Муфта для многостадийного гидроразрыва пласта



Муфта для многостадийного гидроразрыва пласта
Муфта для многостадийного гидроразрыва пласта
Муфта для многостадийного гидроразрыва пласта

 


Владельцы патента RU 2555989:

Акционерное общество "Новомет-Пермь" (RU)

Изобретение относится к нефтегазовому оборудованию, в частности к оборудованию заканчивания скважин, и может быть применено при операциях многостадийного гидроразрыва пласта (МГРП). Муфта содержит корпус с внутренними трапециевидными проточками, подвижный элемент в форме трубы с ответным выступом трапециевидной формы на наружной поверхности и седлом для посадки шара внутри, порт для проведения гидроразрыва, шар, активирующий подвижный элемент, полый поршень с отверстиями и поддерживающую пружину, установленную в полости под поршнем. Подвижный элемент выполнен без отверстия и снабжен двумя выступами трапециевидной формы на наружной поверхности и одним седлом. Седло размещено между выступами трапециевидной формы. Технический результат заключается в повышении надежности фиксации подвижного элемента в корпусе устройства и улучшении качества обработки ствола скважины за счет улучшения системы открытия портов. 1 з.п. ф-лы, 3 ил.

 

Изобретение относится к нефтегазовому оборудованию, в частности к оборудованию заканчивания скважин, и может быть использовано при операциях многостадийного гидроразрыва пласта (МГРП).

Из уровня техники известно устройство для МГРП (Патент US №7543634, E21B 43/14, 2009), содержащее корпус, состоящий из верхней и нижней частей с присоединительными резьбами для соединения с колонной насосно-компрессорных труб (НКТ), набор шаров различного диаметра, подвижный элемент в виде посадочной втулки с седлом определенного диаметра, закрепленную в корпусе с помощью срезного штифта, закрывающую порты ГРП, предназначенные для проведения обработки текучей средой ствола скважины. Такое устройство спускают в скважину со всеми закрытыми портами и открытым каналом для изоляции ствола скважины. После инсталляции сбрасывают шар управления, имеющий минимальный диаметр, для закрытия клапана изоляции ствола, при этом осуществляется инсталляция гидравлических пакеров в необсаженном стволе. Затем развертывают наземное оборудование и закачивают жидкость в скважину для воздействия на первую зону пласта.

Далее последовательно по колонне НКТ сбрасывают шары в порядке возрастания их диаметров и перекачивают текучую среду для обработки отдельных зон. Когда сброшенный в колонну НКТ шар устанавливается в соответствующее ему седло, образуется пробка, повышается давление, втулка с седлом сдвигается вперед, срезая штифты, через открывшиеся отверстия производится воздействие текучей среды на изолированную пакерами зону пласта. Сбрасывая последующие шары большего размера, можно воздействовать на каждую из разобщенных зон ствола скважины. Поскольку зоны обрабатываются ступенчато, самая нижняя втулка имеет седло для шара самого меньшего диаметра, а чем выше расположена втулка, тем на больший диаметр рассчитано ее седло. Сброшенный шар конкретного размера должен достичь своего места, пройдя через седла большего диаметра, тем самым достигается точность установки пробки в стволе скважины.

Однако использование шаров различного диаметра сокращает число возможных зон для проведения воздействия на пласт и вводит в действие человеческий фактор при работе с шарами разного диаметра.

Наиболее близким к заявленному изобретению является муфта для МГРП (htpp:/ WWW.Weatherford.com/dn/WFT214170), состоящая из корпуса с трапециевидными проточками на внутренней стенке, содержащего верхнюю и нижнюю части с резьбой для крепления в колонну НКТ и среднюю часть, оснащенную портом для ГРП, подвижного элемента (цапфа) в форме трубы с одним ответным проточке корпуса выступом трапециевидной формы на наружной поверхности, установленного внутри средней части корпуса и имеющего два посадочных седла, где второе седло расположено напротив выступа трапециевидной формы, подвижного полого поршня с радиальными отверстиями, размещенного в нижней части корпуса и опирающегося на пружину сжатия. Подвижный элемент в нижней части имеет отверстие, которое совмещается с портом для ГРП в момент проведения операции. Для открытия портов ГРП в данном устройстве используют шары одинакового размера.

После спуска и инсталляции компоновки, гидравлических пакеров, наземного оборудования, закачивают жидкость в скважину для воздействия на первую зону пласта. После обработки первой зоны сбрасывают шар, который попадает в первую по пути следования муфту для ГРП, где садится в первое седло, образуя пробку, давление возрастает и шар сдвигает подвижный элемент на одну позицию вперед, при этом первое седло совмещается с трапециевидной проточкой в корпусе и шар проходит вперед, попадая во вторую по пути следования муфту для ГРП, где вновь сдвигает аналогично предыдущему, подвижный элемент, установленный изначально во второе положение (т.е. во вторую трапециевидную проточку), попадает в третью муфту для ГРП, где сдвигает подвижный элемент из изначально установленного третьего положения в следующую проточку и так далее, вплоть до открытия последней муфты, где шар сдвигает подвижный элемент в последнюю проточку и, не имея возможности пройти через него, образует пробку, отверстия в нижней части подвижного элемента и корпусе совмещаются, в результате чего происходит открытие порта для ГРП и проводится обработка примыкающего к нему участка ствола скважины. Затем сбрасывается следующий шар, который смещает подвижные элементы в муфтах вперед еще на одну проточку и, достигнув посадочного седла, образует пробку на втором в направлении от забоя скважины участке, в районе которого тем самым обеспечивается возможность проведения обработки ствола скважины.

При всей универсальности конструкции можно отметить ряд недостатков. Во-первых, наличие в подвижном элементе двух посадочных седел при одном фиксаторе снижает надежность конструкции и может вызвать перемещение подвижного элемента сразу на несколько положений вместо одного. Во-вторых, открытие порта для обработки призабойной зоны пласта осуществляется при совмещении отверстий в подвижном элементе и корпусе, что при повороте одной части относительно другой не даст возможности открыть порт.

Предлагаемое изобретение повышает надежность фиксации подвижного элемента в корпусе устройства и улучшает качество обработки ствола скважины за счет улучшения системы открытия портов.

Указанный технический результат достигается тем, что в муфте для проведения многостадийного ГРП, содержащей корпус с внутренними трапециевидными проточками, подвижный элемент в форме трубы с ответным выступом трапециевидной формы на наружной поверхности и седлом для посадки шара внутри, порт для проведения ГРП, шар, активирующий подвижный элемент, полый поршень с отверстиями, поддерживающую пружину, установленную в полости под поршнем, согласно изобретению подвижный элемент выполнен без отверстия и снабжен двумя выступами трапециевидной формы на наружной поверхности и одним седлом, причем седло размещено между выступами трапециевидной формы.

В отличие от прототипа в заявляемой муфте подвижный элемент выполнен без отверстия, которое необходимо соединять с отверстиями корпуса при проведении ГРП, что значительно упрощает систему открытия портов и делает ее независимой от возможного поворота подвижного элемента во время эксплуатации.

Наличие в подвижном элементе двух трапециевидных выступов обеспечивает его надежную фиксацию в корпусе и повышает работоспособность устройства в целом.

Для обеспечения надежности фиксации шара в момент его прохождения через седло расстояние между седлом и выступами трапециевидной формы подвижного элемента выбрано таким образом, чтобы при нахождении седла напротив середины трапециевидной проточки корпуса подвижный элемент опирался выступами на стенки корпуса между трапециевидными проточками.

Сущность изобретения поясняется чертежами, где на фиг. 1 схематично представлена муфта, на фиг. 2 - муфта в момент проведения ГРП, на фиг. 3 - муфта в момент перемещения подвижного элемента с помощью шара.

Муфта состоит из корпуса 1, выполненного в виде трубы с трапециевидными проточками 2 на внутренней поверхности, подвижного элемент 3, порта для ГРП 4 в виде втулки со сквозными радиальными каналами 5, через которые проводится обработка зоны ствола скважины, подвижного полого поршня 6 и пружины 7, которая установлена в полости под поршнем 6 и предназначена для его перемещения.

Подвижный элемент 3 выполнен в форме трубы с двумя кольцевыми выступами 8 на наружной поверхности, имеющими трапециевидную форму, ответную трапециевидным проточкам 2 корпуса 1, что обеспечивает фиксацию подвижного элемента внутри корпуса 1. Между выступами 8 расположено седло 9, предназначенное для посадки шара 10, сбрасываемого при эксплуатации устройства. В корпусе подвижного элемента 3 выполнены сквозные проточки (продольные щели) 11, позволяющие ему сужаться и расширяться. Подвижный полый поршень 6, опирающийся на пружину 7, снабжен радиальными отверстиями 12 для выравнивания давления в образуемой полости под ним и внутри корпуса 1. Пружина 7, на которую опирается поршень 6, приводит его в начальное положение после проведения операции ГРП и закрытия портов для ГРП 4.

Устройство работает следующим образом.

Перед спуском установки в скважину операторы устанавливают каждый подвижный элемент 3 в проточку, соответствующую порядковому номеру муфты. Нумерация осуществляется от устья к забою скважины.

После спуска в скважину и инсталляции компоновки операторы сбрасывают шар управления 10 для закрытия клапана изоляции ствола, при этом осуществляется инсталляция гидравлических пакеров в необсаженном стволе. Затем операторы развертывают наземное оборудование и закачивают жидкость в скважину для воздействия на первую зону пласта.

Для последующей работы операторы последовательно сбрасывают шары 10 по колонне НКТ и закачивают жидкость для обработки отдельных вышерасположенных зон. Когда сброшенный в колонну НКТ шар 10 достигает первой по ходу следования муфты, шар 10 садится в седло 9 (фиг. 1), образуя пробку, повышается давление, подвижный элемент 3 с седлом 9 сдвигается вперед (Фиг. 2), при этом седло 9 оказывается напротив трапециевидной проточки 2 в корпусе 1, что позволяет расшириться подвижному элементу 3 благодаря сквозным проточкам 11, чтобы пропустить через себя шар 10 и переместиться во второе положение, трапециевидные выступы 8 на подвижном элементе 3 совмещаются с трапециевидными проточками 2, тем самым фиксируя подвижный элемент 3 в этом положении. По ходу движения шар 10 достигает второй муфты, где подвижный элемент 3 установлен изначально во второе положение, сдвигает подвижный элемент 3 в третье положение аналогично с первой муфтой и проходит дальше, пока не достигает подвижного элемента 3, находящегося в конечном положении, неспособном пропустить через седло 9 шар 10 (Фиг. 3, порт открыт). Образуется пробка, подвижный элемент 3 отжимает полый поршень 6, пружина 7 сжимается, радиальные каналы 12 соединяют пространство, образующееся под поршнем 6 и внутри корпуса 1, в результате чего давления внутри корпуса 1 и в полости под поршнем 6 выравниваются, подвижный элемент 3 смещается и открывает порт для ГРП 4, происходит операция гидроразрыва примыкающей зоны пласта. После этого уменьшается давление, пружина 7 разжимается и возвращает полый поршень 6 в исходное положение, подвижный элемент 3 сдвигается и закрывает отверстия 5 порта для ГРП 4. Сбрасывая последующие шары, оператор может последовательно воздействовать на каждую из вышерасположенных разобщенных зон ствола скважины.

Таким образом, открытие порта для ГРП в заявляемой конструкции осуществляется простым смещением подвижного элемента, что значительно улучшает качество обработки ствола скважины, а простота конструкции способствует повышению надежности устройства.

1. Муфта для проведения многостадийного гидроразрыва пласта, содержащая корпус с внутренними трапециевидными проточками, подвижный элемент в форме трубы с ответным выступом трапециевидной формы на наружной поверхности и седлом для посадки шара внутри, порт для проведения гидроразрыва, шар, активирующий подвижный элемент, полый поршень с отверстиями, поддерживающую пружину, установленную в полости под поршнем, отличающаяся тем, что подвижный элемент выполнен без отверстия и снабжен двумя выступами трапециевидной формы на наружной поверхности и одним седлом, причем седло размещено между выступами трапециевидной формы.

2. Муфта по п. 1, отличающаяся тем, что расстояние между седлом и выступами трапециевидной формы подвижного элемента выбрано таким образом, чтобы при нахождении седла напротив середины трапециевидной проточки корпуса подвижный элемент опирался выступами на стенки корпуса между внутренними трапециевидными проточками.



 

Похожие патенты:

Изобретение относится к составам для обработки скважин для применения в нефтедобывающей области. Состав для обработки скважины, содержащий реагент для обработки скважины, адсорбированный на водонерастворимом адсорбенте, где состав получают осаждением реагента для обработки скважины из жидкости, при этом реагент для обработки скважины адсорбируют на водонерастворимом адсорбенте, и где реагент для обработки скважины осаждают в присутствии металлической соли.

Изобретение относится к жидкостям для гидроразрыва подземных пластов при добыче нефти и газа. Способ применения жидкости для гидроразрыва при формировании разрывов подземных пластов, включающий замедление расщепления полимера в жидкости для гидроразрыва при температуре от 125 до 400°F, когда жидкость для гидроразрыва содержит разжижитель, путем комбинирования по меньшей мере одного акцептора радикалов с жидкостью для гидроразрыва.

Группа изобретений относится к способам подготовки и обработки для интенсификации притока скважины. Способ подготовки боковых стволов скважины включает бурение множества боковых стволов скважины из по существу вертикальной скважины.

Изобретение относится к горному делу и может быть применено для гидроразрыва горной породы. Устройство состоит из корпуса с каналом, установленных на нем упругих уплотнительных элементов, между которыми размещена поршневая пара с уплотнительными кольцами, и стопорящей гайки.

Изобретение относится к горному делу и может быть применено для интенсификации работы скважины. Способ включает тестовую закачку жидкости разрыва и пачки жидкости разрыва с проппантом, корректирование проекта разрыва и проведение основного процесса разрыва.
Изобретение относится к нефтяной промышленности и может быть применено при интенсификации работы скважины. Способ включает отсыпку забоя, тестовую закачку жидкости разрыва и пачки жидкости разрыва с проппантом, корректирование проекта разрыва и проведение основного процесса разрыва.
Изобретение относится к нефтяной промышленности. Технический результат - увеличение нефтеотдачи залежи.
Изобретение относится к нефтяной промышленности и может быть применено для разработки нефтяной залежи. Способ включает отбор нефти через добывающие скважины, закачку рабочего агента через нагнетательные скважины, проведение гидроразрыва пласта в нагнетательных и добывающих скважинах.

Изобретение относится к нефтегазодобывающей промышленности и может быть применено для гидравлического разрыва низкопроницаемого пласта, содержащего прослой глины с водоносным пропластком.

Изобретение относится к нефтедобывающей промышленности и может быть применен для разработки низкопроницаемого нефтяного пласта горизонтальными скважинами с проведением многократного гидроразрыва пласта.
Изобретение относится к нефтяной промышленности и может найти применение при разработке многопластовой нефтяной залежи. Технический результат - повышение нефтеотдачи. При разработке многопластового нефтяного месторождения осуществляют отбор пластовой продукции через добывающие скважины, закачку рабочего агента через нагнетательные скважины и проведение гидроразрыва пласта в нагнетательной скважине. До проведения гидроразрыва пласта проводят закачку рабочего агента в нижний продуктивный пласт при отсутствии приема рабочего агента верхним продуктивным пластом. В нагнетательной скважине проводят гидроразрыв верхнего продуктивного пласта. Разобщают продуктивные пласты и организуют раздельную закачку рабочего агента в продуктивные пласты. Вблизи нагнетательной скважины организуют шурф и закачивают рабочий агент через шурф в верхний продуктивный пласт с повышенным давлением закачки. При увеличении забойного давления в реагирующей добывающей скважине увеличивают отбор пластовой продукции. Регулируют режимы работы скважин отдельно по каждому продуктивному пласту и добиваются оптимальной компенсации отбора. Продолжают разработку с поддержанием оптимальной компенсации отбора по каждому продуктивному пласту. 1 пр.

Группа изобретений относится к горному делу и может быть применена для гидравлического разрыва пласта. Скважинный флюид включает жидкость-носитель на водной основе, гидрофобные волокна, суспендированные в нем, гидрофобный зернистый материал, также суспендированный в жидкости-носителе и газ для смачивания поверхности частиц и связывания их вместе в агломераты. Скважинный флюид может быть жидкостью для гидравлического разрыва пласта, которая представляет собой реагент на водной основе для снижения поверхностного натяжения, и может использоваться для разрыва непроницаемого газоносного пласта. Использование комбинации гидрофобного зернистого материала, гидрофобных волокон и газа задерживает оседание зернистого материала из жидкости-носителя на водной основе. Поскольку газ смачивает поверхности обоих материалов и агломерирует их, зернистый материал вынужден приклеиваться к волокнам; волокна образуют пространственную сетку, которая препятствует оседанию зернистого материала, приклеенного к ней, и агломераты содержат газ и таким образом получается насыпная плотность, которая меньше, чем удельный вес твердых веществ, содержащихся в агломератах. Технический результат заключается в повышении эффективности доставки зернистого материала под землю. 2 н. и 16 з.п. ф-лы, 5 ил.,12 пр.

Изобретение относится к горному делу и используется для отработки технологии добычи ценного кристаллического сырья и природного камня, разборки завалов и сооружений, дробления негабаритов, проведения физического моделирования процессов разрушения горных пород. Технический результат - снижение трудоемкости эксплуатации устройства. Устройство включает две коаксиально установленные трубы, связанные между собой посредством резьбового соединения, поршень, установленный во внутренней трубе, кольцевые упоры и герметизирующую втулку, размещенную между кольцевыми упорами. Кольцевые упоры выполнены на внешней трубе. Герметизирующая втулка выполнена в виде навитого на внешнюю трубу рукава из проницаемого для жидкости материала и заполненного порошком, который при взаимодействии с жидкостью образует отвердевающую смесь, сцепляющуюся с горной породой. Конец внешней трубы со стороны герметизирующей втулки выполнен в виде цанги, образующей концами лепестков один из указанных кольцевых упоров. Поршень выполнен в виде винта, связанного резьбовым соединением с накидной гайкой, навинченной на свободный конец внутренней трубы. 4 з.п. ф-лы, 3 ил.
Изобретение относится к нефтяной промышленности и может найти применение при разработке нефтяной залежи. Технический результат - увеличение нефтеотдачи залежи. По способу разработки залежи осуществляют закачку рабочего агента через нагнетательные скважины и отбор пластовой продукции через добывающие скважины. Разработку ведут с контролем объемов отбора пластовой продукции в добывающих скважинах и закачки рабочего агента через нагнетательные скважины с превышением объемов закачки над отборами. Предварительно при повышении обводненности добываемой продукции в нагнетательных скважинах проводят изоляцию зон поглощения. По достижении фронта вытеснения от нагнетательной скважины добывающей скважины в последней проводят гидроразрыв пласта с увеличением пластового давления на заданную величину и в условиях повышенного содержания нефти в околоскважинном пространстве, измененного вследствие изоляции зон поглощения. После гидроразрыва наблюдают обводненность добываемой продукции и при ее снижении - восстановлении до заданной величины продолжают разработку на установившихся режимах с прежними отборами пластовой продукции и закачки рабочего агента. 1 пр.

Изобретение относится к нефтегазодобывающей промышленности и может быть применено для добычи высоковязкой нефти и битума с помощью теплового воздействия на пласт. Способ включает бурение кустовым способом верхней, средней и нижней скважин с вертикальными участками и горизонтальными стволами, расположенными параллельно друг другу, установку в скважины электродов и погружного электроцентробежного насоса, прогревание пласта электрическим током посредством установленных в скважине электродов, отбор разогретых высоковязкой нефти и битума погружным электроцентробежным насосом. Горизонтальные стволы скважин бурят в направлении максимального напряжения σmax горных пород, слагающих пласт. По всей длине горизонтального ствола верхней скважины выполняют гидравлический разрыв пласта с образованием продольных трещин с последующим их креплением расклинивающим агентом из токопроводящего материала. Бурят вертикальные скважины с пересечением в начальном и в конечном участках горизонтального ствола верхней скважины в интервале проведения гидравлического разрыва пласта. В вертикальные скважины в интервал пересечения с горизонтальным стволом верхней скважины спускают электроды, в качестве которых применяют колонны насосных штанг. На устье скважин электроды обвязывают с электрической подстанцией, затем в вертикальный участок средней скважины спускают на колонне труб погружной центробежный насос. Осуществляют прогревание пласта через горизонтальный ствол верхней скважины, а добычу разогретых высоковязкой нефти и битума осуществляют из горизонтального ствола средней скважины по колонне труб погружным электроцентробежным насосом. По окончании выработки высоковязкой нефти и битума из пласта на участке между горизонтальными стволами верхней и средней скважин отсоединяют электроды от электрической подстанции и извлекают электроды из вертикальных скважин, а из вертикального участка ствола средней скважины извлекают колонну труб с погружным электроцентробежным насосом. Затем в горизонтальном участке средней скважины выполняют гидравлический разрыв пласта с образованием продольных трещин с последующим их креплением расклинивающим агентом из токопроводящего материала. Добуривают вертикальные скважины с пересечением в начальном и в конечном участках горизонтального ствола средней скважины в интервале проведения гидравлического разрыва пласта, в вертикальные скважины в интервал их пересечения с горизонтальным стволом средней скважины спускают электроды и на устьях скважин обвязывают электроды с электрической подстанцией. Спускают погружной центробежный насос в вертикальный участок ствола нижней скважины, осуществляют прогревание пласта через горизонтальный ствол средней скважины, а добычу разогретой нефти осуществляют из горизонтального ствола нижней скважины по колонне труб погружным электроцентробежным насосом. Технический результат заключается в повышении эффективности прогревания пласта высоковязкой нефти и битума, увеличении охвата пласта тепловым воздействием с его равномерным прогревом, повышении дебита разогретой нефти и надежности реализации способа. 2 ил.

Группа изобретений относится к нефтедобывающей промышленности и может быть применена при разработке залежи нефти массивного типа. Способ включает строительство добывающих и нагнетательных скважин, проведение гидравлического разрыва пласта, закачку вытесняющего агента через нагнетательные скважины, отбор пластовых флюидов через добывающие скважины. При строительстве добывающих и нагнетательных скважин в них геофизическими методами определяют толщину продуктивного пласта. Производят спуск обсадных колонн в скважины и крепят обсадные колонны в скважинах цементированием. Во всех добывающих и нагнетательных скважинах делят толщину продуктивного пласта на три равные зоны и проводят перфорацию обсадных колонн скважин по всей толщине продуктивного пласта с диаметром отверстий 10 мм. Верхнюю зону обсадных колонн скважин перфорируют с плотностью 20 перфорационных отверстий на 1 м толщины продуктивного пласта, среднюю - 10 перфорационных отверстий на 1 м толщины продуктивного пласта, нижнюю - 5 перфорационных отверстий на 1 м толщины продуктивного пласта. Производят гидравлический разрыв пласта с созданием трещин гидроразрыва с различной полудлиной во всех добывающих и нагнетательных скважинах последовательно снизу вверх. В нижней зоне скважин создают трещину гидроразрыва с полудлиной 30-40 м, в средней - 50-70 м, в верхней зоне - 80-100 м. Технический результат заключается в повышении эффективности разработки массивной нефтяной залежи. 2 н.п. ф-лы, 2 ил., 4 пр.

Изобретение относится к нефтегазодобывающей промышленности и предназначено для разработки залежи высоковязкой нефти и битума путем нагревания. Способ разработки залежи высоковязкой нефти и битума включает разбуривание залежи скважинами с горизонтальными стволами, направленными параллельно друг другу. Причем между двумя горизонтальными стволами крайних скважин бурят добывающую скважину с горизонтальным стволом, при этом в горизонтальные стволы двух крайних скважин устанавливают электроды. На устье скважины соединяют электроды с высокочастотной установкой. В горизонтальный ствол добывающей скважины спускают электроцентробежный насос. Производят прогрев залежи электрическим током с помощью установленных в горизонтальных стволах двух крайних скважин электродов - анода и катода, а отбор разогретой нефти из залежи на дневную поверхность осуществляют электроцентробежным насосом из горизонтального ствола добывающей скважины. На одной глубине бурят две крайние скважины с равными по длине горизонтальными стволами, направленными параллельно друг другу на расстоянии 40 м между устьями .Затем по всей длине горизонтальных стволов этих скважин выполняют гидравлический разрыв пласта с образованием продольных трещин с последующим их креплением токопроводящим материалом. Далее перпендикулярно забоям горизонтальных стволов крайних скважин бурят третью скважину с горизонтальным стволом. Причем горизонтальный ствол третьей скважины не пересекает горизонтальные стволы крайних скважин, но пробурен в пределах трещин гидравлического разрыва пласта, выполненного из горизонтальных стволов крайних скважин,. При этом левее и правее крайних скважин, а также между ними параллельно их горизонтальным стволам на равноудаленном расстоянии пробуривают три добывающих скважины с горизонтальными стволами, длины которых равны длинам горизонтальных стволов крайних скважин. Причем горизонтальные стволы добывающих скважин выполняют на 15 м ниже горизонтальных стволов крайних скважин. Далее в горизонтальные стволы скважин устанавливают электроды - катоды и аноды, при этом в крайних скважинах устанавливают катоды, а в третьей скважине - анод. Причем в качестве электродов, спускаемых в скважину, используют колонны насосных штанг. При этом на устье скважин обвязывают электроды с электрической подстанцией и оснащают добывающие скважины электроцентробежными насосами. Осуществляют прогревание залежи с помощью крайних скважин по всей длине их горизонтального ствола, а отбор разогретой нефти осуществляют с помощью электроцентробежных насосов через горизонтальные стволы добывающих скважин. Техническим результатом является повышение эффективности прогревания залежи высоковязкой нефти и битума нагреванием. 2 ил.

Изобретение относится к нефтяной промышленности и может быть применено для разработки нефтяных месторождений, имеющих продуктивные пласты со сверхнизкими коллекторскими фильтрационно-емкостными свойствами. Способ включает определение направления главного напряжения пласта, бурение двух параллельных горизонтальных стволов, их обсаживание, цементирование и перфорирование, и гидравлический разрыв пласта - ГРП. Два параллельных горизонтальных ствола бурят в одной плоскости по направлению минимального напряжения. Рассчитывают с учетом главного напряжения пласта оптимальное расположение трещин и определяют расположение точек инициации трещин ГРП. Проводят в обоих горизонтальных стволах перфорирование и ГРП первой стадии, изолируют интервалы, на которых был проведен ГРП первой стадии установкой фрак-перемычек. Затем проводят перфорирование, ГРП и изоляцию установкой фрак-перемычек следующей стадии со смещением точек инициации трещин ГРП. Трещины на одном стволе скважины ориентированы в промежуточную зону другого ствола скважины. Точки инициации трещин ГРП на смежных горизонтальных стволах могут быть смещены относительно друг друга на половину длины интервалов ГРП. Технический результат заключается в повышении эффективности ГРП. 1 з.п. ф-лы, 2 ил.
Изобретение относится к разработке залежей высоковязких нефтей и битумов и может быть применено для увеличения проницаемости призабойной зоны путем теплового воздействия и импульсной обработки давлением. Способ включает формирование перепадов давления между призабойной зоной и полостью скважины путем создания периодических импульсов давления в призабойной зоне в виде перемещающейся по полости скважины волны движения массы жидкости. При этом предварительно оценивают время перемещения волны движения массы жидкости от устья до призабойной зоны и длительность расширения и смыкания трещин пласта. Вентиль долива жидкости открывают на время, в течение которого волна движения массы жидкости достигает призабойную зону и воздействует на трещины пласта. Затем закрывают вентиль долива жидкости и открывают вентиль слива жидкости для снижения давления в скважине до величины исходного. Операции проведения периодических импульсов давления в призабойной зоне совмещают с операциями теплоциклической обработки скважины путем чередования серии импульсов давления с количеством, амплитудой и длительностью импульсов в серии, определяемыми физическими параметрами нефтяной залежи, и последующей закачки теплоносителя в скважину с продавливанием его в трещины пласта, образовавшиеся при проведении серии импульсов давления. Технический результат заключается в повышении эффективности комплексной обработки скважины.
Способ относится к нефтегазодобывающей промышленности, в частности к способам повышения нефтегазоотдачи скважин. Технический результат - увеличение зоны трещиноватого коллектора и его проницаемости. Способ образования трещиноватого коллектора давлением газообразных продуктов включает размещение в районе перфорации скважин окислительного состава и горючего, инициирование его горения и фиксации разрыва от смыкания, причем с целью увеличения проницаемости пласта и призабойной зоны, содержащей щелочные и щелочноземельные породы, их нейтрализуют азотной кислотой до образования солей нитратов с выдерживанием в течение нескольких часов для реакции кислоты с породой, в качестве горючего используют горючие компоненты породы или горючее, дополнительно подаваемое в скважину, и осуществляют разложение солей нитратов и горючего до газообразного состояния тепловым источником, подаваемым в скважину: пороховым генератором давления или железоалюминиевой смесью (термит), или горюче-окислительным составом.
Наверх