.

Изобретение относится к способам определения концентрации естественной глины в образце керна или глины, проникшей в керн в ходе закачки бурового раствора. .

Использование: для измерения содержания серы в углеводородных жидкостях. Сущность изобретения заключается в том, что поточный анализатор серы содержит рентгеновскую трубку, измерительную кювету и детектор рентгеновского излучения, при этом между рентгеновской трубкой и измерительной кюветой установлен фильтр, выполненный из фольги, материал которой выбран из металлов с атомными номерами с 42 по 49, причем минимальная толщина bmin фильтра составляет не менее 50 мкм, а максимальная толщина bmax фильтра определяется из условия на 1 Вт мощности рентгеновской трубки, где I0 - интенсивность излучения рентгеновской трубки, I1 - интенсивность излучения, прошедшего через фильтр. Технический результат: обеспечение возможности снижения потерь интенсивности излучения при его поступлении от рентгеновской трубки на детектор и, соответственно, снижение времени экспозиции и увеличение скважности измерений. 1 з.п. ф-лы, 1 ил.

Использование: для определения пористости образца породы. Сущность изобретения заключается в том, что способ определения пористости образца породы предусматривает определение общего минералогического состава образца, определение относительного объемного содержания каждого минерала и определение коэффициентов ослабления рентгеновского излучения для каждого из этих минералов. Затем определяют первый коэффициент ослабления рентгеновского излучения для синтетического образца, состоящего из тех же минералов с тем же объемным содержанием, но без пор. Выполняют рентгеновское микро-/нанокомпьютерное сканирование образца и определяют второй коэффициент ослабления рентгеновского излучения для исследуемого образца породы. Значения пористости могут быть определены как для образца, заполненного газом, водой или легкими углеводородами, так и для образца, заполненного тяжелыми углеводородами или другими жидкостями/газами с коэффициентами ослабления рентгеновского излучения, сравнимыми с коэффициентами ослабления рентгеновского излучения образца породы или синтетического образца. Технический результат: обеспечение возможности за короткое время неразрушающим и не зависящим от исполнителя способом определить значение пористости образца породы. 9 з.п. ф-лы, 2 ил.

Использование: для определения количественного содержания самородного золота в руде. Сущность изобретения заключается в том, что монослой кусков в пробе руды с характерным линейным размером отдельных кусков Н, не большим десятикратного характерного линейного размера наименьшей подлежащей обнаружению и учету частицы золота h (H≤10h), размещают между приемником рентгеновского изображения и источником рентгеновского излучения с размером фокусного пятна d, не большим h (d≤h), формируют теневое рентгеновское изображение пробы руды, на котором характерный размер рентгеновского изображения наименьшей частицы золота имеет размер А, не меньший чем трехкратный линейный размер пикселя D приемника рентгеновского изображения (A≥3D). Технический результат: повышение точности и экспрессности процесса количественного определения содержания золота в руде. 5 ил.

Использование: для компьютерной томографии. Сущность изобретения заключается в том, что каждая детекторная сборка содержит по меньшей мере один узел детектирующих кристаллов, имеющий первую энергетическую характеристику, и узел, имеющий вторую энергетическую характеристику, оба из которых расположены вдоль первого направления через интервалы, при этом каждый узел детектирующих кристаллов, имеющий первую/вторую энергетическую характеристику, включает в себя по меньшей мере один детектирующий кристалл, имеющий первую/вторую энергетическую характеристику, расположенный вдоль второго направления. По меньшей мере один узел детектирующих кристаллов, имеющий первую энергетическую характеристику, и по меньшей мере один узел детектирующих кристаллов, имеющий вторую энергетическую характеристику, расположены, по меньшей мере частично, чередующимся образом вдоль первого направления при просмотре со стороны направления падения рентгеновского луча. Настоящее изобретение также раскрывает систему КТ с двумя уровнями энергии, содержащую детекторное устройство, и способ КТ детектирования, использующий эту систему. Технический результат: обеспечение высокого пространственного разрешения для восстановления КТ изображения при оптимальном количестве узлов детектирующих кристаллов. 4 н. и 21 з.п. ф-лы, 8 ил.

Изобретение относится к области рентгенотехники и может быть использовано в различных измерительных устройствах для контроля состава и структуры промышленных и биологических объектов. Рентгеновский источник с оптической индикацией излучения содержит катод, анод трансмиссионного типа, источник оптического излучения, средства совмещения оптического и рентгеновского пучков. Анод выполнен составным в виде тонкой пленки, генерирующей рентгеновское излучение, которая частично прозрачна для электронов, и подложки, прозрачной как в оптическом, так и рентгеновском диапазонах. Подложка люминесцирует в оптическом диапазоне при электронном облучении. Средством совмещения потоков рентгеновского и оптического излучений является зеркало, которое одновременно отражает излучение в заданных полосах рентгеновского и оптического спектров. Технический результат - повышение достоверности оптической индикации параметров рентгеновского излучения и безопасности работы. 4 з.п. ф-лы, 3 ил.

Группа изобретений предназначена для использования в мясоперерабатывающей промышленности. Линия инспекции и сортировки мяса включает подающее устройство, устройство радиационной инспекции, режущее устройство и отбраковывающее устройство. Мясные части собирают и подают посредством транспортера в виде слоя мясных частей в устройство радиационной инспекции, обнаруживающее нежелательный предмет. Часть слоя мясных частей, содержащую нежелательный предмет, идентифицируют и отделяют от слоя мясных частей режущим устройством, и идентифицированную и отделенную часть слоя, содержащую нежелательный предмет, отбраковывают отбраковывающим устройством из слоя мясных частей. Подающее устройство выполнено для подачи мясных частей путем собирания указанных мясных частей в, по существу, перемешанном и/или перекрывающемся состоянии. 2 н. и 17 з.п. ф-лы, 4 ил.

Изобретение относится к области рентгенологии, точнее к способам неразрушающего контроля багажа и грузов, и может быть использовано при антитеррористическом досмотре на транспорте и на контрольно-пропускных пунктах различного назначения, а также в медицинской рентгенодиагностике. Технический результат - снижение лучевой нагрузки при досмотре внутреннего содержания контролируемого груза и обеспечение многоракурсного просмотра при относительно низкой стоимости его осуществления. Способ рентгеноскопии предусматривает многопроекционную съемку равномерно прямолинейно движущегося объекта рентгеновским излучателем с узким веерным пучком на многоэлементный линейный детектор с восстановлением рентгеновского изображения объекта с помощью ЭВМ и дальнейшего просмотра изображения на видеомониторе, многопроекционная съемка производится несколькими рентгеновскими излучателями (не менее четырех), центры излучения которых находятся в одной плоскости, проходящей через многоэлементный линейный детектор, перпендикулярно направлению движения объекта, при этом угол между центральными лучами крайних излучателей составляет 90° (±1°), с последовательным включением рентгеновских излучателей в импульсном режиме с длительностью импульса не более Δt=s/νn, где s - ширина пикселя многоэлементного линейного детектора, ν - скорость движения объекта наблюдения, n - число излучателей, а просмотр изображения осуществляется в мультипликационном режиме dα/dN, где dα=90°/n-1, a dN - последовательное изменение кадров изображения объекта N1, N2, N3, … Nn, полученных от рентгеновских излучателей: 1, 2, 3 … n. 2 ил.

Предлагаемое изобретение относится к приспособлениям для крепления рентгеновских аппаратов. Задача: повышение производительности труда, повышение надежности эксплуатации рентгеновского аппарата, улучшение качества снимков, улучшение условий труда дефектоскописта. Устройство фиксации рентгеновского аппарата на трубе включает держатель рентгеновского аппарата и дополнено штангой и зажимом. Штанга выполнена в виде прямой и криволинейной частей с закрепленными на криволинейной части двумя подушками, а зажим снабжен подвижным ползуном с противолежащей подушкой. Зажим и держатель рентгеновского аппарата закреплены на прямой части штанги с помощью подвижных втулки зажима и втулки держателя. Втулка держателя выполнена с возможностью ступенчатого перемещения вдоль прямой части штанги. 1 з.п. ф-лы, 3 ил.

Использование: для исследования фильтрационно-емкостных свойств горных пород. Сущность изобретения заключается в том, что производят выбор образцов керна в широком диапазоне фильтрационно-емкостных свойств, осуществляют сканирование с помощью рентгеновского микротомографа отобранных образцов с получением трехмерных изображений образцов, которые сегментируют на поровое пространство и скелет породы, выделяют из сегментированных изображений несколько фрагментов, для каждого фрагмента определяют значение пористости (м0), увеличивают пористость фрагмента путем попиксельного расширения порового пространства и определяют его значение (м1), с помощью гидродинамического симулятора определяют значение проницаемости (к1) фрагмента, по полученным значениям пористости и проницаемости для всех фрагментов, выделенных из каждого образца, строят их тренды, по линиям трендов определяют значения проницаемости исходных фрагментов (к0), соответствующие значениям (м0), и по установленным значениям пористости и проницаемости для исходных фрагментов находят их корреляционную связь. Технический результат: уменьшение нижнего предела расчета проницаемости горных пород. 4 ил.

Изобретение относится к определению в зерновых культурах и семенах скрытой зараженности, обусловленной повреждением насекомыми вредителями, с помощью рентгенографии в зерноперерабатывающей промышленности и семеноводстве. Исследуемые образцы зерен или семян помещают в потоке рентгеновского излучения. Проводят экспозицию рентгеновским излучением. Регистрируют визуализацию рентгенообраза на носителе с последующим считыванием информации и ее компьютерной обработкой. Причем из партии предварительно отбирают пробы образцов зерен и/или семян и фиксируют в один слой на 10 прободержателях, не менее чем по 100 штук на каждом прободержателе с расстоянием не менее 1 мм между зернами или семенами. Поочередно помещают прободержатели между источником рентгеновского излучения и приемником рентгеновского излучения. Выполняют обработку каждого рентгенообраза на сканере с одновременным переносом на компьютер. Получают десять электронных изображений, которые одновременно обрабатывают с использованием программного продукта, при идентификации программой хотя бы одного зараженного зерна. Просматривают все изображения на наличие в полостях зерен личинок и куколок насекомых. При визуальном выявлении внутри зерна личинок и куколок насекомых из 10 прободержателей отбирают те, которые содержат такие зерна, и для активизации движения живых насекомых прободержатели с зерном выдерживают в термошкафу при температуре 37-40°С в течение 4-6 минут. Затем прободержатели повторно помещают в поток рентгеновского излучения, при этом наличие живых вредителей внутри зерна при двукратном излучении определяют визуально по изменению позы насекомого внутри зерна. Обеспечивается повышение точности и надежности определения показателя скрытой зараженности зерна или семян, обусловленного повреждением насекомыми - вредителями хлебных запасов. 2 ил.
Наверх