Кольцевая буровая коронка



Кольцевая буровая коронка
Кольцевая буровая коронка
Кольцевая буровая коронка

 


Владельцы патента RU 2551575:

Федеральное государственное бюджетное учреждение науки Институт горного дела Севера им. Н.В. Черского Сибирского отделения Российской Академии наук (RU)

Изобретение относится к буровым коронкам для бурения геологоразведочных скважин в перемежающихся по твердости породах, а также в мерзлых абразивных грунтах. Технический результат заключается в повышении скорости бурения и проходки на рейс и на коронку с одновременным уменьшением расхода промывочной жидкости, а также повышение КПД резания при переходе на режим терморезания с разупрочнением крепких пород. Кольцевая буровая коронка содержит корпус с присоединительной резьбой, секторы, образованные на корпусе коронки и разделяющиеся друг от друга промывочными каналами, режущие пластины с износостойким покрытием толщиной не менее 0,7 мм на передней грани, установленные с отрицательным передним углом в плане к боковой внутренней и внешней поверхностям резания и отрицательным передним углом к торцевой поверхности забоя скважины, цилиндрические клинья и прижимные винты, крепящие в цилиндрических пазах клинья. Режущие пластины выполнены с полукруглым хвостовиком, прямолинейными боковыми кромками и рабочим забойным лезвием, имеющим контур в виде сопряженных дугообразных линий. На задней грани режущих пластин выполнено покрытие толщиной, равной толщине покрытия на передней грани, причем покрытия изготовлены из сверхтвердого, ударопрочного и термостойкого материала. 1 з.п. ф-лы, 3 ил.

 

Изобретение относится к горному делу, а именно к буровым коронкам для бурения геологоразведочных скважин в перемежающихся по твердости породах, а также в мерзлых абразивных грунтах.

Известна кольцевая буровая коронка, корпус которой разделен промывочными каналами на секторы, которые с торцевой поверхности снабжены резцами, армированными алмазно-твердосплавными пластинами (АТП) [1]. Секторы расположены ступенчато, образуют ступенчатую форму забоя, на которой боковые отстающие режущие элементы из АТП работают по полублокированной схеме. Режущие элементы со стороны торцевой поверхности установлены с отрицательными передними углами к поверхности забоя скважины, что обеспечивает их самозатачиваемость, так как твердосплавная основа изнашивается быстрее алмазного слоя, образуя задний угол у режущей пластины, и повышает надежность работы и долговечность буровой коронки. Однако задний угол, образующийся за счет износа, не больше угла винтовой линии углубления режущей пластины, поэтому торец АТП своей подложкой всегда имеет через мелкодиспергированный слой породы плотный контакт с забоем и воспринимает часть осевого усилия, которое и вызывает ее износ в соответствии с углом винтовой линии углубления коронки.

Достоинством коронки является самозатачиваемость резцов. К недостаткам следует отнести увеличение при износе подложки площади контакта резцов с забоем, которое вызывает дополнительный нагрев корешки и повышенный расход охлаждающей жидкости для предотвращения перегрева алмазного слоя, и применение неразъемного соединения резцов к корпусу коронки пайкой, что не дает возможности регулировать положение режущей пластины в корпусе коронки в соответствии с изменениями формы и размера лезвия резцов в процессе их износа.

Наиболее близкой к предложенной по технической сущности и достигаемому результату является кольцевая буровая коронка, содержащая корпус с присоединительной резьбой, разделенный промывочными каналами на секторы, которые снабжены резцами, армированными алмазно-твердосплавными пластинами и имеющими отрицательные передние углы в плане к боковой внутренней и внешней поверхностям резания и закрепленными в цилиндрических пазах цилиндрическими клиньями с прижимными винтами.

Крепление АТП-резцов цилиндрическими клиньями обеспечивает возможность установки резцов на новые неизношенные кромки, что повышает ресурс отработки коронки. Недостатком этой коронки является низкая скорость проходки вследствие режуще-истирающего способа разрушения породы, когда вступает в контакт с породой твердосплавная подложка пластины, и повышенный расход воды по сравнению с твердосплавными коронками.

Указанная коронка выбрана в качестве прототипа.

Задачей и техническим результатом изобретения являются повышение скорости проходки и ресурса коронки и расширение области бурения в породах различной крепости.

Поставленные задачи решаются тем, что в кольцевой буровой коронке, содержащей корпус с присоединительной резьбой, секторы, образованные на корпусе коронки и разделяющиеся друг от друга промывочными каналами, режущие пластины с покрытием толщиной не менее 0,7 мм на передней грани и установленные с отрицательным передним углом в плане к боковой внутренней и внешней поверхностям резания и отрицательным передним углом к торцевой поверхности забоя скважины, цилиндрические клинья и прижимные винты, крепящие в цилиндрических пазах клинья, режущие пластины выполнены с полукруглым хвостовиком, прямолинейными боковыми кромками и рабочим забойным лезвием, имеющим контур в виде сопряженных дугообразных линий, при этом на задней грани режущих пластин выполнено покрытие толщиной, равной толщине покрытия на передней грани, причем покрытия изготовлены из сверхтвердого, ударопрочного и термостойкого материала, например из композита на основе нано- и микрочастиц кубического нитрида бора (наноКНБ). Таким образом, режущая пластина получается трехслойной, наружные слои которой являются более термо- и износостойкими, чем центральный (подложка) из твердого сплава. К примеру, наноКНБ марки MBR 7010 при твердости 72 ГПа обладает повышенной вязкостью и теплостойкостью (1500°C), что позволяет точить с ударом твердые сплавы и вести черновую обработку закаленных сталей как с охлаждением, так и без. Достаточной теплостойкостью (1100-1200°C), но большей твердостью обладают синтетические алмазы, которые успешно сейчас применяются в круглых двухслойных алмазно-твердосплавных пластинах (АТП). Отработанная технология изготовления двухслойных АТП позволит без особых трудностей изготавливать и не круглые трехслойные пластины, что позволит использовать их в нашем предложении. Твердые сплавы имеют микротвердость 14-18 ГПа, а теплостойкость 850-1000°C.

Особенностью коронки является формирование в результате самозаточки острого угла по задней грани, что представляет собой необходимое условие для перестановки режущих пластин задней гранью на набегающую сторону с возможностью резания пород забоя. Сверхтвердая передняя грань пластины обеспечивает эффективное резание, но по мере ее износа вступает в контакт с забоем твердосплавная подложка, что вызывает нагрев породы до ее разупрочнения, при этом задняя грань с износостойким покрытием препятствует закруглению подложки от износа. Последнее обстоятельство способствует заточке задней грани пластины под острый угол. При последующей перестановке пластины задней гранью на набегающую сторону заточенный под острый угол резец внедряется в породу при минимальном осевом усилии. Таким образом, сочетание специальной формы режущих пластин и покрытий из сверхтвердого ударопрочного и термостойкого материала на двух противоположных сторонах пластины дает следующий технический результат:

- повышение скорости бурения за счет заострения режущих пластин по задней грани после каждого цикла самозаточки и перестановки их заостренной гранью на набегающую сторону и терморазупрочнения буримых пород;

- повышение проходки коронки за рейс и ресурса коронки за счет наличия прямолинейных боковых скважино- и кернообразующих кромок у режущих пластин;

- повышение КПД коронки при работе в режиме терморезания;

- уменьшение потребного количества охлаждающей жидкости;

- возможность бурения скважин с продувкой воздухом.

Комплексный анализ отличительных признаков коронки с самозатачивающейся трехслойной режущей пластиной показывает, что они обладают новизной и изобретательским уровнем, так как только их комплексное действие известных свойств каждого обеспечивает решение поставленной задачи и достижение вышеуказанных технических результатов.

Сущность предлагаемого изобретения раскрывается нижеприведенными фигурами.

На фиг. 1 изображен вид на кольцевую коронку спереди; на фиг. 2 - вид на фиг. 1 снизу; на фиг. 3, α)- д) приведены схемы работы термостойкой трехслойной пластины; на фиг. 3, а) - вид на пластину, установленную под отрицательный передний угол -β для резания пород забоя скважины с образованием винтовой линии с углом α; на фиг. 3, б) - схема терморезания передней частью и подложкой пластины и самозаточка с образованием угла заострения γ по задней грани; на фиг. 3, в) - схема перестановки пластины заостренной задней гранью на набегающую сторону и резание после самозаточки; на фиг. 3, г) - схема терморезания новой передней стороной и подложкой пластины (самозаточка); на фиг. 3, д) - схема установки пластины заостренной задней гранью на набегающую сторону для последующего резания.

Буровая коронка состоит из корпуса 1, самозатачивающихся трехслойных скважино- и кернообразующих режущих пластин 2 и 3, соответствующих им прижимных клиньев 4 и 5 и крепежного винта 6. В торце корпуса коронки выполнены для установки резцов 2 и 3 цилиндрические пазы 7 и 8, диаметры и оси которых совпадают с диаметрами и осями режущих пластин 2 и 3. Под прижимные клинья 4 и 5 выполнены соответствующие цилиндрические каналы 9 и 10. На корпусе коронки выполнены внутренние и наружные очистные каналы 11 и 12. Контуры 13 и 14 цилиндрического паза 7 и канала 9 под режущие пластины 2 и прижимной клин 4 показаны условно. Вставленные в цилиндрические пазы 7 и 8 режущие пластины 2 и 3 упираются своими задними поверхностями в торцовую поверхность цилиндрических пазов 7 и 8 и прижимаются к ним силой резания и осевой нагрузкой. Цилиндрические клинья 4 и 5, закрепленные прижимными винтами 6, удерживают трехслойные режущие пластины 2 и 3 от перемещений вдоль дуги окружности. Прижимное винты 6 крепят цилиндрические клинья 4 и 5 неподвижно к корпусу коронки.

Для увеличения длины рейса при бурении и общей проходки на коронку режущие пластины изготовлены трехслойными, при этом ее боковые кромки выполнены прямолинейными, а контуры рабочих забойных лезвий - в виде сопряженных дугообразных линий. Возможно выполнение рабочих лезвий с прямоугольным контуром. Для крепления предлагаемых пластин с возможностью перестановки принят способ крепления, описанный в прототипе, при этом хвостовая часть пластины выполняется полукруглой. Пластины устанавливают под отрицательным углом β не более 15-20° (фиг. 3, α). В процессе бурения передний слой пластины из наноКНБ изнашивается и с забоем входит в контакт твердосплавная подложка, и продолжение бурения требует увеличения осевого давления, что вызывает нагрев пластины и разупрочнение породы. В этих условиях только термостойкость покрытия позволяет бурение с большой площадкой износа (фиг. 3, б). Особенностью трехслойной пластины является то, что задний сверхтвердый и износостойкий слой не дает закруглиться контуру износа задней грани резцов. В результате прямой угол пластины становится острым, т.е. происходит самозаточка пластины с образованием угла заострения γ по задней грани. При этом износ подложки при бурении крепких пород допустим только до паяного заднего слоя, чтоб исключить воздействие критических растягивающих напряжений на этот слой. При бурении некрепких пород, когда механические напряжения не превышают прочность паяного слоя, допускается износ заднего слоя, т.е. ее заточка, что делает более острым сверхтвердое режущее лезвие.

Чтобы бурить заостренной задней гранью с сверхтвердым покрытием, пластину освобождают от механического крепления и устанавливают ее этой гранью на набегающую сторону (фиг. 3, в). Однако в зависимости от породы, т.е. от угла заострения γ, величина угла последующей установки β может быть иной от первоначально принятой и даже положительной. (Для установки режущих пластин на другой угол необходимо наличие корпуса коронки с соответствующим наклоном паза под эти углы). Затем переустановленную пластину закрепляют посредством прижимного клина винтом и начинают бурить. При бурении под давлением осевого усилия лезвие внедряется в забой и снимает поверхностный слой породы. До износа переднего слоя коронка имеет наибольшую скорость бурения при минимальном силовом нагружении и расходе охлаждающего агента. Дальнейшее бурение вызывает увеличение контакта пластины с забоем за счет опережающего износа твердосплавной подложки, что вызывает увеличение усилия давления и выделения большого количества тепла. При этом от тепла трения порода разупрочняется, что является залогом эффективного бурения крепких пород. Процесс бурения терморезанием завершается износом передней кромки и подложки, сохраняя при этом кромку противоположного сверхтвердого покрытия (фиг. 3, г). Этот момент определяется величиной проходки терморезением, полученной опытными данными. Затем опять переворачивают пластину на другую сторону, устанавливают на рациональный передний угол (фиг. 3, д) и бурят дальше вновь заточенной коронкой. В зависимости от абразивности пород и механического нагружения профиль износа подложки может изменяться от дугообразной до прямой линии (фиг. 3, б и г). Таким образом, цикл бурения и самозаточки резцов повторяется до полного износг рабочей части пластины.

Из приведенного описания работы коронки видно, что эффект самозатачивания наиболее результативно проявляется благодаря использованию трехслойных режущих пластин, с возможностью их перестановки в пазах корпуса коронки. При этом изготовление трехслойных пластин со сложной конфигурацией не вызывает никаких технологических затруднений. В ЗАО «Микробор Нанотех» изготавливают двухслойные пластины из наноКНБ следующим образом. Подложку и покрытие изготавливают в виде отдельных бланков диаметром 50 мм, затем проводят их пайку в вакуумной печи при температуре около 1200°С. После пайки на лазерном станке вырезают нужной формы и размера пластины из паяных бланков. Такая технология полностью отвечает изготовлению и самозатачивающихся трехслойных режущих пластин. Пластины АТП получают спеканием в условиях высоких давлений и температур алмазного полукристаллического слоя в виде порошка с твердым сплавом. При диаметре 8 мм толщина АТП составляет 3 мм, при этом толщина алмазного слоя 0,8 мм с зернистостью 25 мкм. Также изготавливается АТП в виде сегментов, квадратов, треугольников. В зависимости от условий применения поликристаллический слой изготавливается из алмазов зернистостью 40, 25, 14, 5 мкм. Из вышеприведенного также понятно, что изготовление трехслойных пластин с покрытием из синтетических алмазов не представит технологических затруднений.

Источники информации

1. Патент РФ 2359103, МПК Е21В 10/48. Кольцевая буровая коронка. / А.Я. Третьяк, С.Л. Трещев, Ю.Ф. Литкевич, А.Э. Богданов, В.П. Шпехт, А.А. Третьяк, В.А. Начаркин (РФ). - 2007146128/03; заявл. 11.12.2007; опубл. 20.06.2009. Бюл. №17. - С. 798-799.

2. Патент РФ №2422613, МПК Е21В 10/48. Кольцевая буровая коронка [Текст] / А.Я. Третьяк, Ю.Ф. Литкевич, А.Е. Асеева и др.; заявитель и патентообладатель Государственное образовательное учреждение высшего профессионального образования Южно-Российский государственный технический университет. - №2009146596/03; заявл. 15.12.2009; опубл. 27.06.2011, Бюл. №18. - С. 839.

1. Кольцевая буровая коронка, содержащая корпус с присоединительной резьбой, секторы, образованные на корпусе коронки и разделяющиеся друг от друга промывочными каналами, режущие пластины с износостойким покрытием толщиной не менее 0,7 мм на передней грани, установленные с отрицательным передним углом в плане к боковой внутренней и внешней поверхностям резания и отрицательным передним углом к торцевой поверхности забоя скважины, цилиндрические клинья и прижимные винты, крепящие в цилиндрических пазах клинья, отличающаяся тем, что режущие пластины выполнены с полукруглым хвостовиком, прямолинейными боковыми кромками и рабочим забойным лезвием, имеющим контур в виде сопряженных дугообразных линий, при этом на задней грани режущих пластин выполнено покрытие толщиной, равной толщине покрытия на передней грани, причем покрытия изготовлены из сверхтвердого, ударопрочного и термостойкого материала, например из композита на основе нано- и микрочастиц кубического нитрида бора.

2. Кольцевая буровая коронка по п. 1, отличающаяся тем, что покрытия пластин изготовлены из термостойкого синтетического алмаза.



 

Похожие патенты:

Изобретение относится к буровым коронкам для разрушения крепких горных пород, в том числе трещиноватых и перемежающихся по твердости. Технический результат заключается в эффективном разрушении забоя, высокой механической скорости бурения.

Изобретение относится к породоразрушающему инструменту, предназначенному для геологоразведочного бурения преимущественно с применением двойных колонковых труб, в том числе со съемным керноприемником.

Изобретение относится к породоразрушающему инструменту. Обеспечивает повышение ресурса коронки, увеличение механической скорости, снижение энергоемкости процесса бурения и сокращение времени на спуско-подъемные операции для ее замены.

Изобретение относится к породоразрушающему инструменту. Обеспечивает повышение ресурса коронки, увеличение механической скорости, снижение энергоемкости процесса бурения и сокращение времени на спуско-подъемные операции для ее замены.

Изобретение относится к породоразрушающему инструменту. Обеспечивает повышение ресурса коронки, увеличение механической скорости, снижение энергоемкости процесса бурения и сокращение времени на спуско-подъемные операции для ее замены.

Изобретение относится к области породоразрушающего инструмента, а именно к буровым коронкам с алмазным вооружением для бурения скважин с отбором керна. Обеспечивает повышение эффективности работы коронки.

Изобретение относится к области породоразрушающего инструмента, а именно к буровым коронкам с алмазным вооружением для бурения скважин с отбором керна. Обеспечивает повышение эффективности работы коронки.

Изобретение относится к области производства породоразрушающего алмазного инструмента, в частности импрегнированных алмазных буровых коронок, используемых при бурении скважин с отбором керна при разведке месторождений полезных ископаемых.

Изобретение относится к области породоразрушающего инструмента, а именно к буровым коронкам с алмазным вооружением для бурения скважин с отбором керна. Обеспечивает повышение эффективности работы коронки.

Изобретение относится к буровым коронкам с алмазным вооружением для бурения скважин с отбором керна. Обеспечивает повышение проходки и механической скорости бурения, лучшее охлаждение матрицы и более качественную очистку забоя от шлама.

Изобретение относится к коронкам, предназначенным для бурения взрывных шпуров при щадящих буровзрывных работах по отбойке горной массы в крепких горных породах. Технический результат заключается в повышении эффективности и ресурса коронки, увеличении скорости бурения шпуров малого диаметра, обеспечении получения мелкого шлама и эффективного выноса его из шпуров с меньшими энергетическими затратами. Коронка для вращательного способа бурения взрывных шпуров малого диаметра включает корпус с присоединительной резьбой, разделена радиальными промывочными каналами на секторы, которые с торцевой поверхности снабжены твердосплавными пластинами. Элементы разрушающих породу инденторов выполнены в виде алмазно-твердосплавных пластин с расширенной крутопадающей набегающей поверхностью острия и более суженной тыльной его поверхностью, которые расположены на торцевой поверхности коронки, образуя три одинаковые группы по три параллельные друг другу твердосплавные пластины, и установленные под углами, равными 20° к радиальным осям групп пластин с полным перекрытием забоя в радиальном направлении и параллельно плоскости забоя. В плане оси групп пластин расположены относительно друг друга под углом, равным 120°, между группами пластин выполнены углубления для удаления штыба, расширяющиеся от центра к периферии корпуса коронки с канавками на боковой поверхности корпуса для выхода штыба и каналами для подвода промывочной жидкости. Каждый промывочный сектор по внешнему цилиндрическому периметру корпуса коронки составляет угол, равный 60°, а центральный канал для подачи промывочной жидкости выполнен под углом, равным 20° к вертикальной продольной оси коронки, и соединен на торцевой поверхности с тремя промывочными секторами. 4 ил.

Изобретение относится к породоразрушающему инструменту, а именно к коронкам с твердосплавным или алмазным вооружением для бурения скважин с отбором керна. Технический результат заключается в повышении эффективности работы буровой коронки, в основном при бурении по перемежающимся и трещиноватым породам. Буровая коронка содержит корпус, рабочий торец которого разделен промывочными пазами на секторы, армированные износостойкими вставками, и амортизатор. Для повышения эффективности работы буровой коронки амортизатор выполнен в виде двух телескопически установленных ленточных пружин, выполненных с одной стороны присоединительной резьбой для соединения с корпусом коронки и колонковым снарядом, а с другой стороны они жестко соединены одна с другой, причем наружная поверхность пружины большего диаметра армирована износостойкими вставками. Внутренняя и наружная пружины установлены с возможностью контактирования между собой своими боковыми поверхностями, при этом зазор между обращенными один к другому торцами витков соседних пружин в исходном положении больше рабочего хода пружины, но меньше высоты их продольных полок. 1 з.п. ф-лы, 1 ил.

Изобретение относится к горному делу, а именно к буровым коронкам, предназначенным для проходки геологоразведочных скважин на месторождениях твердых полезных ископаемых и воды в породах различной крепости, в том числе и перемежающихся по твердости. Технический результат заключается в повышении надежности механического крепления пластин-резцов, увеличении усилия зажима пластин-резцов, рейсовой проходки и ресурса коронки, улучшение условий очистки забоя. Буровая коронка с клиновым зажимом резцов содержит корпус с присоединительной резьбой, секторы, образованные на корончатом кольце корпуса коронки и разделяющиеся друг от друга промывочными каналами, установленные с отрицательным передним углом к торцевой поверхности забоя скважины и отрицательным передним углом в плане к боковой внутренней и внешней поверхностям резания скважино- и кернообразующие пластины-резцы и зажимные клинья. На корончатом кольце выполнены глухие прямоугольные пазы, в которые установлены четырехугольные скважино- и кернообразующие пластины-резцы из ударо- и термостойкого инструментального материала, например нанопорошков кубического нитрида бора. Зажимные клинья установлены в клинообразные пазы между резцами и промывочными пазами таким образом, что пластины-резцы прижаты через промежуточную стенку к задней стенке промывочного паза, при этом клинья обращены к торцу коронки и у основания заклинены распорными клиньями со скосами, выполненными под углы самоторможения. 3 з.п. ф-лы, 2 ил.

Изобретение относится к области породоразрушающего инструмента для бурения скважин различного назначения с отбором керна и может быть использовано при отборе керна в продуктивных пластах нефтяных и газовых скважин. Технический результат заключается в уменьшении искривления ствола скважины, увеличении механической скорости бурения, ресурса или проходки на коронку. Стабилизирующая кольцевая буровая коронка содержит корпус с присоединительной резьбой, разделенный основными промывочными каналами на секторы, которые с торцевой поверхности снабжены алмазно-твердосплавными пластинами, имеющими отрицательные передние углы в плане к боковым внутренней и внешней поверхностям резания и отрицательные передние углы к торцевой поверхности забоя скважины, при этом основные промывочные каналы выполнены встречно под углом. В корпусе коронки в секторах встречно под углом расположены дополнительные промывочные каналы, основные и дополнительные промывочные каналы выполнены по всей высоте корпуса коронки по винтовой линии вправо по ходу вращения коронки, высота корпуса коронки зависит от шага винтовой линии основных и дополнительных промывочных каналов, внутри дополнительных промывочных каналов размещены две и более алмазно-твердосплавные калибрующие пластины, каждая из которых представляет собой элемент отдельной винтовой линии и закреплена на корпусе с помощью пайки или механическим способом под отрицательным углом от минус 5˚ до минус 15˚ относительно поверхности резания. 3 ил.

Изобретение относится к горной промышленности и предназначено для бурения геологоразведочных скважин в горных породах различной крепости, снижающих свою прочность при температурах выше 300-600°С. Технический результат заключается в повышении надежности крепления резцов в корпусе коронки, в увеличении рейсовой проходки и ресурса коронки. Буровая коронка с клиновым соединением резцов содержит корпус с присоединительной резьбой, секторы, образованные на корпусе коронки и разделяющиеся друг от друга промывочными каналами, установленные в пазы скважино- и кернообразующие пластины-резцы с отрицательным передним углом в плане к боковой внутренней и внешней поверхностям резания и отрицательным передним углом к торцевой поверхности забоя скважины. Пластины-резцы выполнены в виде четырехугольников из ударотермопрочного материала, а пазы снабжены Г-образными пластинами, которые имеют дугообразный и прямой концы. Дугообразный конец пластины со стороны нерабочей грани резцов образует упор и прикреплен, например, пайкой или точечной сваркой к корпусу коронки, а прямой конец заведен в промывочный паз и придавлен клином к передней стенке паза с резцом, прижимая последний к корпусу коронки. Клин и стенки промывочного паза выполнены со скосом, угол которого обеспечивает самоторможение, как в конусе Морзе, причем стенки промывочного паза у основания выполнены с пропилом параллельно кромкам пластин-резцов, а над клином выполнены стопоры, прикрепленные сваркой, пайкой или деформированием стенки паза с наплывом над клином. 1 з.п. ф-лы, 2 ил.

Группа изобретений относится к буровым долотам и способам для получения фрагментов образцов керна из подземного пласта. Технический результат заключается в увеличении скорости проходки бурового долота. Буровое долото содержит корпус долота, имеющий центральную осевую линию долота и торец долота; совокупность лопастей, проходящих радиально вдоль торца долота и разделенных совокупностью каналов прохода потока между собой, при этом одна из совокупности лопастей является лопастью отбора керна, содержащей вертикальную поверхность и наклонную поверхность, при этом по существу вертикальная поверхность и наклонная поверхность интегрально соединены; и совокупность режущих элементов, расположенных на совокупности лопастей, при этом один из совокупности режущих элементов является первым режущим элементом, расположенным на лопасти отбора керна на первой радиальной позиции от центральной осевой линии долота. 4 н. и 32 з.п. ф-лы, 30 ил.
Наверх