Теплообменник

Изобретение относится к области теплотехники и может использоваться в теплообменниках для подогрева или охлаждения среды в жилищно-коммунальном хозяйстве. Теплообменник содержит наружную и U-образную внутреннюю трубы, встроенные друг в друга, присоединительный фланец, патрубки подвода и отвода греющей или охлаждающей среды, внутренняя труба теплообменника жестко закреплена к фланцу наружной трубы, которая выполнена цилиндрической, заглушена с одной стороны и имеет с другой стороны фланец с патрубками подвода и отвода греющей или охлаждающей среды, причем патрубок подвода удлинен, во внутреннюю трубу встроен турбулизатор в виде винтообразной ленты, периодически витой в различных направлениях. К внутренней трубе вдоль ее горизонтальной поверхности приварены металлические ленты высотой, позволяющей свободно извлекать внутреннюю трубу. Технический результат - повышение коэффициента теплоотдачи, увеличение площади теплообмена, упрощение демонтажа теплообменника. 3 з.п. ф-лы, 2 ил.

 

Изобретение относится к теплообменному оборудованию и может использоваться в устройствах подогрева или охлаждения среды в теплоэнергетике, жилищно-коммунальном хозяйстве систем теплоснабжения и горячего водоснабжения.

Известен теплообменный аппарат змеевикового типа (патент №112375, МПК F28D 7/02), содержащий корпус с крышками и размещенную в них трубку с прямыми концевыми участками, навитую в виде змеевика на сердечник, выполненный из трубы, один конец которой закреплен в верхней торцевой крышке корпуса, а второй конец заглушен, подключенный к патрубку подвода среды в межтрубное пространство, имеющий отверстия, рассредоточенные по всей его длине, сообщающие полость сердечника с межтрубным пространством, причем сердечник имеет длину меньшую, чем корпус, и равную длине навивки змеевика, нижняя торцевая крышка корпуса снабжена патрубком отвода среды.

Недостатком данного теплообменного аппарата является большое гидравлическое сопротивление.

Известен теплообменник типа "труба в трубе" (патент №135101, МПК F28D 7/10), состоящий из корпуса с патрубками для подвода нагреваемого теплоносителя, отвода охлажденного теплоносителя, внутренней трубы с наружным оребрением, внутренняя труба помимо наружного оребрения имеет внутреннее оребрение, выполненное в виде цельнометаллических стержней, расположенных в шахматном порядке, и содержит интенсификатор потока, представляющий собой заглушенную с двух сторон трубу.

Недостатком данного теплообменника является низкий коэффициент теплоотдачи по причине отсутствия турбулизации потока.

Наиболее близким к предлагаемому техническому решению является теплообменник (патент №2489663, МПК F28D 7/14, МПК F28F 9/013), содержащий наружную и внутреннюю трубы, встроенные друг в друга, с присоединительными фланцами и патрубками подвода и отвода греющей (охлаждающей) среды, с горизонтальным U-образным соединением с отводами, внутренняя труба теплообменника с одной стороны жестко закреплена к фланцам наружной трубы, а второй конец внутренней трубы соединен отводом и установлен на опорах, приваренных к внешней трубе. Для обеспечения свободного перемещения внутренней трубы вследствие температурных удлинений втулки опоры изготовлены с зазором из материала с низким коэффициентом трения.

Недостатками данного теплообменника являются сложность установки отводов друг в друга, невозможность демонтажа, низкая эффективность теплообмена, вследствие недостаточной турбулизации потока, маленькая площадь теплообмена.

Задачей изобретения является усовершенствование конструкции и повышение эффективности теплообмена за счет увеличения коэффициента теплоотдачи, увеличения площади теплообмена, создания возможности для демонтажа теплообменника.

Технический результат изобретения достигается тем, что в теплообменнике, содержащем наружную и U-образную внутреннюю трубы, встроенные друг в друга, присоединительный фланец, патрубки подвода и отвода греющей или охлаждающей среды, внутренняя труба теплообменника жестко закреплена к фланцу наружной трубы, в отличие от прототипа наружная труба теплообменника выполнена цилиндрической, имеющей с одной стороны фланец с прикрепленными к нему патрубками подвода и отвода греющей или охлаждающей среды, что позволяет легко демонтировать теплообменник. Патрубок подвода среды удлинен до U-образной части наружной трубы, что обеспечивает движение среды через всю наружную трубу. Такая длина патрубка позволяет среде доходить до конца наружной трубы и не препятствовать ее выходу. Наружная труба с другой стороны заглушена. Во внутреннюю трубу с целью увеличения коэффициента теплоотдачи встроен турбулизатор в виде винтообразной ленты, периодически витой в различных направлениях. Оптимальное изменение направления витков составляет пять-шесть диаметров внутренней трубы. За пределами 6 диаметров внутренней трубы движение теплоносителя становится более установившимся, что снижает коэффициент теплоотдачи, а меньше 5 диаметров внутренней трубы возрастает гидравлическое сопротивление. Для увеличения площади теплообмена к внутренней трубе вдоль ее горизонтальной поверхности приварены металлические ленты высотой, позволяющей свободно извлекать внутреннюю трубу.

Конструкция изобретения поясняется фигурой 1, где показан продольный разрез теплообменника, и фигурой 2, где показан поперечный разрез теплообменника.

Предлагаемый теплообменник (фиг. 1) состоит из цилиндрической наружной 1 и U-образной внутренней 2 труб, встроенных друг в друга, присоединительного фланца 3 с прикрепленными к нему с помощью гаечных соединений патрубками подвода 4 и отвода 5 (фиг. 2) греющей (охлаждающей) среды. Для обеспечения движения теплоносителя по всей наружной трубе патрубок подвода удлинен до U-образной части внутренней трубы. Внутренняя труба прикреплена к фланцу при помощи гаек 6. Фланец закреплен к наружной трубе пи помощи гаечных соединений 7. Во внутреннюю трубу встроен турбулизатор 8 в виде винтообразной ленты, витой в различных направлениях. Расстояние, через которое меняется направление витков, составляет пять-шесть диаметров внутренней трубы. К внутренней трубе вдоль ее горизонтальной поверхности приварены металлические ленты 9.

Теплообменный аппарат работает следующим образом.

Одна из нагреваемых или охлаждаемых сред, в качестве которой может быть использована капельная жидкость, подается в U-образную внутреннюю трубу 2, режим движения среды становится турбулентным при прохождении через турбулизатор в виде винтообразной ленты, витой в различных направлениях, вследствие чего возрастает коэффициент теплоотдачи. Расстояние, через которое меняется направление витков, составляет пять-шесть диаметров внутренней трубы. Среда обменивается теплом с другой средой через стенку внутренней трубы, площадь теплоотдачи которой увеличена при помощи металлических лент, и выводится из аппарата. Другая греющая или охлаждающая среда подается через удлиненный до U-образной части внутренней трубы патрубок 4 в наружную цилиндрическую тубу 1, тем самым обеспечивая движение среды по всей наружной трубе, движется по межтрубному пространству и выводится через патрубок 5.

Предложенная конструкция теплообменника позволяет увеличить коэффициент теплоотдачи, увеличить площадь теплообмена, создать возможность для демонтажа теплообменника.

1. Теплообменник, содержащий наружную и U-образную внутреннюю трубы, встроенные друг в друга, присоединительный фланец, патрубки подвода и отвода греющей или охлаждающей среды, внутренняя труба теплообменника жестко закреплена к фланцу наружной трубы, отличающийся тем, что наружная труба выполнена цилиндрической, заглушенной с одной стороны и имеющей с другой стороны фланец с патрубками подвода и отвода греющей или охлаждающей среды, причем патрубок подвода удлинен, во внутреннюю трубу встроен турбулизатор в виде винтообразной ленты, периодически витой в различных направлениях.

2. Теплообменник по п. 1, отличающийся тем, что патрубок подвода греющей или охлаждающей среды удлинен до U-образной части внутренней тубы.

3. Теплообменник по п. 1, отличающийся тем, что расстояние, через которое меняется направление витков, составляет пять-шесть диаметров внутренней трубы.

4. Теплообменник по п. 1, отличающийся тем, что к внутренней трубе вдоль ее горизонтальной поверхности приварены металлические ленты высотой, позволяющей свободно извлекать внутреннюю трубу.



 

Похожие патенты:
Изобретение относится к охладителю синтез-газа и способу его сборки. Описан охладитель синтез-газа, предназначенный для использования в системе газификации, включающий верхнюю часть (216), содержащую насадки (314) трубопроводов.

Изобретение относится к области теплотехники, а именно к теплообменникам корпусного или погружного типа. Изобретение заключается в том, что теплообменник имеет вертикальные теплообменные трубы для прохода охлаждающего теплоносителя, простирающиеся вдоль всей теплообменной полости, при этом теплообменные трубы объединены в отдельные группы труб и отдельные группы труб разделены между собой вертикальными каналами.

Изобретение относится к машиностроению, а именно к трубам Фильда для высокотемпературных трубчатых теплообменных аппаратов, например, для прямоточных парогенераторов ядерных энергетических установок с нагревающим жидкометаллическим теплоносителем (например, сплав свинца с висмутом).

Изобретение относится к термосифонным теплообменным аппаратам, которые могут использоваться в химической, нефтехимической и других отраслях промышленности. Техническим результатом заявленного изобретения является повышение эффективности и экономичности работы аппарата, а также упрощение процесса изготовления.

Изобретение относится к области теплотехники тяжелых жидкометаллических теплоносителей и может быть использовано в исследовательских, испытательных стендах и установках атомной техники с реакторами на быстрых нейтронах.

Изобретение относится к области теплообмена и может быть использовано преимущественно в области машиностроения для использования теплоты от выхлопных газов двигателей внутреннего сгорания (ДВС).

Изобретение относится к области теплотехники. Устройство для компримирования и осушки газа содержит многоступенчатый компрессор со ступенью низкого давления, ступенью высокого давления и нагнетательным патрубком и адсорбционный осушитель с зоной осушения и зоной регенерации, причем между ступенью низкого давления и ступенью высокого давления помещен промежуточный холодильник, и при этом устройство дополнительно снабжено теплообменником, имеющим главную камеру с входной частью и выходной частью для первой первичной текучей среды, а концы трубок теплообменника соединены с отдельной входной камерой и выходной камерой для каждого трубного пучка; и при этом первый трубный пучок образует охлаждающий контур промежуточного холодильника, служащий для разогрева газа из ступени высокого давления для регенерации адсорбционного осушителя.

Изобретение относится к области теплотехники и может быть использовано в энергетике, нефтехимической и других отраслях промышленности, в частности в процессах, протекающих с большими тепловыми эффектами.

Изобретение относится к энергетике и может быть использовано в подогревательных системах тепловых электростанций. Теплообменник типа "труба в трубе" содержит две трубы, расположенные с зазором между ними, одна из которых представляет из себя тор, а вторая - полую ленту Мебиуса, причем по ленте Мебиуса могут быть выполнены продольные канавки.

Изобретение относится к сушильной технике, в частности к установкам для сушки растворов и суспензий, и может быть использовано в химической, пищевой и других отраслях промышленности.

Изобретение относится к области энергетики, предназначено для одновременного получения пресной воды, холода и электроэнергии. Достигаемые технические результаты - более высокая экономия потребляемой электроэнергии, вплоть до полной компенсации энергозатрат на собственные нужды установки, сопровождающаяся снижением количества выбросов токсичных и парниковых газов судовой энергетической установки, больший коэффициент полезного действия, а также возможность получать холод - получены путем совмещения процесса опреснения воды с получением холода и электроэнергии. 3 н.п. ф-лы, 3 ил.

Изобретение относится к теплотехнике и может быть использовано в рекуперативных теплообменниках. Теплообменник содержит внешнюю трубу с подводящим и отводящим патрубками греющей среды и вставленную в нее внутреннюю трубу с подводящим и отводящим патрубками нагреваемой среды, в межтрубном пространстве установлены вставки, которые ступенчато расположены по длине внешней трубы с образованием ходов в межтрубном пространстве и введены во внутреннюю трубу с перекрытием не менее половины ее сечения. Вставки межтрубного пространства выполнены в виде тепловых труб. Технический результат - повышение эффективности работы теплообменника при уменьшении его материалоемкости и упрощении его конструкции. 1 з.п. ф-лы, 1 ил.

Изобретения относятся к химической, нефтяной, газовой и другим отраслям промышленности, а именно к технологии и оборудованию, предназначенным для охлаждения влажного природного газа. Охлаждение газа осуществляют в теплообменной секции одного устройства, которую разделяют на не менее чем две ступени охлаждения и располагают встык по боковым сторонам, при этом газ направляют последовательно от первой ступени охлаждения к следующей через соединяющий переходной коллектор, подачу охлаждающего воздуха осуществляют вращением от электродвигателей вентиляторов, которые располагают, по меньшей мере, по два над каждой ступенью охлаждения, организуют внутреннюю рециркуляцию нагретого воздуха на последней ступени охлаждения, контроль образования гидратов осуществляют датчиками, выполненными в виде дифференциальных термопар, которые подают сигнал в момент перекрытия гидратами проходного сечения наиболее охлаждаемых теплообменных труб. Управление теплообменными процессами осуществляется реверсированием и частотным регулированием вращения вентиляторов последней ступени охлаждения с поддержанием заданной температуры газа на выходе путем внутренней рециркуляции. Технический результат - предотвращение повышения температуры охлаждающего воздуха на входе в последнюю ступень охлаждения и обеспечение поддержания заданной температуры газа на выходе при непрерывном режиме работы оборудования. 2 н. и 10 з.п. ф-лы, 4 ил.

Изобретение относится к химической, нефтехимической и энергетической промышленности и может быть использовано для проведения каталитических процессов со значительными тепловыми эффектами при частичном превращении углеводородов. Способ проведения экзотермических и эндотермических каталитических процессов частичного превращения углеводородов включает подачу углеводородной смеси в слой гетерогенного катализатора, контактирование смеси с поверхностью данного катализатора, при этом процесс проводят последовательно в двух вертикальных кожухотрубных реакторах, направляя углеводородную смесь сначала в основной реактор и реакционную смесь из основного реактора в дополнительный реактор, при этом расход охлаждающего теплоносителя при экзотермическом процессе и горячего теплоносителя при эндотермическом процессе в дополнительном реакторе поддерживают ниже по сравнению с расходом охлаждающего или горячего теплоносителя в основном реакторе. Реакторная группа для осуществления способа включает основной реактор, кожух и трубки внутри него выполнены в форме усеченного конуса, кроме того трубки внутри кожуха наклонены относительно центральной оси и вокруг этой оси с образованием конусообразной полости, входные и выходные патрубки расположены тангенциально, и дополнительный реактор, идентичный основному, реакторы установлены вертикально и расположены относительно друг друга с чередованием малых и больших днищ, при этом основной и дополнительный реакторы соединены между собой последовательно. Изобретение обеспечивает повышение равномерности осуществляемых процессов и увеличение производительности. 2 н. и 8 з.п. ф-лы, 3 ил.
Наверх