Способ установки геометрической оси камеры жрд и компенсирующее замыкающее устройство для его реализации



Способ установки геометрической оси камеры жрд и компенсирующее замыкающее устройство для его реализации
Способ установки геометрической оси камеры жрд и компенсирующее замыкающее устройство для его реализации
Способ установки геометрической оси камеры жрд и компенсирующее замыкающее устройство для его реализации
Способ установки геометрической оси камеры жрд и компенсирующее замыкающее устройство для его реализации
Способ установки геометрической оси камеры жрд и компенсирующее замыкающее устройство для его реализации
Способ установки геометрической оси камеры жрд и компенсирующее замыкающее устройство для его реализации
Способ установки геометрической оси камеры жрд и компенсирующее замыкающее устройство для его реализации
Способ установки геометрической оси камеры жрд и компенсирующее замыкающее устройство для его реализации
Способ установки геометрической оси камеры жрд и компенсирующее замыкающее устройство для его реализации
Способ установки геометрической оси камеры жрд и компенсирующее замыкающее устройство для его реализации
Способ установки геометрической оси камеры жрд и компенсирующее замыкающее устройство для его реализации
Способ установки геометрической оси камеры жрд и компенсирующее замыкающее устройство для его реализации

 


Владельцы патента RU 2526998:

Открытое акционерное общество "Конструкторское бюро химавтоматики" (RU)

Изобретение относится к ракетно-космической технике и может быть использовано в газогидравлических магистралях жидкостных ракетных двигателей. В способе установки геометрической оси камер жидкостного ракетного двигателя в номинальном положении, основанном на исключении влияния технологических отклонений при изготовлении агрегатов, деталей и сборочных единиц, а также усадки материала в сварных швах стыков газовых магистралей между турбонасосным агрегатом и головками камер на угловое отклонение геометрических осей камер от номинального положения, согласно изобретению измерение фактических параметров замыкающего компенсирующего устройства, его изготовление, подгонка и сварка выполняются на заключительной стадии сборки магистралей после выполнения всех сварных швов стыкуемых агрегатов деталей и сборочных единиц. Способ реализуется компенсирующим замыкающим устройством газовых магистралей, содержащим компенсационную втулку с проточками по ее стыкам для установки подкладных колец, в котором согласно изобретению проточки для установки подкладных колец выполнены длиной, равной длине подкладных колец, а над проточками просверлены сквозные отверстия, в которых установлены фиксаторы для перемещения подкладных колец в зону сварных швов стыков деталей и сборочных единиц; проточки в фиксаторах под отвертку развернуты перпендикулярно плоскости проекции скоса; фиксаторы установлены по периметру через углы, равные 120°; в отверстиях компенсационной втулки и головках фиксаторов выполнены фаски для исключения непроваров корня сварных швов. Изобретение обеспечивает повышение точности ее установки и снижение потерь вектора тяги работающего в полете или на стенде двигателя. 2 н. и 3 з.п. ф-лы, 12 ил.

 

Изобретение относится к ракетно-космической технике и может быть использовано в газогидравлических магистралях жидкостных ракетных двигателей (ЖРД) для обеспечения заданного расположения геометрических осей камер и уменьшения потерь вектора тяги на боковую составляющую.

Известен способ установки геометрической оси камер жидкостного ракетного двигателя (ЖРД) в номинальном положении, основанный на установке в газовых магистралях между турбонасосным агрегатом и головками камер замыкающих компенсирующих устройств (компенсационных втулок), изготовленных с учетом монтажа агрегатов, деталей и сборочных единиц на струбцинах до выполнения сварных швов по их стыкам друг с другом.

Известно замыкающее компенсирующее устройство, установленное в газовой магистрали ЖРД, для реализации известного способа установки геометрической оси камер ЖРД (рабочие чертежи 14Д23.00-00.000ГЧ, 14Д23.Б.00-00.000СБ разработки ОАО КБХА г. Воронеж, см. фиг.1, прототип).

Газовая магистраль ЖРД с 4-мя камерами для третьей ступени ракеты-носителя «Союз-2» установлена между турбонасосным агрегатом 1 и камерой 2 и содержит патрубки 3, 4, 5, 6 (см. фиг.2), теплообменник 7, блок гибких трубопроводов (БГТ) 8 и компенсирующие устройства 9, 10. В сварных соединениях компенсирующих устройств с ответными патрубками 4, 5, 6 и теплообменником 7 установлены стандартные подкладные кольца 11, 12 (см. фиг.3 и 4) шириной 10 мм и температурным зазором h=1,2 мм на усадку присадочного материала после выполнения сварных швов, обозначенных символом «».

Компенсирующие устройства 9 и 10 подгоняются и дорабатываются по месту после установки на двигателе всех составляющих газовой магистрали: патрубков 3, 4, 5, 6, теплообменников 7, блоков гибких трубопроводов 8 на струбцинах 13 до выполнения сварных швов.

Выполнение сварных швов производится после сборки магистрали и предварительной прихватки сваркой входящих в нее ДСЕ (деталей, сборочных единиц), агрегатов и блоков гибких трубопроводов. Таким способом сборки магистрали обеспечивается расположение геометрической оси N камеры 2 (см. фиг.1).

Недостатком известного способа установки камеры является невысокая его точность, ввиду того, что подгонка замыкающих компенсирующих устройств проводится до выполнения сварных швов входящих в магистраль ДСЕ, что приводит в свою очередь к повышенным зазорам в стыках и влиянию суммарной усадки присадочного материала в сварных швах ДСЕ и агрегатов магистрали на расположение ее геометрической оси «N» камеры, вследствие чего происходит отклонение указанной оси от номинального расположения «N» в расположение «M» на угол γ, превышающий заданный техническим заданием угол γ=15′ примерно на 10′-15′.

Поскольку геометрические оси противоположных камер сгорания, установленных в плоскостях стабилизации I-III (KC1÷KC3), плоскостях стабилизации II-IV (см. фиг.1 и 10) (КС2÷КС4), отклонены на различные углы γ1, γ3, γ2, γ4 соответственно, то их результирующие вызывают ассиметрию векторов тяг RКС1…RКС4 камер, что приводит к некоторой их потере на боковые составляющие Rбок1…Rбок4.

Задачей предложенного способа установки геометрической оси камер жидкостного ракетного двигателя в номинальном положении и компенсирующего замыкающего устройства для его реализации является исключение влияния технологических отклонений при изготовлении агрегатов, деталей и сборочных единиц, а также усадки материала в сварных швах стыков газовых магистралей между турбонасосным агрегатом и головками камер на угловое отклонение геометрических осей камер от номинального положения, т.е. повышение точности ее установки и снижение потерь вектора тяги работающего в полете или на стенде двигателя.

Поставленная задача достигается тем, что в предлагаемом способе установки геометрической оси камеры сгорания жидкостного ракетного двигателя, включающем выставление камер в номинальное положение, установку замыкающих компенсирующих устройств, изготовленных с учетом монтажа агрегатов, деталей и сборочных единиц, установленных на струбцинах, согласно изобретению после выставления камер в стапеле в номинальное положение производят попарную сборку газоводов противоположных камер сгорания, при этом агрегаты и детали сборочных единиц арматуры питания устанавливают на струбцинах, затем устанавливают раздвижные и подпружиненные имитаторы компенсирующих устройств, после прихватки деталей сборочных единиц и агрегатов по стыкам сваркой струбцины снимают и производят сварку магистралей по стыкам противоположных пар камер сгорания, расположенных во взаимно перпендикулярных плоскостях, извлекают имитаторы компенсирующих устройств из магистрали со сжатием раздвижной пружины, определяют геометрические параметры компенсационной втулки, полученные с учетом усадки всех сварных швов в деталях сборочных единиц: длину, эксцентриситет, углы наклона и разворота стыковочных фланцев, выполняют ее изготовление, подгонку и сварку на заключительной стадии сборки магистралей после выполнения всех сварных швов стыкуемых агрегатов, деталей и сборочных единиц.

Указанный способ реализуется компенсирующим замыкающим устройством газовых магистралей, содержащем компенсационную втулку с проточками по ее стыкам для установки подкладных колец, в котором согласно изобретению проточки для установки подкладных колец выполнены длиной, равной длине подкладных колец, а над проточками просверлены сквозные отверстия, в которых установлены фиксаторы для перемещения подкладных колец в зону сварных швов стыков деталей и сборочных единиц; проточки в фиксаторах под отвертку развернуты перпендикулярно плоскости проекции скоса; фиксаторы установлены по периметру через углы, равные 120°; в отверстиях компенсационной втулки и головках фиксаторов выполнены фаски для исключения непроваров корня сварных швов.

Предлагаемое изобретение поясняется чертежами.

На фиг.1 представлен главный вид на жидкостный ракетный двигатель с дожиганием генераторного газа,

где:

1 - турбонасосный агрегат (ТНА);

2 - камера сгорания (КС1…КС4);

«N» - геометрическая ось камеры в теоретическом номинальном положении;

«M» - геометрическая ось камеры в реальном отклоненном положении от номинального;

RКС - тяга камеры сгорания;

Rбок - боковая составляющая тяги камеры сгорания.

На фиг.2 приведен вид А на газовую магистраль между THA1 и камерой сгорания 2, содержащую компенсирующие устройства (прототип), где:

3, 4, 5, 6 - патрубки;

7 - теплообменник;

8 - блок гибких трубопроводов;

9, 10 - компенсирующие устройства;

13 - струбцины.

На фиг.3 показан выносной элемент Б в виде разреза места соединения компенсирующего устройства 9, установленного между теплообменником 7 и патрубком 4 прототипа,

где:

11 - подкладные кольца длиной 10 мм;

- сварной шов.

h - зазор в соединениях компенсирующих устройств 9, 10.

На фиг.4 показан выносной элемент В в виде разреза места соединения компенсирующего устройства 10, установленного между патрубками 5 и 6 прототипа,

где:

12 - подкладные кольца.

На фиг.5 приведен вид на газовую магистраль между ТНА и камерой сгорания того же двигателя, изображенного на фиг.1, но для предлагаемого изобретения,

где:

1, 2, 3, 4, 5, 6, 7, 8, 10 - те же элементы газовой магистрали, что и в устройстве-прототипе;

14 - компенсирующее устройство предлагаемого изобретения.

На фиг.6 показан разрез Г-Г по соединению компенсирующего устройства, установленного между теплообменником 7 и патрубком 4 предлагаемого изобретения,

где:

15 - компенсационная втулка;

l1 - проточка длиной 10 мм в компенсационной втулке 15, равная длине подкладного кольца;

16, 17 - стыки приваренных ДСЕ;

d - сквозные отверстия в компенсационной втулке 15;

18 - фиксаторы.

На фиг.7 представлен фиксатор 18, основными конструктивными элементами которого являются:

19 - проточка в головке под отвертку;

20 - скос;

Проточка 19 (см. фиг.7) в головке фиксатора 18 выполнена строго перпендикулярно плоскости проекции скоса 20 на плоскость чертежа, что является необходимым условием для определения положения сдвинутого в зону сварного шва подкладного кольца и острия скоса фиксатора, поскольку после монтажа компенсирующего устройства 14 в стыки 16, 17 сборочных единиц арматура питания, подкладные кольца и скосы являются невидимыми для глаз слесаря-сборщика.

На фиг.8 дано сечение Д-Д по плоскости, в которой располагаются фиксаторы 18. Для предотвращения проворота подкладных колец 11 в проточках l1 стыков фиксаторы установлены в количестве 3 шт. равномерно через 120° по периметру.

На фиг.9 показан вариант исполнения головок фиксаторов 18 и отверстий d в компенсационной втулке 15 с разделкой (фасками) под сварку с тем, чтобы после обварки головок фиксаторов не было непроваров корня сварных швов,

где:

21 - разделки (фаски).

На фиг.10 приведен вид сверху на двигатель,

где:

22 - газовые магистрали.

Компенсирующее замыкающее устройство газовых магистралей 22 для реализации способа установки геометрической оси камер ЖРД в номинальном положении содержит компенсационную втулку 15, представленную на фиг.6, с проточками l1 по ее стыкам для установки подкладных колец 11, просверленные над проточками l1 сквозные отверстия d, в которых установлены фиксаторы 18. В головках фиксаторов 18 (см. фиг.7) проточки 19 под отвертку развернуты перпендикулярно плоскости проекции скоса 20, а сами фиксаторы 18 установлены по периметру равномерно через 120° (см. фиг.8).

В сквозных отверстиях d компенсационной втулки 15 и головках фиксаторов 18 выполнены разделки 21 (см. фиг.9).

Способ повышения точности установки геометрической оси камеры в номинальном положении реализуется следующим образом.

После выставления осей камер в стапеле в «нулевом» положении, т.е. номинальном, производят попарную сборку газоводов камер сгорания 2: КС1-КС3, КС2-КС4 (см. фиг.10), при этом агрегаты и ДСЕ арматуры питания устанавливаются на струбцинах.

Вместо компенсирующих устройств 14 (см. фиг.5) устанавливаются раздвижные и подпружиненные их имитаторы (в данном описании они не приводятся). После прихватки ДСЕ и агрегатов аналогично фиг.2 по стыкам сваркой струбцины 13 снимают и производят сварку магистралей по стыкам для пар камер КС1-КС3, КС2-КС4, расположенных во взаимно перпендикулярных плоскостях. Имитаторы компенсирующих устройств извлекаются из магистрали со сжатием раздвижной пружины.

При помощи измерительного приспособления определяются геометрические параметры компенсационной втулки 15 (см. фиг.11): длина L, эксцентриситет e, углы наклона α1, α2, и β разворота (на фиг.11 не показан) стыковочных фланцев, полученные с учетом происшедшей усадки всех сварных швов ДСЕ.

На фиг.12 представлено положение подкладных колец 1 перед их перемещением в зоны стыков 16, 17 при помощи поворачивающихся фиксаторов 18.

По чертежу компенсационной втулки изготавливают деталь, в точности повторяющую участок магистрали между стыками 16 и 17 (см. фиг.11). В проточки l1 компенсационной втулки 15 (см. фиг.11, 12) вставляют подкладные кольца 11, которые полностью «утопают» и не выступают за ее стыки. Компенсационную втулку 15 вместе с подкладными кольцами 11 устанавливают между стыками 16 и 17 ДСЕ магистрали (см. фиг.6).

Компенсирующее устройство работает следующим образом (см. фиг.12). В отверстиях d компенсационной втулки 15 вставляются фиксаторы 18, которые острием своих скосов 20 направлены в стык подкладного кольца 11. Усилием отверток слесарей фиксаторы 18 одновременно поворачиваются вокруг своих осей и подкладные кольца 11 продвигаются в сторону стыков 16, 17 свариваемых ДСЕ. Поворот фиксаторов 18 производится на 180° вокруг своей оси. В таком положении подкладные кольца перемещены в зоны сварных швов №1 и №2 (см. фиг.6), после чего производится выполнение последних.

Таким образом, из всего количества сварных швов магистрали на расположение геометрической оси камеры оказывают влияние только замыкающие сварные швы №1 и №2.

Проводя попарно одновременное выполнение этих швов для газовых магистралей камер сгорания КС1-КС3, КС2-КС4 (см. фиг.10), добиваются минимально возможного отклонения геометрических осей «M» камер сгорания от осей «N» в номинальном расположении, заданном техническим заданием на разработку двигателя.

Предложенные способ и компенсирующее устройство позволяют повысить точность установки геометрических осей камер ЖРД, в которых газоводы выполняются сварными, т.е. в которых рабочий газ движется под высоким давлением, порядка 200÷300 кг/см2, которые не подлежат переборке после контрольных испытаний и в которых нельзя устанавливать компенсирующие сильфонные устройства, т.к. сами газовые магистрали являются «несущими» конструкциями: на них смонтирован ТНА, теплозащита и другие агрегаты двигателя.

Выполнение необходимых требований технического задания на двигатель по расположению геометрических осей камер позволит снизить потери вектора тяги на боковые составляющие и, тем самым, положительно скажется на дальность полета изделия.

1. Способ установки геометрической оси камеры сгорания жидкостного ракетного двигателя, включающий выставление камер в номинальное положение, установку замыкающих компенсирующих устройств, изготовленных с учетом монтажа агрегатов, деталей и сборочных единиц, установленных на струбцинах, отличающийся тем, что после выставления камер в стапеле в номинальное положение производят попарную сборку газоводов противоположных камер сгорания, при этом агрегаты и детали сборочных единиц арматуры питания устанавливают на струбцинах, затем устанавливают раздвижные и подпружиненные имитаторы компенсирующих устройств, после прихватки деталей сборочных единиц и агрегатов по стыкам сваркой струбцины снимают и производят сварку магистралей по стыкам противоположных пар камер сгорания, расположенных во взаимно перпендикулярных плоскостях, извлекают имитаторы компенсирующих устройств из магистрали со сжатием раздвижной пружины, определяют геометрические параметры компенсационной втулки, полученные с учетом усадки всех сварных швов в деталях сборочных единиц: длину, эксцентриситет, углы наклона и разворота стыковочных фланцев, выполняют ее изготовление, подгонку и сварку на заключительной стадии сборки магистралей после выполнения всех сварных швов стыкуемых агрегатов, деталей и сборочных единиц.

2. Компенсирующее замыкающее устройство газовых магистралей для реализации способа установки геометрической оси камер ЖРД в номинальном положении, содержащее компенсационную втулку с проточками по ее стыкам для установки подкладных колец, отличающееся тем, что проточки для установки подкладных колец выполнены длиной, равной длине подкладных колец, а над проточками просверлены сквозные отверстия, в которых установлены фиксаторы для перемещения подкладных колец в зону сварных швов стыков деталей и сборочных единиц.

3. Компенсирующее устройство по п.2, отличающееся тем, что в фиксаторах проточки под отвертку развернуты перпендикулярно плоскости проекции скоса.

4. Компенсирующее устройство по п.2, отличающееся тем, что фиксаторы установлены по периметру через углы, равные 120°.

5. Компенсирующее устройство по п.2, отличающееся тем, что в отверстиях компенсационной втулки и головках фиксаторов выполнены разделки для исключения непроваров корня сварных швов.



 

Похожие патенты:

Изобретение относится к испытательной технике и, в частности, к испытаниям камер сгорания и газогенераторов жидкостных ракетных двигателей (ЖРД) с целью оценки высокочастотной устойчивости процесса горения.

Изобретение относится к области машиностроения и может быть использовано при разработке оборудования для огневых стендовых испытаний высотных ракетных двигателей на твердом топливе.

Изобретение относится к ракетной технике, а именно к стендовому оборудованию, применяемому при огневых стендовых испытаниях ракетных двигателей с имитацией высотных условий.

Экспериментальный ракетный двигатель твердого топлива содержит корпус из композитного материала с передним и сопловым днищами, соединенными между собой посредством цилиндрического участка, скрепленный с корпусом заряд твердого топлива и утопленное сопло.

При определении скорости горения твердого ракетного топлива производят монтаж и сжигание стержневого образца с запальным проводником в камере сгорания, имеющей систему регистрации давления.

Изобретение относится к области машиностроения и может быть использовано для измерения зазора между раструбом и арматурой сопла ракетного двигателя, имеющих конический или криволинейный профиль сопрягаемых через клеевой состав поверхностей.

При определении скорости горения твердого ракетного топлива монтируют и сжигают стержневой образец твердого ракетного топлива с запальным проводником в камере сгорания, имеющей систему регистрации давления, а также вентили подачи и сброса давления.

Изобретение относится к ракетно-космической технике. Способ моделирования процесса газификации остатков жидкого компонента ракетного топлива в баках отделяющихся частей ступени ракет-носителей, основанном на введении в экспериментальную установку теплоносителя, обеспечении условий взаимодействия в зоне контакта теплоносителя с поверхностью жидкого газифицируемого компонента ракетного топлива, проведении измерений температуры, давления в различных точках экспериментальной установки, при этом перед подачей теплоносителя осуществляют понижение давления в экспериментальной установке до 0,01 МПа через электропневмоклапан.

Изобретение относится к области ракетной техники, а именно к высотным испытаниям крупногабаритного РДТТ. .

Изобретение относится к области машиностроения и может быть использовано для определения погрешностей изготовления корпуса ракетного двигателя по геометрическим параметрам.

Изобретение относится к технике, связанной с испытанием сопл, и может быть использовано при проведении модельных испытаний. Устройство содержит подводящий трубопровод, соединенный с ресивером, выполненным с возможностью разъемного соединения с испытываемым соплом в двух взаимно перпендикулярных плоскостях посредством съемных фланцевых накладок и с возможностью опирания измерительными средствами на корпус ресивера, в котором подводящий трубопровод снабжен упругой вставкой. Кроме того, ресивер снабжен отверстиями, одно из которых выполнено в его торце, а другое на его боковой поверхности, причем горловины отверстий имеют одинаковые сечения и снабжены съемными фланцевыми накладками, выполненными с возможностью крепления в них испытываемого сопла в двух взаимно перпендикулярных направлениях. При этом в качестве измерительных средств используют однокомпонентные датчики силы, закрепленные на корпусе ресивера, измерительные штанги которых размещены в трех взаимно перпендикулярных направлениях, а их концы уперты в корпус ресивера с возможностью его удержания. Технический результат заключается в повышении точности измерения и эффективности испытаний сопла, а также снижении трудоемкости изготовления и эксплуатации устройства. 4 ил.

Изобретение относится к ракетной технике и может быть использовано при создании деталей из углерод-углеродного композиционного материала (УУКМ), работающих в условиях воздействия высокотемпературной окислительной среды на поверхности деталей ракетной техники. Установка для определения окислительной стойкости углерод-углеродного композиционного материала, в том числе с защитным покрытием, включающая камеру из огнеупорного материала для размещения образца испытуемого материала и сопло для подачи газового потока в камеру, выполненное в передней стенке установки, снабжена набором съемных передних стенок различной толщины, в которых сопло расположено под разными углами к продольной оси камеры установки, при этом камера установки размещена в металлическом корпусе с теплозащитным кожухом, причем, теплозащитный кожух и камера выполнены разъемными. Изобретение обеспечивает имитацию воздействия высокотемпературного газового потока на детали ракетной техники в условиях, приближенных к реальным, и определение окислительной стойкости УУКМ при воздействии высокотемпературного газового потока под разными углами и на различном расстоянии. 6 ил.

Группа изобретений относится к ракетно-космической технике и может быть использована при проведении физического моделирования процессов газификации остатков жидкого топлива в баках отделяющихся частей (ОЧ) ступени ракет-носителей (РН) в условиях малой гравитации с использованием экспериментальных модельных установок в земных условиях, а также и при натурных пусках РН с системами газификации. Способ моделирования процесса газификации остатков жидкого компонента ракетного топлива (КРТ) в баках ОЧ ступени РН, основанном на введении в экспериментальную установку теплоносителя (ТН) с заданными параметрами, обеспечении заданных условий взаимодействия в зоне контакта ТН с поверхностью жидкого газифицируемого КРТ, проведении измерений температуры, давления в различных точках ЭУ, при этом проводят дополнительные измерения скорости потока ТН в различных точках ЭУ, влажности газа на выходе из ЭУ, и рассчитывают на основе проведенных измерений значения суммарной теплоты, поступившей в объем ЭУ в течение всего эксперимента. Изобретение обеспечивает повышение достоверности результатов экспериментальных исследований, снижение затраты на проведение экспериментов при обнаружении недостоверных измерений или неисправности оборудования путем прекращения эксперимента и повышение надежность измерений. 2 н. и 3 з.п. ф-лы.

Изобретение относится к ракетной технике и может быть использовано при экспериментальной отработке заборных устройств, установленных в топливных баках ракет, для экспериментального определения гидравлических остатков незабора топлива. Стенд содержит сливную емкость, расходную магистраль, в которой установлены датчики сплошности, расходомер, гидравлический насос, отсечной кран, а также устройство для заправки и слива, к которому подключен дозатор для дозаправки воды. Дозатор воды настроен на рабочий объем, равный объему ожидаемого гидравлического остатка незабора испытуемого топливного бака, подключенного к расходной магистрали. Верхняя часть сливной емкости выполнена в виде вертикального сужающегося кверху конусного насадка с конусностью 15°, на котором установлены второй датчик сплошности и емкость для перелива. В состав стенда входит магистраль закольцовки с запорным клапаном, встроенная в расходную магистраль на входе в насос, и магистраль заправки с клапаном, встроенная в расходную магистраль на выходе из насоса, второй конец которой подключен к расходной магистрали перед отсечным краном. Перед заправкой испытуемого бака полностью заполняют водой расходную магистраль и сливную емкость, а затем производят дозаправку гидросистемы дозированным объемом воды, равным ожидаемому гидравлическому остатку незабора. После этого производят испытание. При срабатывании обоих датчиков сплошности в любой последовательности закрывают отсечной кран, фиксируют момент прорыва газа в магистраль расхода и момент полного заполнения сливной емкости. Затем, зная расход и указанные моменты времени, а также объем дозаправки дозатором вычисляют величину гидравлического остатка незабора. Технический результат - повышение точности определения гидравлического остатка в испытуемом баке ракеты и снижение трудоемкости экспериментальных работ. 2 н.п. ф-лы, 1 ил.

Изобретение относится к ракетной технике и может быть использовано при экспериментальной отработке заборных устройств, установленных в топливных баках ракет, для экспериментального определения гидравлических остатков незабора топлива в динамических условиях. Стенд содержит подвижную горизонтальную платформу с приводом, сливную емкость с расходной магистралью, сливной трубопровод с датчиком сплошности и гибкое звено. Платформа установлена на раме стенда при помощи несколько параллельных шарнирных стоек. На платформе жестко закреплены испытуемый бак с заборным устройством и сливной трубопровод с датчиком сплошности. На расходной магистрали установлены расходомер, отсечной кран, регулятор расхода, гидравлический насос. Вход насоса подсоединен к сливной емкости магистралью закольцовки с установленным на ней клапаном. Сливной трубопровод жестко закреплен на платформе, подключен к испытуемому баку и через гибкое звено соединен с расходной магистралью. Гибкое звено выполнено в виде трубы с герметичными сферическими шарнирами на концах и расположено параллельно стойкам. Длина гибкого звена равна высоте стоек. Технический результат - повышение точности определения гидравлического остатка в испытуемом баке ракеты и исключение силовых нагрузок на сливной трубопровод испытуемого бака. 1 ил.
Изобретение относится к комплексам автоматизированного управления ракетными формированиями и формированиями реактивных систем залпового огня крупного калибра. Технический результат - повышение эффективности поражения целей за счет придания ракетным формированиям и формированиям реактивных систем залпового огня крупного калибра свойств разведывательно-ударного комплекса, функционирующего по принципу «разведал-поразил». Комплекс содержит электронно-вычислительную машину, аппаратуру передачи данных со средствами связи, средства автоматизации, блок сопряжения оперативно-тактической и радиолокационной информации, который подключен к коммутирующему устройству сопряжения и к двум аппаратурам передачи данных со средствами связи. Одна из аппаратур предназначена для информационного обмена радиолокационной информацией со средствами разведки, а другая - для информационного обмена оперативно-тактической информацией с вышестоящим, подчиненным и взаимодействующим органами управления. Устройство сопряжения содержит блок управления, позволяющий обрабатывать радиолокационную информацию от средств разведки, при этом сохранена возможность обработки в нем оперативно-тактической информации, поступающей от вышестоящего, подчиненного и взаимодействующего органов управления. Для принятой к поражению цели в комплексе предусмотрена возможность определения корректур установок стрельбы и данных полетного задания с целью обслуживания стрельбы в режиме реального времени. 1 ил.

При термовакуумных испытаниях термокаталитических двигателей в составе космического аппарата на камеру термокаталитического разложения рабочего тела с соплом устанавливают герметичную заглушку, магистраль межблочного трубопровода через проверочную горловину и технологическую магистраль сообщают со стендовым средством вакуумирования, мановакуумметром и газовым пультом, между которыми установлен вентиль. После завершения этапа испытаний космического аппарата с открытой крышкой вакуумной камеры подсоединяют цепи нагревателя двигателя к блоку управления. После установки крышки вакуумной камеры откачивают вакуумную камеру, контролируют формирование информации блоком управления по факту замыкания контактов сигнализатора давления, закрывают вентиль и вакуумируют магистраль межблочного трубопровода до уровня давления, меньшего уровня давления размыкания контактов сигнализатора давления. Подают команды на включение клапанов двигателя, контролируют формирование блоком управления информации по фактам включения источника питания соответствующих клапанов и размыкания контактов сигнализатора давления. Подают команды на включение нагревателя двигателя, контролируют формирование блоком управления информации по фактам включения источника питания нагревателя двигателя, работу термопары и нагревателя двигателя проверяют путем контроля темпа изменения температуры, соответствующего включению нагревателя двигателя. Отключают нагреватель двигателя и выдерживают паузу на остывание двигателя. Завершают вакуумирование магистрали межблочного трубопровода, открывают вентиль и подают от газового пульта в магистраль межблочного трубопровода технологический газ под давлением, достаточным для замыкания контактов сигнализатора давления. Затем проверяют формирование информации блоком управления по факту замыкания контактов сигнализатора давления. Подают команды на отключение клапанов двигателя и контролируют телеметрическую информацию, формируемую блоком управления по факту отключения источника питания соответствующих клапанов. Изобретение позволяет упростить схему испытаний термокаталитических двигателей, а также снизить их продолжительность. 3 ил.

Изобретение относится к области испытаний ракетных двигателей, а именно к стапелям для измерения осевой силы тяги ракетных двигателей. Стапель для измерения осевой силы тяги ракетного двигателя содержит неподвижную раму, подвижную часть с узлами крепления двигателя, переходник и преобразователи силы. На переходнике установлен опорный полый стакан, внутри которого размещены один или несколько полых поршней, причем внутри каждого полого поршня на упругих мембранах установлена втулка. Преобразователи силы закреплены на втулке соосно. Изобретение позволяет повысить точность измерения осевой силы тяги при стендовых испытаниях ракетного двигателя твердого топлива. 1 з.п. ф-лы, 2 ил.

Изобретение относится к ракетной технике, а именно к стендам для проведения гидроиспытаний корпусов ракетных двигателей на твердом топливе, как на рабочее давление, так и на давление формования твердотопливного заряда. Стенд для испытаний корпусов типа «кокон» ракетных двигателей на твердом топливе на внутреннее давление содержит имитатор корпуса сопла и разгрузочное устройство заднего фланца. Разгрузочное устройство установлено на имитаторе корпуса сопла и имеет цилиндры разных диаметров и два поршня, имеющие упор, связанный с силовым полом стенда. Цилиндры и поршни расположены один за другим вдоль оси, причем как цилиндры, так и поршни скреплены между собой. Цилиндр малого диаметра скреплен с имитатором корпуса сопла. Поршень малого диаметра выполнен удлиненным, а в его нижней цилиндрической части расположены уплотнения. Сечение верхней части поршня малого диаметра, перпендикулярное его оси, представляет собой круг с вырезами по краю, при этом на дугах между вырезами существуют три точки, которые являются вершинами остроугольного треугольника. Изобретение позволяет повысить надежность стенда для испытаний корпусов за счет исключения перекоса поршней при осевом перемещении цилиндров. 5 ил.

Изобретение относится к области ракетной техники, а именно к стендовому оборудованию, применяемому при огневых стендовых испытаниях ракетных двигателей твердого топлива. Установка для гашения работающего ракетного двигателя твердого топлива при испытаниях в газодинамической трубе содержит источник хладагента и соединенное с ним через управляющий клапан устройство подачи хладагента в камеру сгорания. В газодинамической трубе за срезом сопла размещен инжектор, а перед инжектором установлены форсунки, соединенные с источником хладагента через управляющий клапан, срабатывающий при достижении заданного давления в камере сгорания. Устройство подачи хладагента в камеру сгорания снабжено вскрывающим элементом, выполненным в виде цилиндра, внутри которого размещен полый поршень с коническим штоком. В штоке выполнены каналы, подающие хладагент, а на корпусе цилиндра установлен пиропатрон. Изобретение позволяет сократить время гашения ракетного двигателя твердого топлива при испытаниях в газодинамической трубе. 2 ил.
Наверх