Устройство депрессионно-волновой очистки скважин



Устройство депрессионно-волновой очистки скважин
Устройство депрессионно-волновой очистки скважин
Устройство депрессионно-волновой очистки скважин
Устройство депрессионно-волновой очистки скважин

 


Владельцы патента RU 2553696:

Идиятов Мунавир Шагитович (RU)

Изобретение относится к нефтедобывающей отрасли. Устройство включает установленные на колонне насосных труб приемный патрубок в виде пера, клапан обратный тарельчатый, клапан обратный шариковый, фильтр, клапан гидродинамический, муфту дроссельную, клапан гидростатический, клапан сбивной; клапан с принудительным срабатыванием. Клапан гидростатический включает плунжер с перепускными отверстиями и снабжен уплотнительными кольцами, а внутренняя полость его снабжена циркуляционными микроклапанами. Клапан гидродинамический включает корпус, гайку регулировочную, пружину, упор, клапан конусный и патрубок. Корпус нижнего обратного клапана тарельчатого выполнен в виде центратора с максимально допустимыми диаметральными размерами для обсадной колонны конкретной скважины. Повышаются надежность и качество очистки призабойной зоны пласта и забоя скважины с обеспечением работоспособности устройства в наклонно-направленных и горизонтальных скважинах и регулируемость процесса очистки. 4 ил.

 

Настоящее изобретение относится к нефтедобывающей отрасли, а именно к эксплуатации и ремонту скважин, и может быть использовано для очистки призабойной зоны пласта и забоя скважины от шлама, песчаных пробок, окалины, кольматационных отложений и других осложняющих добычу нефти предметов.

Из анализа уровня техники подобного оборудования известно имплозионное устройство для очистки скважин, содержащее пакерное устройство, размещенное на колонне насосно-компрессорных труб между кожухом-ловушкой и очистным клапаном и выполненное со сквозным каналом и с глухим осевым каналом, в котором расположен конец трубы для подачи реагента и который сообщен с затрубным пространством (патент РФ №2160825, кл. E21B 37/00. «Имплозионное устройство для очистки скважин», опубл. 20.12.2000 г.).

Недостатками известного устройства являются:

- сложность конструкции;

- ограниченность (малый объем) сборного узла, что вызывает необходимость дополнительных спуско-подъемных операций;

- залповое поступление шлама в шламоуловитель, что снижает эффективность его заполнения, так как отсутствует регулирование скорости перетока;

- неуправляемость процесса сброса шлама при очистке забоя.

Известно устройство для очистки скважин, содержащее установленные на колонне насосно-компрессорных труб фильтр, клапан обратный, гидростатический узел, включающий в себя шток с перепускными отверстиями и срезные штифты, сбивной клапан и узел стравливания избыточного давления, дросселирующую муфту (штуцер) для регулирования процесса очистки, причем колонна насосно-компрессорных труб является контейнером для сбора шлама, песка и т.п. при этом регулируемая гидравлическая желонка снабжена комплектом специальных насадок (патент РФ №43907, кл. E21B 37/00. «Регулируемая гидравлическая желонка», опубл. 10.02.2005 г.).

К недостаткам данного устройства можно отнести:

- невозможность использования его в наклонно-направленных и горизонтальных скважинах;

- работа устройства основана на простом «засасывании» шлама, песка и т.п., хотя и регулируемом.

Известно также устройство для очистки скважин, содержащее корпус, полый шток, запорный элемент, выполненный в виде цилиндра, перекрывающего радиальные отверстия полого штока, имеющего зазор для перетока жидкости и герметизирующие элементы, выполненные также и в полом штоке, с возможностью удаления потоком жидкости после срабатывания очистителя. Кроме того, в корпусе выше запорного элемента имеется отверстие с буртом, в котором установлена шайба (патент №113300, кл. E21B 37/00. «Очиститель скважин», опубл. 10.02.2012 г.).

Недостатками данного устройства являются:

- нерегулируемость процесса;

- работа основана на простом «засасывании» пластового флюида;

- имеется возможность закупоривания колонны НКТ.

Целью предлагаемого изобретения является:

- повышение эксплуатационной надежности и качества очистки призабойной зоны пласта и забоя скважины, - обеспечение работоспособности устройства в наклонно-направленных и горизонтальных скважинах,

- повышение качества очистки призабойной зоны пласта за счет комплексного воздействия на пластовые флюиды как в режиме депрессии, так и режиме виброволнового воздействия, так как такое комплексное воздействие значительно повышает эффективность очистки забоя скважины,

- возможность извлечения фильтрата бурового раствора и вызова притока из пласта (освоение) после бурения скважины без дополнительной спуско-подъемной операции, регулируемость процесса очистки (включение и отключение) в строго заданном интервале ствола скважины.

Использование в компоновке центраторов позволяет упростить работу с устройством в связи с отсутствием в компоновке пакерного узла, его функцию выполняет центратор, уменьшая межтрубные кольцевые сечения, без существенных потерь эффективности устройства.

Поставленная цель достигается предлагаемым устройством депрессионно-волновой очистки скважины, которое включает установленные на колонне насосных труб приемный патрубок в виде пера, клапан обратный тарельчатый, клапан обратный шариковый, фильтр, клапан гидродинамический, муфту дроссельную, клапан гидростатический, включающий в себя плунжер с перепускными отверстиями и сбивной клапан. При этом в верхней части устройства установлен клапан с принудительным срабатыванием, который открывается при упоре устройства в пробку забойную и закрывается при подъеме устройства, кроме того, плунжер клапана гидростатического снабжен уплотнительными кольцами, расположенными выше перепускных отверстий, а перепускные отверстия в нем выполнены под острым углом относительно продольной оси устройства, в сторону обращенной к устью скважины, при этом внутренняя полость клапана гидростатического снабжена сливными микроклапанами, а гидродинамический клапан, размещенный над фильтром, состоит из корпуса, гайки регулировочной, упора пружины, пружины, клапана конусного и патрубка и инициирует регулируемые импульсы давления жидкости в широком диапазоне частот, при этом корпус нижнего обратного клапана выполнен в виде центратора с максимально допустимыми диаметральными размерами для обсадной колонны конкретной скважины.

Принципиальным отличием предлагаемого устройства от существующих конструкций очистителей и желонок является гидродинамический клапан, обеспечивающий комплексное воздействие пульсирующей депрессии на пластовый флюид с целью более качественной очистки призабойной зоны пласта и забоя скважины, кроме того, реализована возможность регулирования пульсаций давления в широком диапазоне частот.

Устройство депрессионно-волновой очистки скважины изображено на чертежах:

Фиг. 1 - общий вид (компоновка);

Фиг. 2 - клапан гидростатический (ГСК) - продольный разрез;

Фиг. 3 - гидродинамический клапан (ГДК) - продольный разрез;

Фиг. 4 - клапан с принудительным срабатыванием.

Устройство депрессионно-волновой очистки скважин (фиг. 1) состоит из следующих основных узлов: 1 - перо; 2 - клапан обратный тарельчатый, корпус которого может быть выполнен в виде центратора; 3 - клапан обратный шариковый (подпружиненный); 4 - фильтр; 5 - клапан гидродинамический (ГДК); 6 - муфта дроссельная (ДМ); 7 - клапан гидростатический (ГСК); 8 - клапан с принудительным срабатыванием; 9 - насосно-компрессорные трубы (НКТ); 10 - патрубки, 11 - клапан сбивной.

Клапан гидростатический (ГСК), показанный на фиг. 2, состоит из следующих основных узлов: 1.7 - корпус клапана; 2.7 - втулка направляющая; 3.7 - плунжер; 4.7 - каналы в плунжере; 5.7 - поршень клапана; 6.7 - микроклапаны сливные; 7.7 - кольца уплотнительные; 8.7 - переводник.

Гидродинамический клапан (ГДК), изображенный на фиг. 3, состоит из следующих узлов: 1.5 - корпус ГДК; 2.5 - гайка регулировочная; 3.5 - упор пружины; 4.5 - пружина; 5.5 - клапан конусный; 6.5 - патрубок.

Клапан с принудительным срабатыванием, показанный на фиг. 4, состоит из следующих узлов: 1.8 - корпус КПС; 2.8 - муфта; 3.8 - шток-переводник; 4.8 - седло; 5.8 - гайка; 6.8 - кольцо опорное; 7.8 - кольцо уплотнительное.

Устройство депрессионно-волновой очистки скважин работает следующим образом. Устройство депрессионно-волновой очистки скважин спускается в скважину до упора в пробку (песчаную, шламовую и т.п.) в указанной на фиг. 1 компоновке.

При спуске устройства на колонне НКТ - 9 внутренняя полость труб остается под атмосферным давлением. В момент касания устройства пробки забойной затрубное (межтрубное) пространство сообщается с внутренней полостью НТК посредством срабатывания клапана с принудительным срабатыванием -.8 и клапана гидростатического - 7, при этом за счет перепада давления между затрубьем и внутренней полостью колонны НКТ - 9 происходит интенсивное поступление затрубной жидкости (пластового флюида) вместе со шламом, песком кольматантом и т.п. в полость колонны НКТ, которая после этого удерживается обратными клапанами - 2 и 3. При этом при прохождении пластового флюида через клапан гидродинамический (ГДК) - 5 инициируются пульсации давления за счет колебательных движений подпружиненного запорного элемента (клапана конусного), см. фиг. 3. Гидродинамический клапан (ГДК) - 5, таким образом, осуществляет раскачку («расхаживание») частиц шлама (кольматанта и т.п. в поровом пространстве с последующим интенсивным выносом их в приемную полость насосно-компрессорных труб (НКТ) - 9.

Клапан гидродинамический - 5 позволяет использовать энергию внутренней полости колонны НКТ более рационально и с большей продуктивностью. Работа клапана гидростатического - 7 (фиг. 2) заключается в открытии (сообщение затрубья с внутренней полостью колонны НКТ - 9) в момент касания (разгрузки) устройства в целом. При этом наклонные под углом 45 градусов проходные каналы обеспечивают более плавное (с меньшим гидравлическим сопротивлением) течение пластового флюида со шламом, песком, кольматантом и т.п.

Для повышения эффективного функционирования устройства в целом муфта дроссельная - 6 комплектуется штуцерами с различными диаметрами проходных каналов.

Использование заявляемого изобретения позволит обеспечить:

- более «глубокую» и качественную очистку призабойной зоны пласта и забоя скважины;

- более эффективную очистку призабойной зоны пласта и забоя скважины за счет регулировки частоты пульсаций давления в широком диапазоне;

- удаление фильтрата бурового раствора вызова притока из пласта (освоение) после бурения скважин без извлечения устройства из скважины.

Устройство простое в изготовлении, надежно в эксплуатации, обеспечивает стабильный положительный эффект.

Устройство депрессионно-волновой очистки скважин опробовано в промысловых условиях и подтвердило свою высокую эффективность.

Устройство депрессионно-волновой очистки скважины, включающее установленные на колонне насосных труб приемный патрубок в виде пера, клапан обратный тарельчатый, клапан обратный шариковый, фильтр, клапан гидродинамический, муфту дроссельную, клапан гидростатический, включающий в себя плунжер с перепускными отверстиями, сбивной клапан отличающийся тем, что в верхней части устройства установлен клапан с принудительным срабатыванием, который открывается при упоре устройства в пробку забойную и закрывается при подъеме устройства, кроме того, плунжер клапана гидростатического снабжен уплотнительными кольцами, расположенными выше перепускных отверстий, а перепускные отверстия в нем выполнены под острым углом относительно продольной оси устройства, в сторону обращенной к устью скважины, при этом внутренняя полость клапана гидростатического снабжена сливными микроклапанами, а гидродинамический клапан размещенный над фильтром, состоит из корпуса, гайки регулировочной, упора пружины, пружины, клапана конусного и патрубка и инициирует регулируемые импульсы давления жидкости в широком диапазоне частот, при этом корпус нижнего обратного клапана выполнен в виде центратора с максимально допустимыми диаметральными размерами для обсадной колонны конкретной скважины.



 

Похожие патенты:
Изобретение относится к нефтедобыче и может найти применение при очистке внутрискважинного оборудования от асфальтосмолопарафиновых отложений. Способ включает закачку в затрубное пространство скважины эмульгатора из расчета 60-80 г на 1 м3 добываемой воды, выпуск газа из затрубного пространства в атмосферу.

Изобретение относится к нефтегазодобывающей отрасли, в частности к устройствам для проведения ремонтных работ в скважинах. Устройство содержит корпус, соединительный патрубок, седло с продольными пазами и дроссельным каналом, толкатель с перфорированной клеткой с седлом и шаровым клапаном внутри, кольцевой поршень с полым штоком, гайку.

Изобретение относится к нефтедобывающей промышленности, в частности к консервации промысловых нефтепроводов на месторождениях, в продукции которых содержится сероводород.

Изобретение относится к нефтяной и газовой промышленности, а именно к технологиям ремонта скважин и очистки призабойной зоны пласта. Устройство включает жестко закрепленный на насосно-компрессорной трубе (НКТ) ствол, имеющий вид стакана с отверстиями в его стенке, корпус-участок перфорированной обсадной колонны, причем имеется возможность перемещения вверх-вниз НКТ с закрепленными на ней рабочими элементами устройства вдоль корпуса устройства.

Изобретение относится к нефтегазодобывающей промышленности и может найти применение при подземном, капитальном ремонте и освоении скважин с применением колтюбинговых установок.

Группа изобретений относится к области нефтегазодобывающей промышленности и может быть применена для очистки каналов перфорации и обработки призабойной зоны пласта.

Изобретение относится к нефтяной промышленности и может найти применение при промывке скважины. При осуществлении способа проводят спуск в скважину до забоя колонны насосно-компрессорных труб с патрубком диаметром больше диаметра колонны насосно-компрессорных труб, имеющим треугольные окна и внутри острые язычки, обращенные вверх под углом 25-30° к вертикали, циркуляцию скважинной жидкости с расходом в пределах от 3,5 до 8 л/с по межтрубному пространству, патрубку и колонне насосно-компрессорных труб через желобную емкость в объеме не менее объема скважины и подъем из скважины колонны насосно-компрессорных труб с патрубком.

Изобретение относится к нефтяной промышленности и может быть использовано для восстановления приемистости нагнетательных скважин. На устье скважины колонну труб снизу оборудуют фильтром с заглушкой, выше фильтра устанавливают механический пакер, над которым размещают сбивной клапан, спускают колонну труб в скважину так, чтобы пакер находился над пластом, а фильтр находился ниже интервала перфорации пласта.

Группа изобретений относится к нефтяной и газовой промышленности, в частности к очистке буровых скважин. Устройство включает приводную головку, прикрепленную к насосно-компрессорной трубе для создания противотока в стволе скважины, сепараторный блок, сепараторный элемент и съемный субблок.

Изобретение может быть использовано в нефтедобывающей промышленности. Состав для предотвращения отложений неорганических солей в нефтепромысловом оборудовании включает, вес.

Группа изобретений относится к нефтедобывающей отрасли, в частности к увеличению притока нефти на добывающих скважинах и приемистости нагнетательных скважин. Способ включает формирование компрессионного перепада давления между призабойной зоной пласта и полостью насосно-компрессорных труб путем закачки флюида, стравливание давления при передвижении флюида из призабойной зоны к дневной поверхности, создание периодических импульсов давления в призабойной зоне пласта, повторение этапов стравливания и создания импульсов давления; контроль за этими этапами. Перепад давления создают путем закачки флюида в скважину при создании заданного давления в первом ресивере в течение подпериода нагнетания, а сброс до заданного давления производят при открытии клапана управления в течение подпериода сброса через первый ресивер. Давление контролируют по устьевому датчику и датчику давления призабойной зоны. При достижении максимальной скорости установившегося потока флюида в затрубном пространстве за подпериод нагнетания приводят в действие погружной отсекатель потока. При достижении максимального давления за подпериод нагнетания в призабойной зоне пласта подключают второй ресивер. Повышается эффективность и стабильность работы скважины. 2 н.п. ф-лы, 3 ил.

Изобретение относится к области эксплуатации буровых скважин и предназначено для восстановления их работоспособности и дебитов, а также может быть использовано для очистки трубопроводов. При осуществлении способа воздействие осуществляют с учетом видов отложений на очищаемой поверхности путем задания соответствующих значений физических параметров воздействующей рабочей среды, геометрии кавитатора и его положения по отношению к очищаемой поверхности: x ¯ , Po и Pc, где x ¯ - относительное расстояние от выхода кавитатора до очищаемой поверхности, Po - динамическое давление на выходе кавитатора, Pc - статическое давление в затопленной полости. Значения параметров x ¯ и Po задают в пределах: x ¯ = 5 − 50 , Po=5-45 МПа. Статическое давление Pc в затопленной полости задают в соответствии с условием P c = 0,075 P o exp ( − 0,4 x ¯ ) с обеспечением пульсации струйного кавитирующего потока с переменной частотой и достижением резонанса слоев отложений. При этом пульсацию струйного кавитирующего потока обеспечивают с использованием генератора качающейся частоты. Возникновение резонанса слоев отложений устанавливают по повышению концентрации загрязнений разрушенных слоев в отводимом потоке, при этом фиксируют частоту пульсации струйного кавитирующего потока, на которой осуществляют дальнейшее воздействие на очищаемую поверхность. Повышается эффективность очистки и восстановления работоспособности скважин и трубопроводов. 8 з.п. ф-лы, 5 ил.

Насос предназначен для промывки скважин. Насос содержит конусообразный корпус, внутри которого параллельно расположены канал подвода активной жидкостной среды и активное сопло, сопряженное через боковой паз с камерой смешения, соединенной с трубопроводом отвода смеси сред, при этом внизу конусообразного корпуса установлена функциональная насадка, выполненная в виде цилиндрического корпуса насадок, горизонтально разделенного на две части, при этом верхняя часть непосредственно примыкает к конусообразному корпусу и через наклонные патрубки разных диаметров соединена с активным соплом и каналом подвода активной жидкостной среды, а нижняя часть, равная основному диаметру конусообразного корпуса, содержит по четыре радиальные насадки, расположенные по периметру, и одну насадку, расположенную по оси функциональной вставки. Технический результат изобретения заключается в повышении эффективности, надежности и долговечности работы устройства. 3 з.п. ф-лы, 4 ил.

Изобретение относится к оборудованию для нефтяных скважин и нефтепроводов и может быть использовано для профилактики образования асфальто-смоло-парафиновых отложений в насосно-компрессорных трубах, межтрубном пространстве скважин и промысловых нефтепроводах. Система нагрева нефти содержит монтируемый в зону возможного образования асфальто-смоло-парафиновых отложений (АСПО) нагревательный кабель постоянного или переменного тока, в котором присутствуют нагревательные жилы и стальная или синтетическая полимерная броня. Нагревательные жилы подключены через переходной клеммный шкаф к станции управления, которая обеспечивает заданный режим нагрева, контроль параметров и комплекс защит. Станция управления состоит из корпуса, внутри которого установлены клеммный блок для подключения нагревательного кабеля и питания станции управления, силовой блок, блок включения/выключения, блок GSM - связи, блок управления и контроля. Силовой блок обеспечивает питание нагревательного кабеля постоянного либо переменного тока. Блок включения/выключения включает автоматический выключатель и пускатель, обеспечивающие штатное и аварийное включение/отключение питания. Блок GSM - связи обеспечивает дистанционный контроль и управление системой нагрева нефти. Блок управления и контроля включает в себя цифровой логический контроллер и модуль управления универсальным силовым блоком, обеспечивающие управление заданным режимом нагрева кабеля, уровнем защиты от короткого замыкания, утечки тока, превышения заданного порога силы тока и напряжения, превышения средней установленной температуры кабеля и нагреваемой среды, панель управления, обеспечивающую ввод и корректировку текущих параметров и визуальный контроль работы системы. Техническим результатом является повышение эффективности профилактики АСПО. 3 ил.

Изобретение относится к нефтедобыче, а именно к устройству, используемому при свабировании в насосно-компрессорной трубе, в частности в насосно-компрессорной трубе диаметром 2 дюйма. Устройство включает металлический стержень, представляющий собой насосную штангу, головку, при помощи резьбового соединения прикрепленную к нижней части металлического стержня, манжету, установленную на металлическом стержне с возможностью перемещения вдоль его оси, шплинт, установленный в металлическом стержне и головке так, чтобы предотвращать отвинчивание головки, стопор. Стопор выполнен с возможностью закрепления в предварительно заданном месте на металлическом стержне так, чтобы обеспечивать движение манжеты в предварительно заданном диапазоне. Стопор представляет собой кольцо с трапецеидальным сечением, при этом диаметр кольца в ближней к головке части соответствует диаметру головки, и в стопоре выполнен по меньшей мере один канал для текучей среды. Повышается надежность и удобство эксплуатации свабовой мандрели. 3 з.п. ф-лы, 2 ил.

Изобретение относится к нефтегазовой отрасли, в частности к скважинным струйным установкам, и предназначено для очистки забоя от песчаных пробок. Устройство содержит установленные на колонне насосно-компрессорных труб (НКТ) эжекторный насос, включающий корпус, в котором установлены соосно внутренней колонне НКТ сопло и камера смешения с диффузором. В корпусе параллельно камере смешения выполнены осевые каналы для подвода рабочего потока и сообщенные с ними радиально расположенные поперечные боковые каналы для подвода эжектируемого потока. Со стороны верхнего конца осевые каналы сообщены с кольцевым пространством между внешней НКТ и внутренней НКТ, а со стороны нижнего конца - с рабочей камерой. В основании корпуса установлены опорная пята, сообщенная с соплом эжекторного насоса посредством подпружиненного толкателя с возможностью движения вверх и вниз под действием истекающей рабочей среды и функциональная вставка, внутри которой под углом 30° расположено не менее четырех генераторов кавитации. Повышается эффективность процесса разрушения песчаной пробки, снижается абразивное воздействие песчаной пульпы, создается более глубокая депрессия на пласт. 1 з.п. ф-лы, 2 ил.

Изобретение относится к нефтегазодобывающей отрасли, в частности, к гидрокавитационной обработке продуктивных пластов и фильтров скважин. Устройство содержит корпус с входным штуцером и кавитаторы, сопла которых направлены на обрабатываемую поверхность скважин, ротор с крыльчаткой и два шнека. Корпус выполнен из плотно соединенных между собой верхней и нижней частей с образованием внутренней полости, входной штуцер расположен по центральной оси в верхней части корпуса, внутри которого на входе во внутреннюю полость закреплен первый шнек с обеспечением завихрения рабочей жидкости. Внутри ротора по центральной оси установлен второй шнек с обеспечением вращения ротора. Встречные концы шнеков выполнены конусообразными. В роторе выполнены боковые каналы. Кавитаторы установлены в нижней части корпуса, их оси расположены в одной плоскости с осями боковых каналов ротора с обеспечением гидродинамической пульсации рабочей жидкости. Входной штуцер выполнен с возможностью перемещения по центральной оси с обеспечением регулировки частоты и амплитуды пульсаций истекающих из кавитаторов потоков рабочей жидкости. Повышается эффективность и производительность при обработке продуктивных пластов и фильтров скважин. 1 з.п. ф-лы, 4 ил.

Изобретение относится к нефтегазодобывающей промышленности, а именно к устройствам для промывки горизонтальных скважин с открытым стволом. Устройство содержит корпус с отводящим и подводящим каналами, выполненными тангенциальными, насадку в отводящем канале, установленный с возможностью свободного вращения в корпусе центрированный ротор с чередующимися пазами и выступами, взаимодействующий с потоком жидкости. В подводящем и отводящем тангенциальных каналах между корпусом и ротором образованы щели за счет смещения подводящего и отводящего каналов. Тангенциальный подводящий канал смещен на большую величину, чем тангенциальный отводящий канал. Площадь сечения щели тангенциального подводящего канала больше площади сечения щели тангенциального отводящего канала. Ротор установлен в корпусе на шариковых опорах с помощью заглушек. Верхняя часть корпуса соединена с колонной промывочных труб. Сверху в корпус установлен шток с проходным каналом. Шток снабжен верхним и нижним рядами радиальных отверстий, разделенных глухой перегородкой, установленной в проходном канале штока, и сообщающихся между собой посредством перепускных продольных каналов, выполненных на внутренней поверхности корпуса. На наружной поверхности корпуса тангенциально размещены лопатки, позволяющие в рабочем положении корпусу вращаться относительно штока. В качестве колонны промывочных труб используют колонну гибких труб. Повышается эффективность работы устройства, снижается вероятность прихвата, снижается длительность спуско-подъемных операций. 4 ил.

Изобретение относится к области нефтегазовой промышленности и может быть использовано для очистки и освоения пласта при повышении проницаемости призабойной зоны пласта. Технический результат - повышение эффективности освоения пласта за счет возможности предварительной очистки призабойной зоны пласта при создании глубокой депрессии. Устройство включает спущенную в скважину колонну насосно-компрессорных труб - НКТ, оснащенную снизу фильтром, а выше - пакером, установленным в скважине выше пласта. В колонне НКТ установлено седло. Предусмотрена возможность установки в колонне НКТ сваба. Предусмотрен запорный элемент для сбрасывания в колонну НКТ. Он выполнен в виде шара, жестко соединенного с глухим штоком. Фильтр выполнен в виде верхнего и нижнего рядов отверстий. Внутри фильтра каждое отверстие верхнего и нижнего рядов оснащено сбивным клапаном, выполненным с возможностью разрушения после сброса в колонну НКТ запорного элемента. Верхний и нижний ряды отверстий фильтра выполнены на расстоянии высоты пласта. Снизу к фильтру жестко закреплена шламосборная камера. Над пакером колонна НКТ оснащена рядом каналов, герметично перекрытых изнутри седлом, зафиксированным к колонне НКТ срезными элементами. Под рядом каналов колонны НКТ выполнена внутренняя кольцевая проточка, в которой установлено стопорное разрезное пружинное кольцо. В колонну НКТ с устья скважины с возможностью осевого перемещения вниз установлена пробка, имеющая возможность взаимодействия с седлом, разрушения срезных элементов, фиксирующих седло в колонне НКТ с открытием ряда каналов в колонне НКТ, и совместного с седлом ограниченного осевого перемещения вниз до упора седла в ограничитель, выполненный на нижнем конце колонны НКТ, и фиксации пробки от осевого перемещения вверх после упора седла в ограничитель колонны НКТ. 5 ил.

Группа изобретений относится к нефтяной промышленности, а именно к оборудованию нефтяных скважин, и может быть использовано для ликвидации парафиногидратных пробок и поддержания в скважинах оптимального теплового режима в целях предупреждения и ликвидации парафиногидратных и асфальтосмолистых отложений на внутренней поверхности насосно-компрессорной трубы. В скважину в зону образования отложений погружается нагревательная система, состоящая из линейного нагревательного элемента в виде внешней грузонесущей стальной брони геофизического кабеля и питающей жилы, которые замыкаются в головной части кабеля при помощи замыкающего элемента (замыкателя). Замыкатель является локальным нагревателем. Во время спуска нагревательной системы в скважину осуществляют преимущественно локальный нагрев в головной части, для этого пропускают высокочастотный электрический ток через питающую жилу, замыкающий элемент и линейный нагревательный элемент. Частоту тока устанавливают на нижнем пороге, чтобы глубина проникновения высокочастотного поля в металл линейного нагревательного элемента была меньше его толщины. При этом тепловыделение преимущественно будет происходить в головной части. За счет этого преодолевают забитые отложениями участки (пробки), спуская нагревательную систему в скважину, при этом температура замыкателя и окружающей его среды контролируется при помощи датчика температуры и поддерживается в необходимом диапазоне системой управления нагревом. После полного погружения нагревательной системы в скважину осуществляют преимущественно попутный нагрев. Для этого система управления нагревом обеспечивает перераспределение мощности между линейным нагревательным элементом и замыкателем, что достигается вводом в насыщение ферромагнитного сердечника замыкателя и уменьшением при этом индуктивного сопротивления высокочастотного провода замыкателя. Затем, регулируя частоту тока в нагревательной системе, регулируют нагрев линейного нагревательного элемента. Устройство содержит систему питания и управления нагревом, нагревательную систему, состоящую из питающей жилы и линейного нагревательного элемента в виде металлического проводника с сечением, выбранным достаточным для удержания веса погружаемой в скважину нагревательной системы, а также замыкатель электрического тока между ними в головной части нагревательной системы. В головной части нагревательной системы располагается датчик температуры, при помощи которого контролируется температура замыкателя и окружающей его среды при спуске нагревательной системы в скважину. Питающая жила выполнена из скрученных и изолированных проводников, замыкатель электрического тока выполнен в виде обмотки из высокочастотного провода, намотанной на ферромагнитный сердечник и помещенной внутрь металлической оболочки, сердечник торцевыми частями замкнут на эту оболочку. Техническим результатом является повышение надежности и расширение функциональных возможностей нагревательной системы. 2 н.п. ф-лы, 3 ил.
Наверх