Способ и устройство для компримирования газа


 


Владельцы патента RU 2553857:

Курочкин Андрей Владиславович (RU)

Изобретение относится к способам и устройствам для компримирования газа и может быть использовано в нефтегазовой и других отраслях промышленности для компримирования газов, содержащих пары тяжелых компонентов, с получением сжатого газа и конденсата. Предложен способ, включающий смешение газа с газом сепарации, компримирование полученной смеси, охлаждение компрессата в условиях дефлегмации внешним хладагентом с получением сжатого газа и конденсата, который дросселируют с получением газа сепарации и стабилизированного конденсата. Для осуществления способа предложено устройство, состоящее из компрессора, оснащенного линией ввода газа, соединенной с сепаратором линией подачи газа сепарации, и соединенного линией подачи компрессата с дефлегматором, оснащенным линией вывода сжатого газа и линией вывода конденсата, на которой установлено дросселирующее устройство. Техническим результатом является увеличение объемного выхода сжатого газа, снижение давления насыщенных паров конденсата и уменьшение потерь тяжелых компонентов со сжатым газом. 2 н. и 2 з.п ф-лы, 1 ил.

 

Изобретение относится к способам устройствам для компримирования газа и может быть использовано в нефтегазовой и других отраслях промышленности для компримирования газов, содержащих пары тяжелых компонентов, с получением сжатого газа и конденсата.

Известен способ компримирования газа [Соколов Е.Я., Зингер Н.М. Струйные аппараты. - 3-е изд., перераб. - М.: Энергоатомиздат, 1989, с.8] путем сжатия в струйном компрессоре рабочей средой, в качестве которой используют газ или жидкость, и последующей сепарации компрессата с получением сжатого газа, конденсата или отработанной рабочей среды в смеси с конденсатом. Способ осуществляют с использованием устройства, состоящего из струйного компрессора, оснащенного линиями ввода газа и рабочей среды и соединенного линией подачи смеси компрессата и рабочей среды с сепаратором, оборудованным линиями вывода сжатого газа и конденсата (или смеси конденсата с отработанной рабочей средой).

Основным недостатком известных способа и устройства являются большие энергозатраты из-за низкого кпд струйных аппаратов. Кроме того, получаемый сжатый газ загрязнен компонентами рабочей среды, а конденсат является нестабильным и имеет высокое давление насыщенных паров.

Наиболее близки по технической сущности к заявляемому изобретению способ и устройство для компримирования газа [Дронин А.П., Пугач И.А. Технология разделения углеводородных газов. М.: Химия, 1976 г., с.31], которое состоит из компрессора, оснащенного линией ввода газа и линией вывода компрессата, на которой установлен холодильник, оборудованный линиями ввода/вывода внешнего хладагента, соединенный линией подачи охлажденного компрессата с сепаратором, оборудованным линиями вывода сжатого газа и конденсата. При этом газ сжимают с помощью компрессора с получением компрессата, который охлаждают внешним хладагентом (например, водой или воздухом) и сепарируют с получением сжатого газа и конденсата. При компримировании газа, образующего расслаивающийся конденсат, его сепарируют с получением легкого и тяжелого конденсатов, а сепаратор оборудован дополнительной линией вывода легкого конденсата. Недостатками известных способа и устройства являются:

- низкий выход сжатого газа из-за растворения его компонентов в конденсате, особенно при высоком давлении компримирования,

- потери тяжелых компонентов со сжатым газом (например, углеводородов С5+ при компримировании попутного нефтяного газа), особенно при невысоких давлениях компримирования,

- повышенное давление насыщенных паров получаемого конденсата из-за высокого содержания в нем легких компонентов при температуре сепарации, что затрудняет его дальнейшее использование.

Задачей изобретения является увеличение объемного выхода сжатого газа, снижение давления насыщенных паров конденсата и уменьшение потерь тяжелых компонентов со сжатым газом.

При реализации изобретения в качестве технического результата достигается увеличение объемного выхода сжатого газа и уменьшение потерь тяжелых компонентов со сжатым газом за счет охлаждения компрессата в дефлегматоре, снижение давления насыщенных паров конденсата путем повышения температуры сепарации за счет нагревания конденсата в дефлегматоре.

Указанный технический результат достигается тем, что в известном способе, включающем сжатие газа с помощью компрессора, охлаждение компрессата внешним хладагентом и его сепарацию с получением сжатого газа и конденсата, особенность заключается в том, что газ предварительно смешивают с газом сепарации, компрессат охлаждают в дефлегматоре с получением конденсата, который дросселируют до давления газа и сепарируют с получением газа сепарации и стабилизированного конденсата.

При компримировании газа, образующего при охлаждении расслаивающийся конденсат целесообразно стабилизированный конденсат дополнительно сепарировать с получением легкого и тяжелого конденсата.

Предлагаемый способ осуществляют с помощью устройства, состоящего из компрессора, оснащенного линией ввода газа и линией вывода компрессата, на которой установлен холодильник, оборудованный линиями ввода/вывода внешнего хладагента, и сепаратора, оснащенного линией вывода конденсата, особенность которого заключается в том, что в качестве холодильника установлен дефлегматор, оснащенный линией вывода сжатого газа и соединенный линией вывода конденсата, на которой установлено дросселирующее устройство, с сепаратором, оснащенным линией вывода газа сепарации, соединенной с линией ввода газа, и линией вывода стабилизированного компрессата.

При компримировании газа, образующего при охлаждении расслаивающийся конденсат, сепаратор целесообразно дополнительно оборудовать линией вывода легкого конденсата.

В предлагаемом способе охлаждение компрессата, осуществляемое в дефлегматоре, позволяет сконденсировать тяжелые компоненты газа с образованием флегмы, а также осуществить фракционирование последней, за счет чего уменьшить потери тяжелых компонентов со сжатым газом и увеличить объемный выход последнего.

Сепарация конденсата, получаемого в дефлегматоре в нагретом состоянии, позволяет снизить его давление насыщенных паров и получить стабилизированный конденсат.

Установка дефлегматора в качестве холодильника позволяет осуществить предложенный способ, а заявленный технический результат получают за счет полезного использования вторичного энергоресурса - тепла компрессата, которое в известных способах безвозвратно теряется. В качестве дефлегматора может быть использован, например, фракционирующий аппарат с падающей пленкой.

Предлагаемый способ осуществляют следующим образом. Газ (I) смешивают с газом сепарации (II), сжимают компрессором 1, компрессат (III) охлаждают в условиях дефлегмации в дефлегматоре 2 за счет охлаждения внешним хладагентом (IV), с получением сжатого газа (V) и конденсата (VI), который дросселируют с помощью устройства 3 (условно показан дроссельный вентиль) и разделяют в сепараторе 4 на газ сепарации (II) и стабилизированный конденсат (VII).

Сущность изобретения иллюстрируется следующим примером.

5000 нм3/час попутного нефтяного газа состава, % масс.: азот 4,12%, кислород 0,05%, диоксид углерода 1,33%, вода менее 0,01%, сероводород 0,02%, метан 24,47%, этан 20,11%, пропан 22,38%, С4 15,10%, С5 9,92%, С6+ 2,48%, метил- и этилмеркаптаны 0,002%, с температурой 40°C и давлением 0,58 МПа изб. смешивают с 233 нм3/час газа сепарации с температурой 47,6°C. Смесь сжимают до 3,53 МПа изб., полученный компрессат с температурой 149,7°C, охлаждают атмосферным воздухом в условиях дефлегмации и получают 4665 нм3/час сжатого газа с температурой 40,1°C и 1,42 т/час конденсата с температурой 81,8°C, который дросселируют до 0,58 МПа изб. и разделяют на газ сепарации и 0,97 т/час стабилизированного конденсата с давлением насыщенных паров по Рейду 404 кПа. Потери углеводородов С5+ со сжатым газом составили 0,21 т/час.

При компримировании газа в соответствии с прототипом в аналогичных условиях получено 4259 нм3/час сжатого газа и 1,63 т/час углеводородного конденсата с давлением насыщенных паров по Рейду 1688 кПа. Потери углеводородов С5+ со сжатым газом составили 0,572 т/час.

Из примера следует, что предложенные способ и устройство позволяют увеличить объемный выход сжатого газа, уменьшить потери тяжелых компонентов со сжатым газом и снизить давление насыщенных паров конденсата. Изобретение может быть использовано в нефтегазовой и других отраслях промышленности.

1. Способ компримирования газа, включающий сжатие газа с помощью компрессора, охлаждение компрессата внешним хладагентом и его сепарацию с получением сжатого газа и конденсата, отличающийся тем, что газ предварительно смешивают с газом сепарации, компрессат охлаждают в дефлегматоре с получением конденсата, который дросселируют до давления газа и сепарируют с получением газа сепарации и стабилизированного конденсата.

2. Способ по п.1, отличающийся тем, что расслаивающийся конденсат дополнительно сепарируют.

3. Устройство для осуществления способа по п.1, состоящее из компрессора, оснащенного линией ввода газа и линией вывода компрессата, на которой установлен холодильник, оборудованный линиями ввода/вывода внешнего хладагента, и сепаратора, оснащенного линией вывода конденсата, отличающееся тем, что в качестве холодильника установлен дефлегматор, оснащенный линией вывода сжатого газа и соединенный линией вывода конденсата, на которой установлено дросселирующее устройство, с сепаратором, оснащенным линией вывода газа сепарации, соединенной с линией ввода газа, и линией вывода стабилизированного компрессата.

4. Устройство по п.3, отличающееся тем, что сепаратор дополнительно оборудован линией вывода легкого конденсата.



 

Похожие патенты:

Изобретение относится к способам и устройствам для компримирования газа и может быть использовано в нефтегазовой и других отраслях промышленности для компримирования газа, содержащего пары малолетучих (тяжелых) компонентов, в том числе попутного нефтяного газа, с получением сжатого газа и конденсата тяжелых компонентов.

Настоящее изобретение относится к способу улавливания метанола из парогазовой смеси при его хранении и перевалке и может быть использовано в химической, нефтехимической, нефтеперерабатывающей и нефтегазодобывающей промышленности.

Изобретение относится к области теплоэнергетики и может быть использовано на микротурбинных установках малой мощности, от 5 до 40 кВт электрической мощности и от 20 до 270 кВт тепловой.

Изобретение относится к области атомной энергетики. Комплекс включает средство для забора воздуха, компрессор, соединенный с теплообменным устройством для охлаждения сжатого воздуха, турбодетандер, средства для транспортировки воды и воздуха с арматурой.

Изобретение относится к области очистки газов и может быть использовано в различных отраслях промышленности и энергетики для фильтрации потока от содержащихся в нем аэрозольных частиц, в том числе и субмикронных.

Изобретение относится к пищевой, химической, фармацевтической отраслям промышленности, в частности к способам получения этилового спирта и подобных продуктов. .

Изобретение относится к способам конденсации парогазовой смеси в испарительных установках, выпарных аппаратах, конденсаторах, предназначенных для концентрирования и охлаждения растворов, получения опресненной воды, и может найти применение в химической, микробиологической, пищевой и других отраслях промышленности.

Изобретение относится к конструкции установок, предназначенных для хранения нефтепродуктов или легкокипящих жидкостей, используемых в нефтяной, нефтехимической и нефтеперерабатывающей промышленности, а также других отраслях, связанных с хранением и оборотом легкокипящих, а следовательнолегкоиспаряющихся жидкостей, например, при хранении и розничной реализации бензинов на территории городских АЗС или нефтебазах.

Изобретение относится к устройству для очистки технологических или промышленных сточных вод. .

Изобретение относится к способу отделения воды и извлечения уксусной кислоты из потока, выпускаемого из реактора в ходе окисления п-ксилола, с использованием поставляющей энергию совместной дистилляции, включающему направление выпускаемого потока в первую дегидратационную колонну, которая находится в состоянии пониженного давления, после того как выпускаемый поток проходит через каждое устройство для обработки, чтобы выпустить воду из верхней части первой дегидратационной колонны и извлечь первую концентрированную уксусную кислоту из нижней части первой дегидратационной колонны, и направление первой концентрированной уксусной кислоты, выпущенной из нижней части первой дегидратационной колонны, в среднюю часть второй дегидратационной колонны, которая находится при атмосферном давлении или в состоянии повышенного давления, чтобы извлечь конечную концентрированную уксусную кислоту из нижней части второй дегидратационной колонны, при этом рабочее давление первой дегидратационной колонны составляет от -78 до -49 кПа (изб.) (от -0,8 до -0,5 кг/см2 (изб.)), и рабочее давление конденсатора второй дегидратационной колонны составляет от 10 до 167 кПа (изб.) (от 0,1 до 1,7 кг/см2 (изб.)), а конденсатор второй дегидратационной колонны действует как ребойлер первой дегидратационной колонны, используя разность давлений между первой дегидратационной колонной и второй дегидратационной колонной, так что энергию, подаваемую в ребойлер второй дегидратационной колонны, используют как энергию дистилляции первой дегидратационной колонны, посредством чего заметно уменьшают потребление энергии. 3 н.п. ф-лы, 5 ил.

Изобретение относится к способам опреснения морской воды. Способ опреснения морской воды при помощи тонкопленочного полупроводникового термоэлектрического теплового насоса цилиндрической формы включает использование предварительного теплообмена для подогрева морской воды, предназначенной для выпаривания, за счет отвода теплоты от опресненной воды и концентрированного соленого раствора. Тонкопленочный полупроводниковый термоэлектрический тепловой насос цилиндрической формы горячим спаем доводит до кипения морскую воду, отбирая холодным спаем теплоту у конденсируемого пара, работая в режиме интенсификатора теплопередачи. Изобретение позволяет повысить энергетическую эффективность опреснителя. 1 ил.

Изобретение относится к области сборников атмосферной влаги и может быть использовано для получения пресной воды непосредственно из воздуха. Накапливают воду в емкости (1), выполненной из легкого материала в виде поверхности вращения. Емкость (1) поднимают вверх с помощью аэростата (19). Извлечение пресной воды производят из нескольких последовательно расположенных одна над другой емкостей. Объем емкостей изменяют за счет колебательных движений аэростата (19) и гофрированных пружинящих вставок (3) в них. Движение поступающего воздуха в емкости формируют снизу, по спирали с удалением теплого периферийного воздуха во внешнюю среду из каждой емкости. Пресную воду выделяют из внутренних более холодных слоев воздуха. Подъем вверх емкостей облегчают с помощью дополнительных полостей (17), заполненных газом, плотность которого ниже атмосферного. Обеспечивается накапливание большого объема влаги в любое время суток. 1 з.п. ф-лы, 3 ил.

Изобретение относится к технологии и оборудованию для подготовки углеводородных газов и может быть использовано для отбензинивания низконапорного попутного нефтяного газа в нефтяной промышленности. Установка включает компрессор 2, линию ввода газа 8, дефлегматор 4, установленный на линии подачи компрессата, оснащенный линиями вывода флегмы 14 и сжатого газа 12, оборудованный тепломассообменными секциями, верхняя из которых оснащена линией вывода отбензиненного газа 13 и линией ввода редуцированного газа 11, на которой расположено редуцирующее устройство 6, при этом к линии ввода газа 8 примыкает линия подачи газа стабилизации 9 и холодильник-сепаратор 1, оснащенный линией вывода конденсата 15 и связанный с компрессором 2 линией подачи газа сепарации, дефлегматор 4 дополнительно оснащен тепломассообменной секцией, соединенной с линией подачи компрессата, линии вывода флегмы 14 и конденсата 15 соединены с сепаратором 7, оснащенным линиями вывода стабилизированного конденсата 16 и газа стабилизации 9, а на линии вывода сжатого газа дополнительно установлены компрессор второй ступени 3 и холодильник 5. Способ, осуществляемый в данной установке, включает сжатие газа, охлаждение компрессата внешним хладагентом и редуцированном сжатым газом в условиях дефлегмации с получением флегмы и сжатого газа, при этом перед сжатием газ смешивают с газом стабилизации, охлаждают и сепарируют с получением конденсата и газа сепарации, перед охлаждением в условиях дефлегмации сжатый газ охлаждают флегмой в условиях ее стабилизации, дополнительно компримируют, охлаждают, редуцируют и нагревают, при этом флегму и конденсат совместно сепарируют с получением газа стабилизации и стабилизированного конденсата. Техническим результатом изобретения является повышение выхода отбензиненного газа за счет сжатия газа в смеси с газом стабилизации и охлаждения компрессата в условиях дефлегмации дополнительно компримированным охлажденным сжатым газом, а также снижение давления насыщенных паров конденсата за счет его стабилизации и сепарации. 2 н.п. ф-лы, 1 ил.

Устройство для извлечения пресной воды из атмосферного воздуха содержит емкость для сбора влаги, выполненную из легкого материала (полипропилена) в виде поверхности вращения, аэростат, поднимающий емкость. Емкость для сбора влаги выполнена из нескольких последовательно расположенных друг над другом емкостей с раструбом и верхней крышкой. В нижней части каждая емкость содержит цилиндрическую пружинящую гофрированную вставку. Основание каждой емкости закреплено на крышке емкости, расположенной ниже. Во всех емкостях в крышке сбоку имеется выпускное отверстие с обратным клапаном, допускающим выход воздуха наружу. В нижней части всех емкостей на дне с краю дополнительно имеется входное отверстие, соединяющее между собой соседние емкости, расположенные одна над другой. В нижней емкости входное отверстие соединяется с наружным воздухом. Все входные отверстия заканчиваются боковой трубкой, выводящей воздух так, чтобы он перемещался по часовой стрелке, по окружности, вдоль внутренней поверхности гофрированной вставки. Отверстие боковой трубки имеет обратный клапан, не допускающий прохождения воздуха в обратную сторону. В центре крышки имеется центральное отверстие для пропускания воздуха в установленную выше емкость. Из верхней емкости воздух из центрального отверстия выходит наружу. Над центральными отверстиями установлены слезники, изготовленные из фольги, пластинки фольги параллельны оси симметрии. Под слезниками установлены воронкообразные водосборники с трубками, проходящими по оси симметрии вдоль емкостей. Под нижней емкостью имеется общий поддон, выполненный в виде раструба, обращенного расширенной частью вниз и покоящегося на решетчатом основании, прикрепленном к поверхности. Поверхность решетчатого основания снабжена общим водосборником. Технический результат - увеличение объема накапливаемой влаги. 4 з.п. ф-лы, 5 ил.
Наверх