Стенд для испытаний корпусов типа "кокон" ракетных двигателей на твердом топливе на внутреннее давление



Стенд для испытаний корпусов типа кокон ракетных двигателей на твердом топливе на внутреннее давление
Стенд для испытаний корпусов типа кокон ракетных двигателей на твердом топливе на внутреннее давление
Стенд для испытаний корпусов типа кокон ракетных двигателей на твердом топливе на внутреннее давление
Стенд для испытаний корпусов типа кокон ракетных двигателей на твердом топливе на внутреннее давление
Стенд для испытаний корпусов типа кокон ракетных двигателей на твердом топливе на внутреннее давление

 


Владельцы патента RU 2554695:

Публичное акционерное общество "Научно-производственное объединение "Искра" (ПАО "НПО "Искра") (RU)

Изобретение относится к ракетной технике, а именно к стендам для проведения гидроиспытаний корпусов ракетных двигателей на твердом топливе, как на рабочее давление, так и на давление формования твердотопливного заряда. Стенд для испытаний корпусов типа «кокон» ракетных двигателей на твердом топливе на внутреннее давление содержит имитатор корпуса сопла и разгрузочное устройство заднего фланца. Разгрузочное устройство установлено на имитаторе корпуса сопла и имеет цилиндры разных диаметров и два поршня, имеющие упор, связанный с силовым полом стенда. Цилиндры и поршни расположены один за другим вдоль оси, причем как цилиндры, так и поршни скреплены между собой. Цилиндр малого диаметра скреплен с имитатором корпуса сопла. Поршень малого диаметра выполнен удлиненным, а в его нижней цилиндрической части расположены уплотнения. Сечение верхней части поршня малого диаметра, перпендикулярное его оси, представляет собой круг с вырезами по краю, при этом на дугах между вырезами существуют три точки, которые являются вершинами остроугольного треугольника. Изобретение позволяет повысить надежность стенда для испытаний корпусов за счет исключения перекоса поршней при осевом перемещении цилиндров. 5 ил.

 

Изобретение относится к ракетной технике, а именно к стендовому оборудованию, предназначенному для гидроиспытаний корпусов типа «кокон» ракетных двигателей на твердом топливе (РДТТ) на внутреннее давление.

При работе РДТТ задний фланец корпуса нагружается осевой силой от внутреннего давления, уменьшенной на величину тяги двигателя (разгрузка). В связи с этим при гидроиспытаниях применяется устройство для разгрузки заднего фланца, состоящее из цилиндра, связанного с задним фланцем, и поршня, шток которого связан с силовой рамой, либо с силовым полом стенда. Диаметр разгрузочного поршня d определяется из соотношения:

π d 2 4 p = T ,

где p - давление в двигателе;

Т - тяга.

Кроме того, в ряде случаев проводится дополнительное гидроиспытание корпуса на давление формования твердотопливного заряда Рф, которое меньше рабочего, с целью определения изменения формы заднего днища и осевых перемещений заднего фланца, которые в дальнейшем используются для расчетов напряженно-деформированного состояния твердотопливного заряда после охлаждения и извлечения формующей оснастки. Гидроиспытание корпуса на давление формования твердотопливного заряда проводится с разгрузочным устройством, диаметр поршня которого Dф равен диаметру формующей заряд оснастки. При этом величина силы разгрузки составляет:

Т ф = π D ф 2 4 Р ф

Известен стенд для гидроиспытаний корпуса (патент РФ №2195642), содержащий силовую раму с элементами для крепления корпуса и устройство для разгрузки соплового фланца на величину тяги. Также известен стенд для испытаний крупногабаритных ракетных корпусов типа «кокон» на внутреннее давление с разгрузочным устройством заднего днища, обеспечивающим имитацию нагружения корпуса при формовании заряда (патент РФ №2433382).

Известно техническое решение, которое позволяет существенно сократить длительность и стоимость проведения гидроиспытаний корпуса РДТТ типа «кокон» в случае, когда необходимо провести дополнительное испытание на давление формования заряда и сократить производственный цикл изготовления корпуса за счет исключения операций по переустановке разгрузочных устройств и без промежуточного слива и повторного заполнения испытательной жидкостью в процессе проведения испытания. При этом используется разгрузочное устройство с двумя поршнями и цилиндрами разных диаметров, соответствующих обоим случаям нагружения корпуса. В нем поршень малого диаметра расположен внутри поршня большого диаметра, цилиндр которого через имитатор корпуса сопла связан с задним фланцем корпуса (патент РФ №2503943) - прототип. Каждый случай нагружения определяется положением упора поршня, связанного с силовым полом стенда: нижнее (рабочее давление), верхнее (давление формования заряда).

Однако в таком разгрузочном устройстве при испытании на давление формования твердотопливного заряда Рф возможен перекос поршня большого диаметра в пределах заданных допусков в случае некоторого различия в распределении коэффициентов трения в окружном направлении по боковой поверхности между поршнем и цилиндром, приводящее к дополнительным нерегламентированным нагрузкам и искажению результатов перемещений заднего фланца корпуса.

Технической задачей настоящего изобретения является создание конструкции разгрузочного устройства для испытаний на два случая нагружения (на рабочее давление и на давление формования заряда) с более высокой надежностью работы, исключающей возможный перекос поршня в цилиндре большого диаметра по сравнению с техническим решением по патенту РФ №2503943.

Технический результат достигается тем, что в стенде для испытаний корпусов типа «кокон» ракетных двигателей на твердом топливе на внутреннее давление, содержащем имитатор корпуса сопла и разгрузочное устройство заднего фланца, установленное на имитаторе корпуса сопла, с цилиндрами разных диаметров и двумя поршнями, имеющими упор, связанный с силовым полом стенда, цилиндры и поршни расположены один за другим вдоль оси, причем как цилиндры, так и поршни скреплены между собой, цилиндр малого диаметра скреплен с имитатором корпуса сопла, поршень малого диаметра выполнен удлиненным, в его нижней цилиндрической части расположены уплотнения, а в верхней части сечение, перпендикулярное оси поршня, представляет собой круг с вырезами по его краю, при этом на дугах между вырезами существуют три точки, которые являются вершинами остроугольного треугольника.

На фиг. 1 приведено разгрузочное устройство предлагаемой конструкции при испытании корпуса 1 на рабочее давление с разгрузкой от силы тяги. Поршень 2 (малого диаметра d) с уплотнениями 3 в нижней части и продольными вырезами 4 по цилиндрической поверхности в верхней части и поршень 5 (большого диаметра Dф) расположены последовательно вдоль оси и скреплены между собой. Цилиндр 6 (малого диаметра d) и цилиндр 7 (большого диаметра Dф) также расположены последовательно вдоль оси и скреплены между собой. Цилиндр 6 связан с задним фланцем 8 корпуса 1 через имитатор корпуса сопла 9, а скрепленные между собой поршни опираются на упор 10, связанный с силовым полом стенда.

На фиг. 2 приведено положение элементов разгрузочного устройства предлагаемой конструкции стенда при испытании корпуса на давление формования заряда. Скрепленные между собой поршни смещены вниз. Нижняя часть поршня 2 с уплотнениями 3 выведена из цилиндра 6, а часть поршня 2 с вырезами 4 частично выведена из цилиндра 2. Цилиндр 6 большого диаметра через вырезы 4 в поршне 2 заполнен испытательной жидкостью и находится под давлением формования заряда Рф.

На фиг. 3 показано сечение верхней части поршня малого диаметра 2 с вырезами 4 и дугами 11 с тремя выбранными на них точками 12, образующими вершины остроугольного треугольника.

На фиг. 4 показан вариант возможного сечения верхней части поршня малого диаметра 2, содержащий три выреза 4 и три дуги 11 с тремя точками 12, образующими вершины остроугольного треугольника.

На фиг. 5 показан вариант недопустимого сечения верхней части поршня малого диаметра 2, в котором невозможно выбрать три точки на дугах 11 так, чтобы образованный ими треугольник был остроугольным (один из углов больше 90 градусов).

Предлагаемое изобретение исключает перекос поршней при осевом перемещении цилиндров, так как боковые опорные поверхности находятся на каждом из скрепленных между собой поршней и расположены по оси на расстоянии друг от друга. Условие существования в сечении верхней части поршня малого диаметра на дугах 11 между вырезами 4 трех точек 12, образующих вершины остроугольного треугольника (фиг. 3, 4), обеспечивает центрирование верхней части поршня 2 в цилиндре 6 при испытании на давление формования заряда (фиг. 2). Показанное на фиг. 5 недопустимое сечение (треугольник тупоугольный) позволяет отклоняться верхней части поршня от оси цилиндра, при этом нарушается работоспособность устройства.

Таким образом, предлагаемое изобретение исключает перекос поршня в цилиндре большого диаметра и повышает надежность работы устройства.

Стенд для испытаний корпусов типа «кокон» ракетных двигателей на твердом топливе на внутреннее давление, содержащий имитатор корпуса сопла и разгрузочное устройство заднего фланца, установленное на имитаторе корпуса сопла, с цилиндрами разных диаметров и двумя поршнями, имеющими упор, связанный с силовым полом стенда, отличающийся тем, что цилиндры и поршни расположены один за другим вдоль оси, причем как цилиндры, так и поршни скреплены между собой, цилиндр малого диаметра скреплен с имитатором корпуса сопла, поршень малого диаметра выполнен удлиненным, в его нижней цилиндрической части расположены уплотнения, а в верхней части сечение, перпендикулярное оси поршня, представляет собой круг с вырезами по его краю, при этом на дугах между вырезами существуют три точки, которые являются вершинами остроугольного треугольника.



 

Похожие патенты:

Изобретение относится к области испытаний ракетных двигателей, а именно к стапелям для измерения осевой силы тяги ракетных двигателей. Стапель для измерения осевой силы тяги ракетного двигателя содержит неподвижную раму, подвижную часть с узлами крепления двигателя, переходник и преобразователи силы.

При термовакуумных испытаниях термокаталитических двигателей в составе космического аппарата на камеру термокаталитического разложения рабочего тела с соплом устанавливают герметичную заглушку, магистраль межблочного трубопровода через проверочную горловину и технологическую магистраль сообщают со стендовым средством вакуумирования, мановакуумметром и газовым пультом, между которыми установлен вентиль.
Изобретение относится к комплексам автоматизированного управления ракетными формированиями и формированиями реактивных систем залпового огня крупного калибра.

Изобретение относится к ракетной технике и может быть использовано при экспериментальной отработке заборных устройств, установленных в топливных баках ракет, для экспериментального определения гидравлических остатков незабора топлива в динамических условиях.

Изобретение относится к ракетной технике и может быть использовано при экспериментальной отработке заборных устройств, установленных в топливных баках ракет, для экспериментального определения гидравлических остатков незабора топлива.

Группа изобретений относится к ракетно-космической технике и может быть использована при проведении физического моделирования процессов газификации остатков жидкого топлива в баках отделяющихся частей (ОЧ) ступени ракет-носителей (РН) в условиях малой гравитации с использованием экспериментальных модельных установок в земных условиях, а также и при натурных пусках РН с системами газификации.

Изобретение относится к ракетной технике и может быть использовано при создании деталей из углерод-углеродного композиционного материала (УУКМ), работающих в условиях воздействия высокотемпературной окислительной среды на поверхности деталей ракетной техники.

Изобретение относится к технике, связанной с испытанием сопл, и может быть использовано при проведении модельных испытаний. Устройство содержит подводящий трубопровод, соединенный с ресивером, выполненным с возможностью разъемного соединения с испытываемым соплом в двух взаимно перпендикулярных плоскостях посредством съемных фланцевых накладок и с возможностью опирания измерительными средствами на корпус ресивера, в котором подводящий трубопровод снабжен упругой вставкой.

Изобретение относится к ракетно-космической технике и может быть использовано в газогидравлических магистралях жидкостных ракетных двигателей. В способе установки геометрической оси камер жидкостного ракетного двигателя в номинальном положении, основанном на исключении влияния технологических отклонений при изготовлении агрегатов, деталей и сборочных единиц, а также усадки материала в сварных швах стыков газовых магистралей между турбонасосным агрегатом и головками камер на угловое отклонение геометрических осей камер от номинального положения, согласно изобретению измерение фактических параметров замыкающего компенсирующего устройства, его изготовление, подгонка и сварка выполняются на заключительной стадии сборки магистралей после выполнения всех сварных швов стыкуемых агрегатов деталей и сборочных единиц.

Изобретение относится к испытательной технике и, в частности, к испытаниям камер сгорания и газогенераторов жидкостных ракетных двигателей (ЖРД) с целью оценки высокочастотной устойчивости процесса горения.

Изобретение относится к области ракетной техники, а именно к стендовому оборудованию, применяемому при огневых стендовых испытаниях ракетных двигателей твердого топлива. Установка для гашения работающего ракетного двигателя твердого топлива при испытаниях в газодинамической трубе содержит источник хладагента и соединенное с ним через управляющий клапан устройство подачи хладагента в камеру сгорания. В газодинамической трубе за срезом сопла размещен инжектор, а перед инжектором установлены форсунки, соединенные с источником хладагента через управляющий клапан, срабатывающий при достижении заданного давления в камере сгорания. Устройство подачи хладагента в камеру сгорания снабжено вскрывающим элементом, выполненным в виде цилиндра, внутри которого размещен полый поршень с коническим штоком. В штоке выполнены каналы, подающие хладагент, а на корпусе цилиндра установлен пиропатрон. Изобретение позволяет сократить время гашения ракетного двигателя твердого топлива при испытаниях в газодинамической трубе. 2 ил.

Экспериментальный газогенератор для определения параметров продуктов сгорания твердых топлив, включающий корпус, переднюю крышку, сопловой блок и заряд торцевого горения из твердого топлива, а также датчик тяги, выполненный с возможностью упора в опорную плиту. В корпусе экспериментального газогенератора расположен инертный наполнитель, на который опирается заряд торцевого горения. Между корпусом и сопловым блоком выполнена коническая вставка со штуцерами для датчиков давления и температуры, а в сопловом блоке расположено сопло с дозвуковой и сверхзвуковой частями. Изобретение позволяет испытывать заряд произвольной длины, а также повысить степень достоверности определения потерь удельного импульса тяги. 3 ил.

Изобретение относится к области двигателестроения и может быть использовано при создании жидкостных ракетных двигателей (ЖРД), снабженных устройствами гашения колебаний (демпферами). Изобретение предназначено, в частности, для определения амплитудно-фазовых частотных характеристик газового демпфера с перфовставкой, и расчета на основании полученных данных оптимальных параметров демпфера, при которых его эффективность максимальна. Способ включает измерение и сравнение откликов демпфера на возмущающее воздействие в виде гармонических колебаний. При этом демпфер устанавливают на модель натурного трубопровода. Заполняют систему рабочей жидкостью, создают рабочее давление. Надувают газовый демпфер до установки рабочего уровня жидкости в нем. Формируют серии возмущающих воздействий в виде гармонических колебаний с рабочим диапазоном частот для задаваемых величин амплитуд колебаний давления, разных для каждой серии. Измеряют отклики демпфера в виде амплитуд колебаний давления в газовой полости демпфера и в модели натурного трубопровода на входе в демпфер, а также фазовый сдвиг между указанными амплитудами. Технический результат заключается в повышении точности определения амплитудно-фазовых частотных характеристик демпфера. 5 з.п. ф-лы, 1 ил.

При подтверждении внутрибаллистических и энергетических характеристик твердотопливного заряда ракетного двигателя сжигают серию зарядов с различной скоростью горения в камере-имитаторе с расходным круглым отверстием критического сечения с замером давления в камере-имитаторе. Перед сжиганием заряд термостатируется до температуры, обеспечивающей скорость горения заряда и давление в двигателе с минимальными отклонениями от их номинальных значений и определяемой по формуле, защищаемой настоящим изобретением. Стендовое устройство для подтверждения внутрибаллистических и энергетических характеристик твердотопливного заряда ракетного двигателя содержит металлический стапель с горизонтальной поворотной плитой для крепления камеры-имитатора с расходным круглым отверстием критического сечения, датчик замера давления в камере-имитаторе и силоизмеритель между поворотной плитой и стапелем. Стапель имеет вертикальную упорную стенку, к которой крепится кронштейн с подшипниковым узлом для вертикального вала поворотной плиты. Силоизмеритель закреплен на вертикальной упорной стенке стапеля и соприкасается с боковой поверхностью поворотной плиты. Поворотная плита и вертикальная упорная стенка стапеля связаны в горизонтальной плоскости витой пружиной для начального поджатия поворотной плиты стапеля к силоизмерителю. Поворотная плита под камерой-имитатором имеет вертикальные стойки, соприкасающиеся с полом стенда через концевые подшипники, оси которых перпендикулярны оси силоизмерителя. Камера-имитатор заключена в теплоизолирующий кожух и имеет трубопровод с соплом, ось которого параллельна оси силоизмерителя. Оси трубопровода с соплом и силоизмерителя перпендикулярны вертикальной упорной стенке стапеля. Группа изобретений позволяет снизить погрешность при определении внутрибаллистических и энергетических характеристик твердотопливного заряда ракетного двигателя. 2 н. и 2 з.п. ф-лы, 6 ил.

Изобретение относится к ракетной технике и может быть использовано для определения скорости горения твердого ракетного топлива при стационарном и переменном давлении в камере сгорания. Способ включает подготовку, монтаж и сжигание цилиндрического образца твердого ракетного топлива в камере сгорания, имеющей систему регистрации давления и вентили подачи и сброса давления, нанесение пропилов на поверхность образца, поджигание образца, поддержание и контроль давления в камере на уровне заданного, определение скорости горения по расчетным соотношениям. Поддержание и контроль давления осуществляется автоматически, а сжигание образца осуществляется в камере сгорания, заполненной до начала горения инертным газом, сжатым до требуемого уровня. Перед монтажом у испытуемого образца, со стороны наружной цилиндрической поверхности, на фиксируемых расстояниях от переднего торца образца в радиальном направлении ножевыми резцами наносят две или более кольцевых радиальных просечек и затем бронируют образец по цилиндрической поверхности, причем просечки наносят в начале и конце каждого контрольного участка. Скорость горения твердого ракетного топлива определяют на контрольном участке горящего свода образца по расчетным соотношениям. Изобретение повысить точность определения скорости горения твердого ракетного топлива. 5 ил., 1 табл.

Изобретение относится к области ракетной техники, а именно к стендовому оборудованию, применяемому при огневых стендовых испытаниях ракетных двигателей твердого топлива. Установка для гашения ракетного двигателя твердого топлива при испытаниях содержит связанную с системой подачи охлаждающей жидкости полую штангу с форсункой. Между полой штангой с форсункой и системой подачи охлаждающей жидкости размещены телескопически сочлененные между собой полые поршни, причем у юбки каждого поршня установлен коллектор перетекания охлаждающей жидкости, а у днища каждого поршня выполнены радиальные каналы, соединяющие полость поршня в его выдвинутом положении с коллектором перетекания охлаждающей жидкости смежного поршня. По периметру коллекторов перетекания охлаждающей жидкости установлены форсунки. На полом поршне установлен центрирующий механизм, выполненный в виде поворотных стержней с фиксаторами начального и конечного положений. Изобретение позволяет получить достоверную информацию о состоянии материальной части, в том числе ракетных двигателей большого удлинения, а также высотных ракетных двигателей при огневых стендовых испытаниях в газодинамических трубах. 1 з.п. ф-лы, 9 ил.

Изобретение относится к ракетно-космической технике, в частности к моделированию процесса сжигания продуктов газификации неизрасходованных остатков жидких компонентов ракетного топлива в баках отработанной ступени ракеты-носителя. В способе моделирования, включающем введение в экспериментальную установку продуктов газификации из каждого бака, зажигание рабочей смеси, проведение измерений параметров процесса, в соответствии с изобретением при моделировании процесса сжигания продуктов газификации окислителя, исследуемый состав приготавливают путем смешения газообразного окислителя, паров воды и гелия, а при моделировании процесса сжигания продуктов газификации горючего, исследуемый состав приготавливают путем смешения теплоносителя, газообразного горючего и гелия. Устройство для реализации способа, включающее в свой состав коллектор, экспериментальный бак, магистрали подачи компонентов топлива, при этом в его состав введены баллоны, наполненные продуктами газификации компонентов топлива и соединенные через регулируемые клапаны, и дроссели с коллектором, система зажигания продуктов газификации. Изобретение обеспечивает расширение экспериментальных методов исследований сжигания сложных составов, а также снижение затрат при проведении экспериментальных исследований. 2 н.п. ф-лы, 1 ил.
Наверх