Устройство для измерения характеристик спектральных линий плазмы в реакторе-токамаке

Изобретение относится к устройству для измерения спектральных характеристик плазмы реактора-токамака. Устройство содержит измерительный объем с расположенными в нем катодами и анодом тлеющего разряда, размещенный в стенке вакуумной камеры реактора-токамака, соединенный диагностическим каналом с расположенными за вакуумной камерой средствами измерения спектральных характеристик плазмы с детектором излучения в виде ФЭУ и блоком обработки электрического сигнала. Измерительный объем напрямую соединен с объемом вакуумной камеры, вход диагностического канала расположен на противоположной относительно измерительного объема стенке вакуумной камеры, а блок обработки электрического сигнала содержит синхронный детектор, соединенный с модулятором амплитуды тока тлеющего разряда по гармоническому закону, соединенным с катодами тлеющего разряда. В качестве модулятора тока тлеющего разряда используют генератор напряжения. Техническим результатом является возможность измерения концентрации примесей путем измерения характеристик спектральных линий на значительной площади поверхности плазменного шнура с низкой статистической погрешностью измерений при высоком уровне фонового излучения. 4 з.п. ф-лы, 5 ил.

 

Изобретение относится к области экспериментальной физики плазмы. Предлагаемое устройство может быть применено, например, в программе управляемого термоядерного синтеза на базе установок с магнитным удержанием плазмы, в частности токамаков. Конечной целью этой программы является создание промышленного термоядерного реактора-токамака. В настоящее время сооружаются установки, сравнимые по размерам и параметрам с промышленным реактором. Примером является международный проект ИТЭР. Работа реактора невозможна без надежного и точного измерения концентрации примесей на периферии плазменного шнура. Контроль содержания примесей необходим, поскольку их присутствие критически ухудшает удержание энергии (а следовательно, и интенсивность реакций синтеза) в плазме. В ИТЭР эту диагностическую задачу предполагается решать при помощи спектроскопии видимой области спектра. Однако уже на протяжении последних лет констатируется невозможность проведения таких измерений из-за крайне высокого уровня фонового излучения, и, соответственно, неприемлемо высокой статистической ошибки результата. Это связано с отражением света, испускаемого различными участками плазмы (в первую очередь - областью дивертора), от бериллиевой стенки вакуумной камеры. Для осуществления измерений в данных условиях и разработано описываемое устройство.

Известно устройство для измерения относительной концентрации водорода, дейтерия и трития на периферии плазмы вакуумной камеры реактора-токамака путем измерения характеристик их спектральных линий [А.А. Медведев, Использование вспомогательного тлеющего разряда для измерения изотопного состава в ИТЭР, ВАНТ, Сер. Термоядерный синтез, 2013, т. 36, вып. 2, с. 51 - прототип]. В конструкции первой стенки вакуумной камеры реактора-токамака, там, где это технологически возможно, создается небольшой (характерный размер - несколько см) измерительный объем с источником тлеющего разряда. Внутри этого объема при помощи анода и катодов организуется тлеющий разряд, ток которого направлен вдоль тороидального поля установки. Измерительный объем сообщается с объемом вакуумной камеры реактора при помощи короткого лабиринтного трубопровода. Трубопровод обеспечивает газообмен между вакуумной камерой реактора и измерительным объемом и предотвращает проникновение видимого излучения из плазмы реактора в измерительный объем. Трубопровод не позволяет фотонам видимого излучения, двигающимся прямолинейно, попадать непосредственно из плазмы в измерительный объем. Отражение фотонов от внутренних стенок трубопровода минимизировано использованием материала, имеющего низкий коэффициент отражения в видимой области спектра, а также использованием диафрагм, обеспечивающих практически полное поглощение фотонов, испытывающих многократные отражения.

Излучение, возбуждаемое в измерительным объеме тлеющим разрядом, направляется на вход диагностического канала, который расположен в непосредственной близости от измерительного объема и передается к измерительной аппаратуре, измеряющей сигнал, накопленный за время экспозиции и позволяющей регистрировать спектральную характеристику линий плазмы: форму линий суммарного спектра водорода/дейтерия/трития, по которой и определяют относительную концентрацию водорода, дейтерия и трития на периферии плазмы.

Измерительная аппаратура представляет собой последовательно соединенные:

1. Средство для выделения спектральной линии примеси плазмы, выполненное в виде спектрометра высокого разрешения с высокой линейной дисперсией;

2. Детектор излучения - светочувствительная ПЗС матрица.

Полученная информация с помощью блока обработки электрического сигнала позволяет получить величину изотопного соотношения.

Таким образом, в прототипе решается задача измерения соотношения концентраций водорода, дейтерия и трития, т.е. изотопного состава. Дейтерий и тритий представляют рабочий газ, т.к. именно за счет синтеза этих частиц и выделяется энергия, которую предполагается использовать. Примеси - это более тяжелые элементы (С, О, Be, W и т.д.), поступающие с элементов конструкции внутренней камеры или из других источников. Эти элементы не участвуют в реакциях синтеза, а только ухудшают параметры плазмы. Диагностические подходы и аппаратура, применяемые для решения этих задач (измерения изотопного отношения водорода, дейтерия и трития и концентрации примесей), существенно отличаются друг от друга.

Прототип обладает следующими недостатками.

Первый недостаток связан с тем, что концентрация линий примесей в измерительном объеме может, по целому ряду причин, значительно отличаться от таковой на периферии основной плазмы;

Второй недостаток заключается в том, что в существующем проекте ИТЭР размещение значительного по объему диагностического оборудования нигде, кроме как в диагностических патрубках, не предусмотрено, поэтому измерения на большей части поверхности плазмы невозможны.

Технический результат изобретения - возможность измерения концентрации ряда примесей путем измерения характеристик спектральных линий на значительной площади поверхности плазменного шнура с низкой статистической погрешностью измерений при высоком уровне фонового излучения.

Для достижения указанного результата предложено устройство для измерения спектральных характеристик плазмы реактора-токамака, содержащее измерительный объем с расположенными в нем катодами и анодом тлеющего разряда, размещенный в стенке вакуумной камеры реактора-токамака, соединенный диагностическим каналом с расположенными за вакуумной камерой средствами измерения спектральных характеристик плазмы с детектором излучения и блоком обработки электрического сигнала, при этом измерительный объем напрямую соединен с объемом вакуумной камеры, вход диагностического канала расположен на противоположной относительно измерительного объема стенке вакуумной камеры, а блок обработки электрического сигнала содержит синхронный детектор, соединенный с модулятором амплитуды тока тлеющего разряда по гармоническому закону, соединенный с катодами тлеющего разряда

Кроме того:

- в качестве модулятора тока тлеющего разряда используют генератор напряжения;

- средство измерения спектральных характеристик плазмы выполнено в виде n параллельных измерительных трактов, содержащих спектрально-селективный зеркальный расщепитель светового пучка и установленный за ним узкополосный пропускающий интерференционный фильтр, каждый из которых настроен на длину волны измеряемой спектральной линии и соединен со своим детектором излучения и блоком обработки электрического сигнала;

- средство измерения спектральных характеристик плазмы содержит спектрометр, рабочий спектральный диапазон которого включает длины волн нескольких линий примесей и соединен линиями волоконно-оптического коллектора со своим детектором излучения для регистрации яркости определенной линии примеси и блоком обработки электрического сигнала;

- детектор излучения выполнен в виде фотоэлектронного умножителя.

На фиг. 1 показан один из возможных вариантов геометрии эксперимента с использованием предлагаемого устройства в реакторе ИТЭР.

На фиг. 2 приведена схема диагностического канала измерительного тракта для одной линии примесей.

На фиг. 3 показана блок-схема регистрации электрического сигнала с выхода детектора излучения.

На фиг. 4 приведена схема многоканальной системы регистрации с использованием интерференционных фильтров для измерения нескольких линий примесей.

На фиг. 5 приведена схема многоканальной системы регистрации с использованием спектрометра для измерения нескольких линий примесей.

Позициями обозначены:

1 - стенка вакуумной камеры;

2 - вход диагностического канала регистрации излучения;

3 - граница плазменного шнура;

4 - измерительный объем;

5 - анод тлеющего разряда;

6 - катод тлеющего разряда;

7 - модулятор тока тлеющего разряда;

8 - синхронный детектор;

9 - диагностический порт установки;

10 - оптический канал;

11 - металлические зеркала;

12 - вакуумное окно;

13 - интерференционный фильтр;

14 - средства измерения спектральных характеристик плазмы;

15 - детектор излучения;

16 - блок обработки электрического сигнала;

17 - световой сигнал;

18 - электрический сигнал с выхода детектора излучения;

19 - цепь опорного сигнала

20 - электрический сигнал с выхода синхронного детектора;

21 - аналогово-цифровой преобразователь;

22 - спектрометр;

23 - спектрально-селективный расщепитель светового потока;

24 - линии волоконно-оптического коллектора.

На внутренней стенке 1 (со стороны сильного тороидального поля) вакуумной камеры установки создается измерительный объем 4 произвольной формы с характерным размером в несколько см. Измерительный объем 4 напрямую соединен с объемом вакуумной камеры, что обеспечивает, в отличие от прототипа, не только обмен частицами между измерительным объемом 4 и основной плазмой, но и беспрепятственный выход видимого излучения. В измерительном объеме 4 организуется продольный (по отношению к тороидальному магнитному полю установки) тлеющий разряд. Ток разряда модулируется по гармоническому закону. Для этого катоды 6 соединены с модулятором тока тлеющего разряда 7, соединенного линией опорного сигнала 19 с синхронным детектором 8. В качестве модулятора тока тлеющего разряда используют, например, генератор напряжения.

В прототипе модуляция отсутствует. Частота модуляции может лежать в диапазоне от единиц кГц до десятков МГц (оптимальное значение зависит от конкретных условий эксперимента).

Излучение, возбуждаемое в измерительным объеме 4 тлеющим разрядом, направляется на вход диагностического канала 2, который расположен на противоположной относительно измерительного объема стенке вакуумной камеры. Входная оптическая система канала 2 построена таким образом, чтобы наблюдаемая область включала объем тлеющего разряда.

Выше приведен только один из возможных вариантов геометрии эксперимента. В общем случае измерительный объем может быть расположен на любом участке поверхности внутренней стенки вакуумной камеры, где он доступен для наблюдения при помощи системы регистрации, размещенной в одном из диагностических портов реактора.

Излучение по оптическому каналу 10 сложной конфигурации (фиг. 2) (например, как в прототипе), расположенному в диагностическом порту 9, с системой металлических зеркал, через вакуумное окно 12, систему фокусирующих линз (не показаны), направляется на блок измерения спектральных характеристик плазмы 14, соединенным через детектор излучения 15 с блоком обработки электрического сигнала 16.

Таким образом, вся регистрирующая аппаратура располагается в экваториальном диагностическом порту 9 вдали от границы плазмы, в то время как в прототипе она размещалась в непосредственной близости от объема тлеющего разряда в структуре внутренней стенки вакуумной камеры. Это позволит обеспечить доступ персонала для текущего ремонта и наладки оборудования.

Блок измерения спектральных характеристик для нескольких линий примесей плазмы 14, на который направляется световой сигнал 17, может состоять (фиг. 4) из n концептуально-идентичных измерительных трактов каналов, каждый из которых включает зеркальный спектрально-селективный расщепитель 23, узкополосный интерференционный фильтр 13, при помощи которого выделяется необходимая спектральная линия, и быстродействующий детектор излучения 15 (например, фотоэлектронный умножитель (ФЭУ)), электрический сигнал с которого 18 поступает в блок обработки электрического сигнала 16.

Таких каналов может быть до 20-ти, каждый из которых отвечает за измерение яркости определенной линии.

Блок измерения спектральных характеристик плазмы 14, на который направляется световой сигнал 17, может состоять (фиг. 5) из спектрометра 22, соединенного линиями 24 волоконно-оптического коллектора с детектором излучения 15, сигнал 18 с выхода которого подается на блок обработки электрического сигнала 16.

Рабочий спектральный диапазон спектрометра 22 включает длины волн нескольких линий примесей и соединен линиями волоконно-оптического коллектора со своим детектором излучения 15 для регистрации яркости определенной линии примеси и своим блоком обработки электрического сигнала 16.

Блок-схема регистрации электрического сигнала показана на фиг. 3. Световой сигнал 17 поступает на вход блока измерения спектральных характеристик плазмы 14, соединенного с детектором излучения 15.

Выход детектора излучения 15 соединен с блоком обработки электрического сигнала 16. Электрический сигнал 18 поступает на вход синхронного детектора 8, на другой вход которого по цепи опорного сигнала 19 поступает модулирующий сигнал тлеющего разряда. Использование частотной селекции позволяет кардинально повысить отношение сигнал-помеха. Напряжение с выхода 20 синхронного детектора 8 поступает на аналогово-цифровой преобразователь 21, где регистрируется амплитуда сигнала. При известных параметрах плазмы и значениях коэффициента скоростного возбуждения с излучением фотона соответствующей линии величина амплитуды сигнала с выхода детектора позволяет рассчитать концентрацию соответствующей примеси.

Для реализации устройства не требуется изготовление специальных приборов, а используется стандартная аппаратура.

Для проверки эффективности предлагаемого устройства в НИЦ «Курчатовский институт» создана численная модель, в которой используются релевантные параметры плазмы и установки ИТЭР. Проведенные расчеты показывают, что использованные в устройстве решения позволяют улучшить отношение сигнал-помеха на два-три порядка величины.

Таким образом, предлагаемое устройство позволит проводить измерения концентрации линий ряда примесей в нескольких зонах на периферии плазменного шнура с улучшенным отношением сигнал-помеха.

1. Устройство для измерения спектральных характеристик плазмы реактора-токамака, содержащее измерительный объем с расположенными в нем катодами и анодом тлеющего разряда, размещенный в стенке вакуумной камеры реактора-токамака, соединенный диагностическим каналом с расположенными за вакуумной камерой средствами измерения спектральных характеристик плазмы с детектором излучения и блоком обработки электрического сигнала, отличающееся тем, что измерительный объем напрямую соединен с объемом вакуумной камеры, вход диагностического канала расположен на противоположной относительно измерительного объема стенке вакуумной камеры, а блок обработки электрического сигнала содержит синхронный детектор, соединенный с модулятором амплитуды тока тлеющего разряда по гармоническому закону, соединенным с катодами тлеющего разряда.

2. Устройство по п. 1, отличающееся тем, что в качестве модулятора тока тлеющего разряда используют генератор напряжения.

3. Устройство по п. 1, отличающееся тем, что средство измерения спектральных характеристик плазмы выполнено в виде n параллельных измерительных трактов, содержащих спектрально-селективный зеркальный расщепитель светового пучка и установленный за ним узкополосный пропускающий интерференционный фильтр, каждый из которых настроен на длину волны измеряемой спектральной линии и соединен со своим детектором излучения и блоком обработки электрического сигнала.

4. Устройство по п. 1, отличающееся тем, что средство измерения спектральных характеристик плазмы содержит спектрометр, рабочий спектральный диапазон которого включает длины волн нескольких линий примесей, и соединен линиями волоконно-оптического коллектора со своим детектором излучения для регистрации яркости определенной линии примеси и блоком обработки электрического сигнала.

5. Устройство по п. 1, отличающееся тем, что детектор излучения выполнен в виде фотоэлектронного умножителя.



 

Похожие патенты:

Изобретение относится к конструкции бланкета термоядерного реактора. В заявленном устройстве предусмотрено наличие по крайней мере одного вертикального металлического модуля с раствором сырьевого материала, соединенного патрубками, расположенными в верхней и нижней части, с контуром естественной циркуляции, содержащим теплообменник, и байпасным контуром с устройством для извлечения из раствора целевых изотопов и радиоактивных отходов.

Изобретение конструкции бланкета термоядерного реактора. Заявленный бланкет состоит из по крайней мере из одного вертикального металлического модуля, нижняя часть которого заполнена кипящим раствором сырьевого материала и соединена патрубком с устройством для извлечения из раствора целевых изотопов и радиоактивных отходов, а верхняя часть заполнена паром и соединена патрубком с паровым контуром циркуляции.

Изобретение относится к области физической химии, вакуумной технике, управляемого термоядерного синтеза и предназначено для поддержания требуемого вакуума в вакуумном объеме термоядерных установок и удаления из них остатков топлива: изотопов водорода дейтерия и трития, а также для откачки вакуумных систем, в которых изотопы водорода служат рабочим газом.

Изобретение относится к области средств получения высоких динамических давлений и температур и может быть использовано для проведения химических реакций, изменения кристаллической структуры твердых тел при высоком давлении и температуре, в частности для получения искусственных алмазов (алмазного порошка), для сжатия DT-льда с целью получения нейтронного источника, для осуществления инерциального термоядерного синтеза.

Способ наведения излучения многоканального лазера в заданные точки мишени и комплекс для его осуществления основаны на использовании одних и тех же шести датчиков, установленных вокруг мишенной камеры попарно напротив друг друга.

Изобретение относится к области термоядерного синтеза. Устройство для крепления модуля бланкета на вакуумном корпусе термоядерного реактора содержит гибкую полую опору с фланцами, одним из которых опора установлена в посадочное гнездо вакуумного корпуса с образованием резьбового соединения с ним, а другим фланцем соединена с модулем с помощью резьбовых крепежных элементов.

Изобретение относится к устройству для электрического соединения внутрикамерных компонентов с вакуумным корпусом термоядерного реактора. Заявленное устройство содержит установленные в единый пакет токопроводящие пластины.

Заявленное изобретение относится к способу увеличения эффективности преобразования энергии лазерного термоядерного синтеза. В заявленном способе поглощающий теплоноситель формирует сплошную завесу вокруг источника ионизирующего излучения, что реализуется посредством заявленного устройства.

Изобретение относится способу измерения пространственного распределения ионной температуры водородной плазмы и характеризуется тем, что измеряют энергетическое распределение атомов перезарядки, поступающих из плазмы, калиброванным многоканальным анализатором, каждый канал которого регистрирует атомы определенной энергии.

Изобретение относится к термоядерному синтезу. Электроизолирующее устройство для крепления модуля бланкета на вакуумном корпусе термоядерного реактора содержит гибкую полую опору с фланцами, болт и закрепительную гильзу.

Изобретение относится к способам встречного разгона нейтральных микрочастиц. При вращении ротора 1 внутри неподвижного статора 8, 10 исследуемые образцы (жидкость или газ) поступают во входные окна 18 и затем проходят через зазоры, образованные зубцами статора 10 и ротора 7. При этом движение микрочастиц будет формироваться двумя силами. Первая сила образуется за счет шнекового эффекта, при котором частицы, оказавшиеся в пазах, будут двигаться вдоль пазов. Вторая сила образуется за счет того, что частицы благодаря центробежным силам попадают в зазор между зубцами ротора и статора в зоны взаимного пересечения зубцов. Площадь зазора между зубцами статора и ротора определяется в зависимости от угла взаимного пересечения зубцов статора и ротора. Максимальные размеры этой площади, на входе в ускорители. Техническим результатом является снижение расхода материала, повышение КПД установок для встречного разгона и снижение их габаритов. 3. з.п. ф-лы, 4 ил.

Изобретение относится к устройствам для встречного разгона нейтральных микрочастиц. Устройство содержит систему управления и состоит из коаксиально установленных двух ускорителей, направленных суженной стороной навстречу друг другу, с зазором и вращающихся относительно друг друга ротора 1 и статоров 10, выполненных так, что на входе ускорителя их диаметры больше, чем на выходе, на взаимообращенных поверхностях которых выполнены выступающие зубцы 3 с винтовыми пазами, идущими в противоположном направлении между ротором и статором с расходящимся от входного к выходному отверстиям ускорителя шагом, с числом зубцов ротора, равным числу зубцов статора и непрерывным зазором между каждым из зубцов статора и ротора, с шириной наружной поверхности зубцов, выполненной в зависимости от угла α их взаимного пересечения, причем в поперечном сечении выступающие зубцы выполнены в виде равнобедренной трапеции в расширенной части ротора и статора ускорителя и приближающимися к равнобедренному треугольнику в суженной его части. Техническим результатом является создание высокой концентрации нейтральных микрочастиц, таких как молекулы или атомы. 3 з.п. ф-лы, 8 ил.

Изобретение относится к устройству для исследования термогидравлических характеристик жидкометаллического бланкета термоядерного реактора. Устройство для исследования термогидравлических характеристик свинец-литиевого бланкета содержит вертикальные подъемный и опускной каналы прямоугольного сечения с поворотом потока на 90°, входной и выходной коллекторы. Кроме того, устройство имеет по меньшей мере два подъемных вертикальных канала, включенных гидравлически параллельно и разделенных в направлении магнитного поля по меньшей мере одной или двумя перегородками на подканалы, а также электронагревательные элементы, расположенные на внешних стенках устройства и между указанными каналами. Техническим результатом является оптимизация возможностей моделирования физических характеристик бланкета, в частности гидродинамических и тепловых характеристик течения жидкого металла в магнитном поле. 3 ил.

Изобретение относится к способу доставки криогенных топливных мишеней (КТМ) для энергетических систем, работающих по схеме управляемого инерциального термоядерного синтеза (ИТС). В заявленном способе размещают каждую из криогенных топливных мишеней в носитель и продвигают носитель вдоль транспортного канала в зону управляемого инерциального термоядерного синтез. Носитель выполняют с использованием сверхпроводящего материала, а в транспортном канале формируют магнитное поле, обеспечивающее левитацию носителя над поверхностью транспортного канала. Техническим результатом является бесконтактная доставка криогенных топливных мишеней в камеру без риска останова носителя, порчи КТМ от нагрева, а также риска загрязнения атмосферы самой реакторной камеры движущим газом. 6 з.п. ф-лы, 6 ил.

Изобретение относится к устройству для электрического соединения внутрикамерных компонентов с вакуумным корпусом термоядерного реактора. Заявленное устройство содержит два идентичных пакета токопроводящих пластин. Токопроводящие пластины имеют форму симметричной волны по меньшей мере одного полного периода. Пластины в пакете вложены одна в другую и соединены с фланцами для крепления к внутрикамерному компоненту и вакуумному корпусу. Пакеты токопроводящих пластин установлены зеркально-симметрично относительно линии, проходящей через центры симметрии фланцев. Техническим результатом является обеспечение практически одинакового для всех токопроводящих пластин устройства действия скин-эффекта, а также уменьшение силы притяжения крайних пластин к центральным и обеспечение равномерного распределения плотности тока в каждой токопроводящей пластине. 1 з.п. ф-лы, 4 ил.

Изобретение относится к термоядерной технике и используется при создании энергетических термоядерных установок типа токамак. Термоядерный реактор содержит вакуумный корпус и соединенные с ним посредством гибких опор модули бланкета. Гибкие опоры дополнительно выполняют функции электрических соединителей, при этом опоры выполнены из материала с высокой электропроводностью. Каждая гибкая опора одним концом закреплена на вакуумном корпусе, а другим - на модуле бланкета, оба закрепленных конца каждой гибкой опоры обращены к модулю бланкета, а сама гибкая опора выполнена из двух полых цилиндрических элементов, вложенных один в другой и перфорированных продольными прорезями в части, свободной от креплений, концы полых цилиндрических элементов, противоположные закрепленным концам, соединены электрически и механически. Техническим результатом является отведение вихревых токов от модуля бланкета термоядерного реактора с одновременным исключением из состава бланкета электрических соединителей и уменьшением затесненности стороны модуля бланкета, обращенной к вакуумному корпусу. 1 ил.

Изобретение относится к обмотке тороидального поля для создания тороидального магнитного поля в термоядерном реакторе. Реактор содержит тороидальную плазменную камеру с центральной колонной, а обмотка тороидального поля содержит тороидальную плазменную камеру с центральной колонной, содержит множество витков, проходящих через центральную колонну и вокруг внешней стороны плазменной камеры. Каждый виток включает в себя кабель, содержащий множество пакетированных ВТСП-лент, причем каждая ВТСП-лента включает в себя один или более слоев высокотемпературного сверхпроводящего материала. ВТСП-ленты расположены таким образом, что лицевая поверхность каждой ВТСП-ленты параллельна тороидальному магнитному полю при прохождении кабеля через центральную колонну. Техническим результатом является создание более сильных магнитных полей. 4 н. и 20 з.п. ф-лы, 7 ил.
Наверх