Электроизолирующее устройство для крепления модуля бланкета на вакуумном корпусе термоядерного реактора

Изобретение относится к термоядерному синтезу. Электроизолирующее устройство для крепления модуля бланкета на вакуумном корпусе термоядерного реактора содержит гибкую полую опору с фланцами, болт и закрепительную гильзу. Одним фланцем опора установлена в посадочное гнездо вакуумного корпуса с образованием резьбового соединения с ним, а другим с обеспечением электроизоляции соединена с модулем бланкета посредством болта. В торце резьбовой части болта выполнено монтажное отверстие, а головка болта расположена в полости гибкой опоры. Закрепительная гильза состоит из двух элементов, неподвижно соединенных между собой по конической поверхности, на которую нанесен электроизолирующий слой. Гильза имеет головку, соответствующую по форме монтажному отверстию болта, и тонкостенный цилиндрический конец. Гильза головкой установлена в упомянутое отверстие болта, а тонкостенным концом закреплена путем его деформации в модуле. Технический результат - исключение самоотворачивания болта гибкой опоры с одновременным сохранением электроизоляционных свойств устройства. 3 ил.

 

Изобретение относится к области термоядерного синтеза и может быть использовано в электроизолирующих устройствах для крепления модуля бланкета на вакуумном корпусе термоядерного реактора.

Наиболее близким по совокупности существенных признаков к заявленному изобретению является электроизолирующее устройство для крепления модуля бланкета на вакуумном корпусе термоядерного реактора, содержащее гибкую полую опору с фланцами, одним из которых опора установлена в посадочное гнездо вакуумного корпуса с образованием резьбового соединения с ним, а другим фланцем с обеспечением электроизоляции соединена с модулем бланкета посредством болта, в торце резьбовой части которого выполнено монтажное отверстие, а головка расположена в полости гибкой опоры (International Atomic Energy Agency (МАГАТЭ), Vienna, 2002, ITER TECHNICAL BASIS, G A0 FDR 1 01-07-13 R 1.0, ITER EDA Documentation series No.24, Plant Description Document, Chapter 2.3, Page 8-2.3.4.1 Flexible Support, Figure 2.3.4-1 Cross-section of a Flexible Support inside a Stub Key).

В известном устройстве электроизоляция модуля от вакуумного корпуса обеспечена тем, что в соединении использована втулка, на поверхности которой, сопряженной с фланцем гибкой опоры, нанесен слой электроизоляции. На опорной поверхности упомянутого фланца, сопряженной с модулем, также нанесен электроизолирующий слой.

В процессе работы термоядерного реактора в модулях бланкета наводятся электрические токи, при взаимодействии которых с магнитным полем реактора возникают знакопеременные электромагнитные силы. При воздействии данных сил на модули создаются условия к отворачиванию незафиксированных элементов конструкции, что может привести к созданию критических ситуаций в работе бланкета.

Недостатком известного электроизолирующего устройства для крепления модуля бланкета на вакуумном корпусе термоядерного реактора является возможное самоотворачивание болта, что объясняется отсутствием в известном устройстве элементов стопорения болта из-за крайне ограниченной доступности места его расположения.

Задачей настоящего изобретения является создание электроизолирующего устройства для крепления модуля бланкета на вакуумном корпусе термоядерного реактора, которое обеспечит безотказную работу бланкета.

Техническим результатом настоящего изобретения является исключение самоотворачивания болта гибкой опоры путем его фиксации в условиях крайне ограниченной доступности места его расположения с одновременным сохранением электроизоляционных свойств устройства.

Указанный технический результат достигается тем, что известное электроизолирующее устройство для крепления модуля бланкета на вакуумном корпусе термоядерного реактора, содержащее гибкую полую опору с фланцами, одним из которых опора установлена в посадочное гнездо вакуумного корпуса с образованием резьбового соединения с ним, а другим фланцем с обеспечением электроизоляции соединена с модулем бланкета посредством болта, в торце резьбовой части которого выполнено монтажное отверстие, а головка расположена в полости гибкой опоры,

согласно изобретению снабжено закрепительной гильзой, состоящей из двух элементов, неподвижно соединенных между собой по конической поверхности, на которую нанесен электроизолирующий слой, при этом гильза имеет головку, соответствующую по форме монтажному отверстию в торце резьбовой части болта, и тонкостенный цилиндрический конец, при этом гильза головкой свободно установлена в упомянутое монтажное отверстие болта, а тонкостенным концом закреплена путем его деформации в модуле.

Фиксация болта от самоотворачивания в условиях крайне ограниченной доступности места его расположения с одновременным сохранением электроизоляционных свойств устройства обеспечивается использованием закрепительной втулки, выполненной из двух электроизолированных элементов и за счет свободного размещения головки гильзы в монтажном отверстии болта и закрепления гильзы в модуле деформированием ее тонкостенного конца.

Сущность изобретения поясняется чертежами, где на фиг. 1 представлено устройство для крепления модуля бланкета на вакуумном корпусе термоядерного реактора (вид сбоку с разрезом), на фиг. 2 показан вид на отверстие в модуле бланкета, на фиг. 3 изображена закрепительная гильза (изометрический вид с частичным вырезом).

Устройство для крепления модуля бланкета на вакуумном корпусе термоядерного реактора содержит гибкую полую опору 1 с двумя фланцами, одним из которых опора 1 установлена в посадочное гнездо вакуумного корпуса 2 с образованием резьбового соединения с ним. Другим фланцем опора закреплена в модуле 3 бланкета с помощью болта 4, головка которого расположена в полости гибкой опоры, а торец резьбовой части обращен к модулю. В торце резьбовой части болта 4 выполнено монтажное отверстие (под монтажный инструмент). Устройство снабжено закрепительной гильзой, которая состоит из двух отдельных элементов: 5 и 6. Элемент 5 выполнен в виде стержня с головкой, соответствующей по форме отверстию в резьбовой части болта 4. Концевая часть элемента 6 выполнена зауженной в виде конуса. Элемент 6 выполнен в виде втулки, часть отверстия которой имеет коническую форму, соответствующую конической форме концевой части элемента 5. Концевая часть втулочного элемента 6 выполнена тонкостенной и имеет наружный диаметр больше, чем наружный диаметр остальной части втулки. На коническую наружную поверхность концевой части элемента 5 нанесено электроизолирующее покрытие 7. Элементы 5 и 6 неподвижно соединены между собой по конической поверхности, например, с натягом, при этом покрытие 7 обеспечивает их электрическую изоляцию друг от друга. Закрепительная гильза головкой элемента 5 установлена в монтажное отверстие болта 4 и закреплена в модуле 3 путем деформации тонкостенной концевой части элемента 6, расположенной в отверстии, выполненном в модуле 3. Болт 4 может быть закреплен с обеспечением электроизоляции непосредственно в модуле 3 (на чертеже не показано) или соединен с ним с помощью конической гайки 8, сопряженной по наружной конической поверхности с конической втулкой 9, образующей резьбовое соединение с модулем 3. Коническая поверхность гайки 8 покрыта электроизолирующим материалом 10. Поверхность втулки 9, обращенная к опоре 1, покрыта электроизолирующим материалом 11.

Монтаж устройства осуществляют следующим образом.

Закрепительную гильзу устанавливают головкой элемента 5 в сквозное отверстие, выполненное в модуле 3, которое на входе имеет эллипсоидную форму. При этом головка элемента 5 входит в монтажное отверстие болта 4 (аналогично концу монтажного ключа), а концевая часть элемента 6 гильзы входит в отверстие модуля с натягом, что обеспечивает деформирование цилиндрической формы ее тонкой стенки в эллипсоидную и, следовательно, фиксацию от проворачивания гильзы и болта 4.

Электроизолирующее устройство для крепления модуля бланкета на вакуумном корпусе термоядерного реактора, содержащее гибкую полую опору с фланцами, одним из которых опора установлена в посадочное гнездо вакуумного корпуса с образованием резьбового соединения с ним, а другим фланцем с обеспечением электроизоляции соединена с модулем бланкета посредством болта, в торце резьбовой части которого выполнено монтажное отверстие, а головка расположена в полости гибкой опоры, отличающееся тем, что оно снабжено закрепительной гильзой, состоящей из двух элементов, неподвижно соединенных между собой по конической поверхности, на которую нанесен электроизолирующий слой, при этом гильза имеет головку, соответствующую по форме монтажному отверстию болта, и тонкостенный цилиндрический конец, причем гильза головкой установлена в упомянутое отверстие болта, а тонкостенным концом закреплена путем его деформации в модуле.



 

Похожие патенты:

Изобретение относится к устройству для контроля нарабатываемого трития в бланкете термоядерного реактора. Заявленное устройство выполнено в виде контейнера (1), по оси которого расположены капсулы (5), содержащие металлические детекторы (7) нейтронного излучения и детекторы (6) наработки трития из тритийвоспроизводящего материала, оба конца которого закрыты пробками (2, 3) из малоактивируемого материала.
Изобретение относится к оптическим системам для фокусировки пучка. Оптическая система содержит корпус (1) с входным отверстием (2) для ввода вдоль оптической оси (3) пучка лазерного излучения (4), который отражается от первого конического зеркала (5), проходит через цилиндрическое окно (6), кольцевое коническое зеркало (7) и, пройдя через кольцевое тороидальное зеркало (8) и главное тороидальное зеркало (9), выводится через выходное отверстие (10), фокусируясь в точке (11).

Заявленная группа изобретений относится к средствам для проведения реакции управляемого ядерного синтеза. Для этого осуществляют инжектирование ускоренных ионов легких элементов в вакуумированный кольцевой канал (1) со стенкой (2), выполненной из материала, способного к электризации, имеющий продольную ось (3) в виде выпуклой гладкой линии.

Изобретение относится к средствам управляемого ядерного синтеза с магнитным удержанием плазмы и может быть использовано в термоядерных реакторах для защиты стенок.

Изобретение относится к способу осуществления управляемого термоядерного синтеза. Способ включает периодическое взрывание термоядерного взрывного устройства внутри реактора в виде прочного корпуса (1), в котором имеется вода (2), превращаемая в пар, используемый для потребных нужд, и отличается тем, что прочный корпус заполняется водой, которая при любом ее агрегатном состоянии остается должное время в пределах внутреннего пространства прочного корпуса, через который производится отбор утилизируемой теплоты, аккумулированной внутри этого корпуса.

Заявленное изобретение относится к способу осуществления ядерных реакций. Заявленный способ характеризуется тем, что каналируемые ядерные частицы, ионы или излучения при каналировании фокусируются в определенном месте канала в кристаллической решетке фазы внедрения, нанотрубках или за их пределами.

Изобретение относится к области энергетики, в частности термоядерным взрывным устройствам. Термоядерное взрывное устройство (2), выполненное из металла, включает размещенную внутри него капсулу (1) из дейтерия или смеси дейтерия и трития и любого иного термоядерного топлива.

Заявленное изобретение относится к области энергетических установок типа токомак и может быть использовано при создании и проектировании магнитных термоядерных установок с активной зоной в виде тора.

Изобретение относится к области управляемого ядерного синтеза и может быть применено в устройствах для контроля нарабатываемого трития в бланкете термоядерного реактора.

Изобретение относится к области ядерной энергетики и касается получения энергии за счет управляемой реакции синтеза легких ядер в высокотемпературной плазме с помощью установки типа «токамак».

Изобретение относится способу измерения пространственного распределения ионной температуры водородной плазмы и характеризуется тем, что измеряют энергетическое распределение атомов перезарядки, поступающих из плазмы, калиброванным многоканальным анализатором, каждый канал которого регистрирует атомы определенной энергии. Каждому зарегистрированному атому соответствует электрический импульс на выходе анализатора, и одновременно регистрируют фотоны спектрально-селективным прибором (ССП), имеющим с анализатором общий входной коллиматор. При этом регистрируют атомы с энергией Еi i-м каналом анализатора и регистрируют фотоны с длиной волны λ0-Δλ i-м каналом ССП, где λ0 - длина волны водородной линии, излучающейся покоящимся атомом, a Δλ - смещение длины волны, обусловленное эффектом Доплера для энергии Еi. Возникшие электрические импульсы с выхода детектора совпадений подают на счетчик импульсов и по соотношению количества импульсов, зарегистрированных в различных каналах анализатора, определяют энергетическое распределение атомов перезарядки и соответственно ионную температуру Тion в данном ЛОИ. Далее получают значения Tion(j) для j локальных областей измерения и зависимость Tion(L), где L - координата вдоль линии наблюдения, т.е. пространственное распределение ионной температуры. Технический результат изобретения заключается в обеспечении возможности измерений без использования зондирующих атомных пучков, а также в повышении достоверности и точности измерений. 3 ил.

Заявленное изобретение относится к способу увеличения эффективности преобразования энергии лазерного термоядерного синтеза. В заявленном способе поглощающий теплоноситель формирует сплошную завесу вокруг источника ионизирующего излучения, что реализуется посредством заявленного устройства. Устройство содержит корпус (1) реакционной камеры, в которую вводятся лазерные пучки (2) через окна (3), слой поглощающего теплоносителя (4), первую стенку (5), фокусируясь на термоядерной мишени (6), доставленной механизмом подачи мишеней (7), закрепленном во входном цилиндрическом канале (8), за которым следуют сферический канал (9) и выходной цилиндрический канал (10). После инициирования термоядерной реакции ионизирующее излучение проходит через первую стенку, поглощаясь в слое теплоносителя, и далее не может покинуть реакционную камеру, распространяясь по траекториям лазерного излучения. Техническим результатом является увеличение эффективности преобразования энергии потока выделенного в ходе термоядерной реакции ионизирующего излучения в тепловую энергию в реакторе с инерциальным удержанием плазмы. 2 н.п. ф-лы, 1 ил.

Изобретение относится к устройству для электрического соединения внутрикамерных компонентов с вакуумным корпусом термоядерного реактора. Заявленное устройство содержит установленные в единый пакет токопроводящие пластины. Пластины имеют фланцы для крепления к внутрикамерному компоненту и вакуумному корпусу. Поверхность пластин между фланцами имеет форму симметричной волны по меньшей мере одного полного периода. Техническим результатом является увеличение нагрузочной способности по току и податливости устройства в целом за счет создания в токопроводящих пластинах участков с встречно направленным током, перпендикулярным тороидальной составляющей магнитного поля. 3 ил.

Изобретение относится к области термоядерного синтеза. Устройство для крепления модуля бланкета на вакуумном корпусе термоядерного реактора содержит гибкую полую опору с фланцами, одним из которых опора установлена в посадочное гнездо вакуумного корпуса с образованием резьбового соединения с ним, а другим фланцем соединена с модулем с помощью резьбовых крепежных элементов. Устройство снабжено закрепительной втулкой и направляющим кольцом, которые установлены на фланце гибкой опоры, обращенном к модулю и выполненном с двумя диаметрально расположенными лысками. Втулка снабжена выступами, которые выполнены на ее внутренней поверхности и контактируют с лысками фланца с возможностью скольжения по ним. На торцевой поверхности втулки перпендикулярно к упомянутым выступам выполнены пазы, а направляющее кольцо закреплено на вакуумном корпусе и снабжено полозьями, которые установлены в пазах закрепительной втулки с возможностью скольжения по ним. Технический результат - фиксация гибкой полой опоры от вращения в резьбовых соединениях с модулем и вакуумным корпусом при сохранении ее плоскопараллельного смещения по двум координатам фланца опоры, обращенного к модулю. 5 ил.

Способ наведения излучения многоканального лазера в заданные точки мишени и комплекс для его осуществления основаны на использовании одних и тех же шести датчиков, установленных вокруг мишенной камеры попарно напротив друг друга. При этом четыре датчика размещены в экваториальной плоскости МК, а два - в зоне полюсов. Юстировку мишени осуществляют с помощью двух кубических имитаторов мишени. Один из имитаторов выполнен в виде куба с зеркальными гранями и оптическими метками, другой - в виде куба, грани которого выполнены с двумя областями - центральная с матовой поверхностью, периферийная с зеркальной поверхностью. Команды исполнительным органам перемещений, управление положением мишени, обработку изображения производят автоматически. Технический результат заключается в возможности применения для различных типов мишеней без ограничения типа геометрии сведения пучков на мишень и повышении быстродействия. 2 н. и 4 з.п. ф-лы, 8 ил.

Изобретение относится к области средств получения высоких динамических давлений и температур и может быть использовано для проведения химических реакций, изменения кристаллической структуры твердых тел при высоком давлении и температуре, в частности для получения искусственных алмазов (алмазного порошка), для сжатия DT-льда с целью получения нейтронного источника, для осуществления инерциального термоядерного синтеза. Снаряд для осуществления способа ударного сжатия тел малой плотности содержит оболочку снаряда 2 и сжимаемое тело 1, установленное в передней части оболочки снаряда. На оболочке снаряда может устанавливаться полый цилиндр 5, к хвосту которого может присоединяться тонкостенный полый цилиндр 7 с болванкой 9. Реактор для осуществления способа ударного сжатия тел малой плотности состоит из реакторной камеры и двух разгонных устройств для снарядов (пушек), смотрящих навстречу друг другу. Внутри реакторной камеры устанавливается пористый слой из пористого металла. Вместо пористого металла могут использоваться пенометалл, слой плотно уложенных тонкостенных металлических трубок, слои тонкостенных ячеек или сот. Сущность способа ударного сжатия тел малой плотности заключается в осевом сжатии каждого сжимаемого тела массивной задней частью оболочки снаряда при лобовом столкновении двух одинаковых снарядов в реакторной камере. При этом происходит также ударное сжатие ударной волной и может использоваться интерференция, а также фокусировка отраженных от границ раздела сжимаемых тел и оболочек снарядов ударных волн. Может осуществляться также радиальное сжатие сжимаемых тел сходящимся к оси снарядов кольцевым жидким или плазменным потоком, полученным в результате столкновения двух полых цилиндров. Может использоваться интерференция двух ударных волн, полученных в результате удара болванок по задним частям оболочек снарядов. Изобретение позволяет увеличить конечную степень сжатия, давление и температуру при динамическом сжатии тел малой плотности. 3 н. и 10 з.п. ф-лы, 17 ил.

Изобретение относится к области физической химии, вакуумной технике, управляемого термоядерного синтеза и предназначено для поддержания требуемого вакуума в вакуумном объеме термоядерных установок и удаления из них остатков топлива: изотопов водорода дейтерия и трития, а также для откачки вакуумных систем, в которых изотопы водорода служат рабочим газом. Устройство для откачки изотопов водорода из вакуумного объема термоядерной установки содержит одинаковые расположенные параллельно друг другу модули, установленные вдоль откачного тракта термоядерной установки, при этом каждый из модулей включает заключенные в корпус композитную мембрану на основе металлов 5-й группы Периодической системы элементов - ниобия, ванадия, тантала или их сплавов друг с другом, атомизатор, систему охлаждения и выходной объем, причем системы охлаждения модулей соединены друг с другом, выходные объемы модулей объединены в единый выходной объем, а откачной тракт термоядерной установки в местах отсутствия модулей перекрыт диафрагмой для предотвращения прохождения откачиваемой смеси газов, минуя модули. Изобретение обеспечивает эффективную откачку изотопов водорода из вакуумного объема термоядерных установок, снижение габаритов установки для откачки и свободное размещение установки в откачном тракте. 1 з.п. ф-лы, 4 ил.

Изобретение конструкции бланкета термоядерного реактора. Заявленный бланкет состоит из по крайней мере из одного вертикального металлического модуля, нижняя часть которого заполнена кипящим раствором сырьевого материала и соединена патрубком с устройством для извлечения из раствора целевых изотопов и радиоактивных отходов, а верхняя часть заполнена паром и соединена патрубком с паровым контуром циркуляции. Паровой контур включает последовательно установленные паровую турбину и конденсатор водяного пара, параллельно которому включен аварийный конденсатор и предохранительный клапан. В верхней части модуль соединен с устройством для рекомбинации продуктов радиолиза воды, а в нижней части модуль соединен трубопроводом с установленной в нем пробкой из материала с температурой плавления большей, чем рабочая температура раствора сырьевого материала, со сливной емкостью. Техническим результатом является повышение технологичности устройства за счет снижения рабочих температур, исключения токсичных и коррозионно-активных веществ, улучшения нейтронно-физических характеристик путем использования слабоактивируемых конструкционных материалов. 6 з.п. ф-лы, 2 табл., 3 ил.

Изобретение относится к конструкции бланкета термоядерного реактора. В заявленном устройстве предусмотрено наличие по крайней мере одного вертикального металлического модуля с раствором сырьевого материала, соединенного патрубками, расположенными в верхней и нижней части, с контуром естественной циркуляции, содержащим теплообменник, и байпасным контуром с устройством для извлечения из раствора целевых изотопов и радиоактивных отходов. В заявленном бланкете используют водные растворы сырьевого материала, а внутри модуля установлен винтовой одновитковый шнек с диаметром, равным внутреннему диаметру модуля. В верхней части модуль соединен с устройством для рекомбинации продуктов радиолиза воды, а в нижней части модуль соединен трубопроводом с установленной в нем пробкой из материала с температурой плавления большей, чем рабочая температура раствора сырьевого материала, со сливной емкостью. Техническим результатом является повышение технологичности устройства в результате снижения рабочих температур, исключения токсичных и коррозионно-активных веществ, улучшения нейтронно-физических характеристик за счет использования неактивируемых конструкционных материалов. 7 з.п. ф-лы, 3 табл., 4 ил.

Изобретение относится к устройству для измерения спектральных характеристик плазмы реактора-токамака. Устройство содержит измерительный объем с расположенными в нем катодами и анодом тлеющего разряда, размещенный в стенке вакуумной камеры реактора-токамака, соединенный диагностическим каналом с расположенными за вакуумной камерой средствами измерения спектральных характеристик плазмы с детектором излучения в виде ФЭУ и блоком обработки электрического сигнала. Измерительный объем напрямую соединен с объемом вакуумной камеры, вход диагностического канала расположен на противоположной относительно измерительного объема стенке вакуумной камеры, а блок обработки электрического сигнала содержит синхронный детектор, соединенный с модулятором амплитуды тока тлеющего разряда по гармоническому закону, соединенным с катодами тлеющего разряда. В качестве модулятора тока тлеющего разряда используют генератор напряжения. Техническим результатом является возможность измерения концентрации примесей путем измерения характеристик спектральных линий на значительной площади поверхности плазменного шнура с низкой статистической погрешностью измерений при высоком уровне фонового излучения. 4 з.п. ф-лы, 5 ил.
Наверх