Электроразрядный кислородно-йодный лазер с буферным газом

Изобретение относится к лазерной технике. В электроразрядном кислородно-йодном лазере в газовый поток непосредственно на выходе генератора молекул синглетного кислорода O2(1Δ) и перед сверхзвуковым соплом подмешивается газ X (CO2, SF6, SiF4 и т.д.), состоящий из молекул, тушащих возбужденный озон O 3 , с концентрацией, превышающей концентрацию молекул O2(1Δ) более чем в 5×10-11/k раз, где k - константа скорости тушения процесса X + O 3 X + O 3 в единицах см3/сек. Технический результат заключается в повышении энергетической эффективности лазера. 3 ил.

 

Изобретение относится к квантовой электронике и может быть использовано при разработке электроразрядных кислородно-йодных лазеров.

Кислородно-йодный лазер действует на спин-орбитальном переходе атомарного йода I(2P1/2)→I(2P3/2) с длиной волны излучения 1,315 мкм. Лазерный переход инвертируется в ходе передачи электронной энергии от молекулы синглетного кислорода O2(1Δ). Известна установка электроразрядный кислородно-йодный лазер (ЭКИЛ) [1], в которой молекулы O2(1Δ) нарабатываются в электроразрядном генераторе 1 (фиг.1). На вход генератора 1 подается смесь газов O2/He/NO. В ходе протекания плазмохимических реакций в генераторе 1 нарабатываются электронно-возбужденный молекулярный синглетный кислород O2(1Δ) и атомарный кислород. Относительное содержание молекул O2(1Δ) в кислородном потоке может достигать 17% при полном давлении кислорода 20 Торр [2]. Атомарный кислород является побочным продуктом и его относительное содержание в кислородном потоке может достигать нескольких процентов.

С выхода генератора 1 газовый поток течет по тракту транспортировки 2 к входу сверхзвукового сопла 3. В газовый поток через порт 6 инжектируются пары молекулярного йода с несущим его буферным газом He. Молекулярный йод диссоциирует на атомы в последовательности химических реакций:

I2+O→IO+I

IO+O→I+O2.

Перед соплом 3 в газовый поток вводится буферный газ азот для получения сверхзвукового потока с высоким значением числа Маха (отношение скорости газового потока к скорости звука). Активная среда лазера охлаждается в ходе расширения в сверхзвуковом сопле 3. Оптическая ось резонатора 4 перпендикулярна направлению газового потока и пересекает его в точке с максимальным значением коэффициента усиления активной среды. Газовый поток покидает резонатор в направлении 5.

Для повышения эффективности работы ЭКИЛ необходимо поднимать давление кислорода на выходе генератора [2]. Однако рост давления O2 сопровождается падением относительной доли O2(1Δ). Это обусловлено присутствием на выходе электроразрядного генератора атомов кислорода O. Атомарный кислород играет двоякую роль в ЭКИЛ. Он обеспечивает диссоциацию молекулярного йода, но он также дезактивирует O2(1Δ) [3, 4].

В ходе рекомбинации атомов кислорода в процессе:

образуется либо электронно- [5] либо колебательно-возбужденный [6] озон O 3 , который эффективно реагирует с молекулярным синглетным кислородом в реакции:

с константой скорости реакции k3=5×10-11 см3/сек [7].

На фиг.2 представлена временная зависимость относительной концентрации O2(1Δ) для нескольких составов смеси при фотолизе смеси O3-O2-CO2 при давлении кислорода 460 Торр, начальном давлении озона 1 Торр для нескольких давлений углекислого газа, взятой из работы [7]. Как видно на фиг.2, для смеси O3-O2 (нижняя кривая) относительная концентрация O2(1Δ) падает со временем почти в три раза из-за его тушения в процессе (3). Экспериментально обнаружено, что скорость тушения O2(1Δ) в системе кислородно-озоновой смеси замедляется при добавлении в эту смесь компонент, хорошо тушащих возбужденный озон, таких как углекислый газ и гелий. Например, при добавлении в смесь 13 Торр углекислого газа выход O2(1Δ) увеличивается более чем в 2 раза по сравнению со смесью, не содержащей этой добавки. И наоборот, добавление слабого тушителя O 3 , например Ar, практически не сказывается на скорости тушения O2(1Δ) [3, 7].

Таким образом, процесс (3) приводит к падению концентрации O2(1Δ) в ходе его транспортировки к соплу 3 в схеме ЭКИЛ, предложенного в работе [1]. Потери O2(1Δ) при его транспортировке в процессе (3) приводят к уменьшению эффективности ЭКИЛ. Добавление в газовый поток на выходе генератора компонента X, тушащего возбуждение в озоне, будет приводить к стабилизации озона в процессе:

Потери O2(1Δ) будут незначительными, если скорость процесса (4) будет превышать скорость процесса (3). Это условие будет выполняться, если отношение содержания в смеси компонента [X] к содержанию O2(1Δ) на выходе генератора будет превышать величину 5×10-11/k, где k - константа скорости процесса (4) в единицах см3/сек.

Целью изобретения является увеличение производительности ЭКИЛ. Это достигается тем, что на выходе генератора 1 в газовый поток через порт 6 (фиг.3) в смесь добавляется газ X (CO2, SF6, SiF4 и т.д.), состоящий из молекул, тушащих возбужденный озон O 3 , в соотношении к синглетному кислороду более чем 5×10-11/k раз.

На фиг.3 изображена принципиальная схема устройства ЭКИЛ. В поток газа, выходящего из генератора 1, через порт 6, расположенного непосредственного на выходе генератора, подмешивается газ X. Газ X состоит из молекул, хорошо тушащих возбужденный озон O 3 (CO2, SF6, SiF4 и т.д.). Через порт 7 в газовый поток добавляются пары молекулярного йода с несущим его буферным газом, в качестве которого может служить также газ X. Молекулярный йод диссоциирует на атомы при взаимодействии с атомарным кислородом. Активная среда лазера охлаждается в ходе расширения в сверхзвуковом сопле 3. Энергия, запасенная в O2(1Δ), конвертируется в лазерное излучение в резонаторе 4. Газовый поток покидает резонатор в направлении 5.

На фиг.1 схематично изображена принципиальная схема элекроразрядного кислородно-йодного лазера.

На фиг.2 представлены временные зависимости относительных концентраций молекул синглетного кислорода в смеси O-O2-CO2 при давлении кислорода 460 Торр, атомов кислорода около 1 Торр для различных давлений CO2.

На фиг.3 изображена принципиальная схема заявляемого элекроразрядного кислородно-йодного лазера с буферным газом.

Литература:

1. D.L. Carroll, J.T. Verdeyen, D.M. King, J.W. Zimmerman, J.K. Laystrom, B.S. Woodard, G.F. Benavides, K. Kittell, D.S. Stafford, M.J. Kushner and W.C. Solomon, "Continuous-wave laser oscillation on the 1315 nm transition of atomic iodine pumped by O2(a 1Δ) produced in an electric discharge," Appl. Phys. Lett., 86, 111104, 2005.

2. О.V. Braginsky, A.S. Kovalev, D.V. Lopaev, О.V. Proshina, Т.V. Rakhimova, A.T. Rakhimov and A.N. Vasilieva, "High pressure electro-discharge singlet oxygen generator (ED SOG) with high efficiency and yield," J. Phys. D: Appl. Phys., vol. 41, no.17, pp.172008-1-172008-5, 2008.

3. Azyazov V.N., Mikheyev P.A., Postell D., Heaven M.C., "O2(a1Δ) quenching in the O/O2/O3 system", Chem. Phys. Lett. 482(1-3), 56-61 (2009).

4. Vasiljeva A.N., Klopovskiy K.S., Kovalev A.S., Lopaev D.V., Mankelevich Y.A., Popov N.A., Rakhimov A.T., Rakhimova T.V., J. Phys. D: Appl. Phys., 2004, vol. 37, p.2455-2468

5. Shi J., Barker J.R., "Emission from ozone excited electronic states", J. Phys. Chem., vol. 94, 8390-8393, 1990;

6. C.W. vonRosenberg, D.W. Trainor, "Vibrational excitation of ozone formed by recombination", J. Chem. Phys., vol. 61, 2442-2456, 1974.

7. Azyazov V.N., Mikheyev P.A., Heaven M.C., "On the O2(a 1Δ) quenching by vibrationally excited ozone", Proc. SPIE 7751, 77510E (2010).

Электроразрядный кислородно-йодный лазер, характеризующийся тем, что в газовый поток непосредственно на выходе генератора молекул синглетного кислорода O2(1Δ) и перед сверхзвуковым соплом подмешивается газ X (CO2, SF6, SiF4 и т.д.), состоящий из молекул, тушащих возбужденный озон O 3 , с концентрацией, превышающей концентрацию молекул O2(1Δ) более чем в 5×10-11/k раз, где k - константа скорости тушения процесса X + O 3 X + O 3 в единицах см3/сек.



 

Похожие патенты:

Изобретение относится к квантовой электронике и может быть использовано для создания кислородно-йодных лазеров. Способ получения инверсной населенности на атомах йода заключается в оптической накачке газового потока.

Устройство и способ работы авиационного газотурбинного двигателя включающий процесс сжатия в компрессорах, подвода тепла в камере сгорания, расширения на турбинах и реактивном сопле.

Изобретение относится к области преобразования ядерной энергии. Реакторно-лазерная установка с прямой накачкой осколками деления состоит из подкритического лазерного блока с активным веществом (1) и запального импульсного ядерного реактора, окруженного подкритическим лазерным блоком.

Изобретение относится к лазерной технике и связано с разработкой образцов HF/DF импульсно-периодических химических лазеров (HF/DF-ИПХЛ). .

Изобретение относится к квантовой электронике и может быть использовано при создании йодных фотодиссоционных лазеров с оптической накачкой. .

Изобретение относится к лазерной технике и может быть использовано при создании газодинамического тракта непрерывного химического лазера с выхлопом лазерного газа в атмосферу, а также элементов системы восстановления давления (СВД) этих лазеров.

Изобретение относится к области лазерной техники и может быть использовано, например, в физике низкотемпературной плазмы и биологии. .

Изобретение относится к области квантовой электроники и может быть использовано при создании источников когерентного излучения на переходах состояний атомов йода и, дополнительно, молекул окиси углерода.

Изобретение относится к генераторам синглетного кислорода и может быть использовано в химических кислород-йодных лазерах, а также в технологических установках по дезинфекции воды, нейтрализации и утилизации промышленных органических загрязнителей и отходов.

Изобретение относится к лазерной технике, к конструкциям сопловых блоков для проточных газовых лазеров. .

Группа изобретений относится к боевой авиации, на борту которой устанавливается лазерное оружие. В способе работы авиационного газотурбинного двигателя, включающем процесс сжатия воздуха в компрессорах, подвод тепла в камере сгорания, расширение газового потока для получения сверхзвуковой скорости осуществляют через бинарную систему, состоящую из турбины низкого давления, лопатки которой выполнены в виде сопел Лаваля, и установленного за ней кольцевой неподвижной закритической расширяющейся части сопла Лаваля. В авиационном газотурбинном двигателе рабочие лопатки турбины низкого давления выполнены в виде сопел Лаваля, создающих на выходе турбины сверхзвуковой газовый поток с углом выхода, близким к 90 градусов. С минимальным зазором за турбиной низкого давления установлена неподвижная часть, за срезом которой расположен проточный оптический резонатор с зеркальной системой фокусировки и вывода лазерного луча на систему прицеливания. Достигается увеличение секундного расхода газа, выходящего из оптического резонатора, приводящего к увеличению мощности лазера и тяги двигателя, а также повышение надежности лазера. 2 н.п. ф-лы, 1 ил.

Изобретение относится к лазерной технике. Газодинамический тракт сверхзвукового химического лазера состоит из последовательно соединенных: генератора 1 лазерного газа, смесительного соплового блока 2, лазерной камеры (ЛК) 3 с резонаторной полостью и системы восстановления давления, в состав которой входят активный диффузор (АД) 5 и эжектор 7. Диффузор состоит из пассивной части с размещенными внутри пилонами и активной части, в состав которой входит сопловый блок и камера смешения. Низконапорный лазерный газ, который на выходе из пассивной части диффузора является уже дозвуковым, эжектируется из ЛК 3 сверхзвуковыми струями высоконапорного газа из сопел пилонов и соплового блока. Технический результат изобретения заключается в стабилизации параметров течения лазерного газа и улучшении оптического качества потока лазерного газа. 10 з.п. ф-лы, 4 ил.
Наверх