Способ получения слоистых композиционных материалов


 


Владельцы патента RU 2562279:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Тольяттинский государственный университет" (RU)

Изобретение относится к производству слоистых композиционных материалов, содержащих слой пеноалюминия. Приготавливают алюминиевый расплав и перегревают его выше температуры ликвидус. Расплав заливают в нагретую до той же температуры литейную форму. В литейную форму предварительно устанавливают листы из сплавов переходных металлов и засыпают гранулами из водорастворимых солей. Листы предварительно покрывают слоем активирующего флюса. В качестве сплавов переходных металлов применяют сплавы на основе железа, или меди, или никеля, или титана, или циркония. После затвердевания композиционный материал извлекают из формы и помещают в воду. Изобретение обеспечивает расширение номенклатуры изготавливаемых изделий из слоистых композиционных материалов, повышение качества композита и снижение трудоемкости его изготовления. 1 з.п. ф-лы, 1 пр.

 

Изобретение относится к производству слоистых композиционных материалов, в частности к производству слоистых композиционных материалов, содержащих слой пеноалюминия.

Известен способ производства пеноалюминия (патент РФ №2400552 от 27.09.2010. «Способ получения пеноалюминия»), при котором алюминиевый расплав заливают в нагретую до той же температуры форму, заполненную гранулами из водорастворимых солей, химически не взаимодействующих с алюминиевым расплавом, с температурой плавления выше температуры нагрева расплава и формы и с плотностью выше плотности алюминиевого расплава. В качестве солей используют или хлорид кальций, или хлорид бария, или фторид калия. После затвердевания для растворения гранул изделие извлекают из формы и помещают в воду.

Недостатком пеноалюминия, получаемого по данному способу, является низкие механические свойства.

Известен также способ получения слоистых композиционных материалов титан-пеноалюминий, который принят за прототип (И.С. Полькин/ Пеноалюминий будущего - пенокомпозит// Технология легких сплавов. №1-2 2008 г., с.210-211), при котором композит пеноалюминий-титан получают совместной прокаткой пеноалюминия с тонким слоем титана. Наличие титанового слоя повышает механические свойства пеноалюминия. Однако недостатком данного способа является ограниченная номенклатура получаемых изделий, неоднородность пористости в слое пеноалюминия, что снижает качество композита, и высокая трудоемкость процесса.

Техническим результатом предлагаемого способа является расширение номенклатуры изготавливаемых изделий из слоистых композиционных материалов, содержащих пеноалюминий, повышение качества композита и снижение трудоемкости его изготовления.

Сущность предлагаемого способа заключается в том, что перегретый выше линии ликвидус алюминиевый расплав заливают в нагретую до той же температуры форму, заполненную водорастворимыми солями.

В отличие от прототипа одновременно с гранулами в форму устанавливаются листы из сплавов переходных металлов, покрытые слоем активирующего флюса. В качестве сплавов переходных металлов могут применять сплавы на основе железа, или меди, или никеля, или титана, или циркония.

Такая совокупность новых признаков с известными позволяет расширить номенклатуру изготавливаемых изделий из слоистых композиционных материалов, содержащих пеноалюминий, повысить однородность пор в слое пеноалюминия, что повышает качество композита, и снизить трудоемкости его изготовления.

Приготавливают алюминиевый расплав и перегревают его выше температуры ликвидус. Расплав заливают в нагретую до той же температуры литейную форму. В литейную форму предварительно устанавливают листы из сплавов переходных металлов и засыпают гранулами из водорастворимых солей. Листы предварительно покрывают слоем активирующего флюса. В качестве сплавов переходных металлов могут применять сплавы на основе железа, или меди, или никеля, или титана, или циркония.

После затвердевания композиционный материал извлекают из формы и помещают в воду. Гранулы растворяются в воде, образуя слой пеноалюминия в композиционном материале.

Активация поверхности листов из сплавов переходных металлов и нагрев их до температуры заливки обеспечивают адгезионную связь слоев пеноалюминия и сплава переходного металла.

Применение гранул из водорастворимых солей для формирования пористости в алюминиевом слое обеспечивает формирование однородной пористости.

Все это повышает качество слоистого композиционного материала, содержащего слой пеноалюминия, расширяет номенклатуру изготавливаемых изделий из композита и снижает трудоемкость его изготовления.

Примером применения предлагаемого способа является изготовление слоистого композиционного материала пеноалюминий-титан. Расплав из алюминия перегревают до 760°C.

В металлическую форму устанавливают титановые пластины, покрытые активирующим флюсом системы KF-AlF3 эвтектической концентрации. Между пластинами засыпают гранулы из хлористого натрия размером 2 мм и нагревают форму до температуры расплава. Форму с титановыми пластинами и гранулами заливают расплавленным алюминием и охлаждают до затвердевания. После затвердевания слоистый композит извлекают из формы и помещают в воду для растворения гранул из хлористого натрия.

При этом расширяется номенклатура изготавливаемых изделий из слоистых композиционных материалов, содержащих пеноалюминий, повышается качество композита и снижается трудоемкость его изготовления. Предлагаемый способ обеспечивает технический эффект и может быть осуществлен с помощью известных в технике средств. Следовательно, он обладает промышленной применимостью.

1. Способ получения слоистых композиционных материалов, содержащих слой пеноалюминия, при котором перегретый выше линии ликвидус алюминиевый расплав заливают в нагретую до той же температуры форму, заполненную водорастворимыми солями, отличающийся тем, что одновременно с гранулами в форму устанавливаются листы из сплавов переходных металлов, покрытые слоем активирующего флюса.

2. Способ по п.1, отличающийся тем, что в качестве сплавов переходных металлов могут применять сплавы на основе железа, или меди, или никеля, или титана, или циркония.



 

Похожие патенты:

Изобретение относится к литейному производству, в частности к карбонатным смесям, используемым при рафинировании и модифицировании алюминиевых сплавов. Карбонатная смесь содержит, мас.%: 50-95 карбоната кальция и 5-50 карбоната стронция, при этом смесь состоит из частиц фракции 40-60 мкм.
Изобретение относится к получению композиционных порошков для защитных износостойких покрытий. Готовят смесь неметаллической керамической компоненты и металлического порошка при массовом соотношении 1:(1-4).
Изобретение относится к области металлургии, в частности к изготовлению платиновых сплавов для ювелирной промышленности. Сплав содержит, мас.

Изобретение относится к области металлургии, в частности к порошковым сплавам на основе никеля, обладающим повышенным сопротивлением к сульфидной коррозии, и может быть использовано для изготовления деталей газотурбинных двигателей.
Изобретение относится к области металлургии и может быть использовано при переработке цирконийсодержащих оксидных материалов для получения алюминий-циркониевого сплава.

Редкоземельный спеченный магнит состоит по существу из 26-36 вес.% R, 0,5-1,5 вес.% В, 0,1-2,0 вес.% Ni, 0,1-3,0 вес.% Si, 0,05-1,0 вес.% Cu, 0,05-4,0 вес.% M, а остальное - Т и случайные примеси, где R представляет собой редкоземельный элемент, Т представляет собой Fe или Fe и Со, М выбран из Ga, Zr, Nb, Hf, Ta, W, Mo, Al, V, Cr, Ti, Ag, Mn, Ge, Sn, Bi, Pb и Zn.

Изобретение может быть использовано в металлургии. Способ переработки бериллийсодержащих отходов производства медно-бериллиевой лигатуры включает плавление с флюсом, выдержку расплава и последующее разделение продуктов плавки с получением металлической фазы и вторичного шлака.

Изобретение относится к области специальной электрометаллургии, а именно к вакуумно-индукционной выплавке сплава на основе хрома. Для повышения горячей пластичности используют жаропрочный сплав, содержащий, в мас.
Изобретение относится к металлургии алюминиевых сплавов, содержащих металлы, практически не растворяющиеся в твердом алюминии: железо, никель, кобальт, редкоземельные металлы, иттрий, и предназначено для изготовления проводников электрического тока в виде проволоки диаметром 0,1-0,3 мм, работающих при повышенных температурах до 250°C.

Изобретение относится к металлургии. Пористый сплав на основе никелида титана для медицинских имплантатов, полученный самораспространяющимся высокотемпературным синтезом, содержит в качестве легирующей добавки медь, замещающую никель, в концентрации от 3 до 6 атомарных процентов.
Способ может быть использован при изготовлении биметаллического проката для изготовления ювелирных изделий, часов, сувенирных изделий, посуды, столовых приборов, церковных украшений.
Способ может быть использован при изготовлении биметаллического проката для изготовления ювелирных изделий, часов, сувенирных изделий, посуды, столовых приборов, церковных украшений.

Изобретение может быть использовано для получения сваркой взрывом композиционных материалов с особыми тепловыми свойствами, например, при изготовлении теплообменной аппаратуры, электроэнергетических установок и т.п.
Изобретение относится к металлургии алюминиевых сплавов, содержащих металлы, практически не растворяющиеся в твердом алюминии: железо, никель, кобальт, редкоземельные металлы, иттрий, и предназначено для изготовления проводников электрического тока в виде проволоки диаметром 0,1-0,3 мм, работающих при повышенных температурах до 250°C.

Изобретение относится к способу изготовления многослойного материала для высокотемпературной пайки и может быть использовано, например, для изготовления тонких листов в теплообменниках.

Изобретение относится к листам из алюминиевых сплавов для высокотемпературной пайки, которые могут быть использованы для изготовления радиаторов. Лист состоит из сердцевины, выполненной из алюминиевого сплава, и материала плакировки, нанесенного на по меньшей мере одну сторону сердцевины и выполненного из алюминиевого сплава с более низким коррозионным потенциалом, чем у материала сердцевины, причем материал плакировки представляет собой самый внешний слой листа для высокотемпературной пайки и выполнен из алюминиевого сплава, содержащего, в мас.%: от 0,8 до 1,3 Mg, от 0,5 до 1,5 Si, от 1,0 до 2,0, предпочтительно 1,4-1,8 Mn, ≤0,7 Fe, ≤0,1 Cu, и ≤4 Zn, ≤0,3 каждого из Zr, Ti, Ni, Hf, V, Cr, In, Sn, и ≤0,5 суммы Zr, Ti, Ni, Hf, V, Cr, In, Sn, а остальное - Al и неизбежные примеси.
Изобретение относится к производству композиционных материалов, в частности к производству слоистых композиционных материалов сталь-алюминий. Стальные листы предварительно покрывают слоем свинца, затем их покрывают водным раствором флюса, удаляют влагу, собирают в пакеты и пропитывают в алюминиевом расплаве с температурой перегрева на 50-100°C выше линии ликвидус алюминиевого сплава.
Изобретение относится к листовому припою из многослойного алюминиевого сплава и может быть использовано при изготовлении теплообменников. Листовой припой из многослойного алюминиевого сплава, состоящий из: материала основного слоя, который на одной или двух сторонах имеет промежуточный слой, состоящий из Al-Si твердого припоя, расположенного между основным слоем и тонким покрывающим слоем поверх промежуточного слоя.
Изобретение относится к производству слоистых композиционных материалов сталь-алюминий. Стальные листы предварительно покрывают водным раствором флюса, содержащего KF - 36-40%; AlF3 - 44-50%; K2TiF6 - 10-20%, удаляют влагу, а затем собирают в пакеты и пропитывают алюминиевым расплавом с температурой перегрева на 50-100°С выше линии ликвидус алюминиевого сплава.
Изобретение относится к экструдированному или катаному плакированному металлическому изделию и может быть использовано в транспортной промышленности, аэрокосмических изделиях, судах.
Настоящее изобретение относится к порошковой металлургии. Способ получения композиционного материала на основе железа включает перемешивание порошков для матрицы материала и дисперсного порошка оксида металла, механическое легирование полученной смеси, компактирование и прокатку полученного сплава.
Наверх