Способ определения локальных доз ионизирующих излучений космического пространства за защитными экранами с аналитической формой поверхности

Изобретение относится к защите элементов, расположенных за расчетным защитным экраном (ЗЭ), от ионизирующих излучений космического пространства. Форма поверхности экрана считается аналитической. Способ заключается в том, что задают в дискретном виде величины локальных доз в центре эталонного ЗЭ сферической формы в зависимости от его толщины. Дискретную зависимость заданных доз от указанной толщины преобразуют в непрерывную. Разбивают расчетный ЗЭ на сектора со стандартными поверхностями, внутреннюю и внешнюю стороны которых представляют аналитическими функциями координат. Определяют радиальные толщины расчетного ЗЭ и оценивают величину локальной дозы, полученной облучаемым элементом от излучений, проходящих через все стандартные поверхности. Соответствующий интеграл по полному телесному углу вычисляют с помощью системы компьютерной алгебры. Сравнивают полученную локальную дозу с допустимой дозой и, в зависимости от результата, уточняют конструкцию расчетного ЗЭ или заменяют облучаемый элемент. Технический результат изобретения состоит в возможности оптимизировать конструкцию ЗЭ благодаря проведению предварительной оценки величины локальных доз ионизирующих излучений с большой точностью. 1 ил.

 

Изобретение относится к области защиты облучаемых элементов от ионизирующих излучений космического пространства (ИИКП). В качестве защитных экранов рассматриваются элементы конструкции космической аппаратуры - корпуса блоков и отдельные узлы. Ионизирующие излучения космического пространства могут быть представлены как изотропный поток частиц космических излучений различных видов - электронов и протонов естественных радиационных поясов Земли (ЕРПЗ) и протонов солнечных космических лучей (СКЛ). Одним из основных факторов повреждающего действия ионизирующих излучений космического пространства на оптико-электронную космическую аппаратуру является локальная доза, обусловленная поглощением энергии излучения в материалах конструкции аппаратуры. Локальная доза ионизирующих излучений космического пространства является суммой локальных доз отдельных видов ионизирующих излучений космического пространства - электронов ЕРПЗ, протонов ЕРПЗ и протонов СКЛ.

Известен способ определения величины локальной дозы ионизирующих излучений космического пространства в заданной точке облучаемого элемента внутри объема защитного экрана методом секторирования, описанным в книге «Модель космического пространства. Модель космоса - 82. Радиационные условия на борту космических аппаратов». Под редакцией Вернова С.Н., в 3-х томах, Москва, изд. МГУ, 1983 г., том 3, с. 326. Способ заключается в том, что для каждого вида излучения, исходя из характеристик орбиты и срока активного существования космической аппаратуры, задают величины локальных доз в центре эталонного защитного экрана сферической формы, в виде значений дозы Dj в зависимости от толщины защитного экрана Xj в дискретном виде, где индекс j принимает значения от 1 до некоторого целого числа M.

Определяется конструкция расчетного защитного экрана и производится разбиение пространства, окружающего заданную точку в облучаемом элементе на ряд секторов, ограниченных телесными углами, в пределах каждого из которых толщину защитного экрана в радиальном направлении можно считать постоянной. Локальная доза каждого вида ионизирующих излучений космического пространства определяется как сумма локальных доз от ионизирующих излучений космического пространства, прошедших через расчетный защитный экран в телесных углах соответствующих секторов защитного экрана. Величину локальной дозы для отдельного телесного угла вычисляют как часть локальной дозы от ионизирующих излучений космического пространства данного вида для эталонного сферического экрана постоянной толщины, равной толщине расчетного защитного экрана для данного сектора. Указанная часть равна относительной доле соответствующего телесного угла в полном телесном угле 4π стерадиан. Если толщина расчетного защитного экрана в данном секторе не равна какому-либо из заданных значений Xj, то локальную дозу для экрана данной толщины находят методом интерполяции по значениям локальной дозы для двух ближайших заданных значений толщин, большей и меньшей данной. Величина локальной дозы данного вида ионизирующих излучений космического пространства определяется следующей формулой:

где:

- D - локальная доза;

- N - количество секторов защитного экрана;

- xi - радиальная толщина расчетного защитного экрана в i-ом секторе;

- D(xi) - доза ИИКП в центре сферического экрана толщиной xi;

- ΔΩi - телесный угол i-го сектора.

Если конструкция расчетного защитного экрана по отношению к данной точке облучаемого элемента с достаточной точностью может быть представлена совокупностью небольшого количества секторов, в пределах каждого из которых его толщину в радиальном направлении можно считать постоянной, то величины поглощенных доз ионизирующих излучений космического пространства могут быть вычислены методом секторирования по формуле (1) без привлечения специальных программных средств. Но если расчетный защитный экран имеет сложную форму, что является типичным во многих практических случаях, тогда для обеспечения достаточной точности вычислений локальных доз ионизирующих излучений космического пространства необходимое количество секторов в формуле (1) может составлять несколько сотен или тысяч, и для вычисления требуется привлечение специальных программных средств.

Наиболее близким аналогом предлагаемого способа определения локальных доз ионизирующих излучений космического пространства, является «лучевой метод», описанный в ГОСТ 25645.204-83. При этом для каждого вида излучения задают величины локальных доз Dj в центре эталонного защитного экрана сферической формы в зависимости от толщины Xj эталонного защитного экрана сферической формы в дискретном виде. Затем из заданной точки в облучаемом элементе проводится требуемое количество N лучей, равномерно распределенных в пространстве. Для каждого из таких лучей радиальная толщина xi в формуле (1) вычисляется как сумма толщин пересечений луча с расчетным защитным экраном. Величины элементарных телесных углов в формуле (1) полагаются одинаковыми и равными нижеследующей величине:

Тогда величина локальной дозы определяется формулой:

- где:

- D - локальная доза;

- N - количество секторов защитного экрана;

- xi - радиальная толщина расчетного защитного экрана в i-ом секторе;

- D(xi) - доза ИИКП в центре сферического экрана толщиной xi;

- ΔΩi - телесный угол i-го сектора.

Если толщина защитного экрана для данного луча не равна какому-либо из заданных значений Xj, то локальную дозу для экрана данной толщины находят методом интерполяции по значениям локальных доз для двух ближайших заданных значений толщин, большей и меньшей данной. Использование «лучевого метода» для расчета локальных доз ионизирующих излучений космического пространства полностью оправдано для аппаратуры с достаточно сложной конструкцией. Но данный способ не позволяет провести оценку величин соответствующих локальных доз без подготовительных этапов, включающих интеграцию с САПР, средствами которой описывается конструкция аппаратуры.

Задачей изобретения является создание способа определения локальных доз ионизирующих излучений космического пространства за защитными экранами с аналитической формой поверхности, обеспечивающего предварительное определение возможных доз с заданной точностью расчета.

Технический результат - предложен способ, позволяющий оптимизировать конструкцию защитного экрана, благодаря проведению предварительной оценки величины локальных доз ионизирующих излучений космического пространства с большой точностью.

Это достигается тем, что в способе определения локальных доз ионизирующих излучений космического пространства в облучаемом элементе, расположенном за расчетным защитным экраном с аналитической формой поверхности задают величины локальных доз ионизирующих излучений космического пространства Dj в центре эталонного защитного экрана сферической формы в зависимости от толщины Xj эталонного защитного экрана сферической формы в дискретном виде, в отличие от известного, преобразуют дискретную зависимость заданных локальных доз Dj от толщины Xj эталонного защитного экрана сферической формы в непрерывную зависимость, разбивают расчетный защитный экран на сектора со стандартными поверхностями, представляют внутреннюю и внешнюю стандартные поверхности расчетного защитного экрана аналитическими функциями координат, определяют радиальные толщины расчетного защитного экрана, оценивают величину локальной дозы ионизирующих излучений космического пространства, приходящуюся на облучаемый элемент через все стандартные поверхности, используя выражение в виде интеграла по полному телесному углу от непрерывной зависимости локальных доз и радиальной толщины расчетного защитного экрана, который вычисляют с помощью системы компьютерной алгебры, сравнивают полученную локальную дозу с допустимой дозой для выбранного облучаемого элемента, в зависимости от результата уточняют конструкцию расчетного защитного экрана или, при необходимости, заменяют облучаемый элемент.

Изобретение поясняется фигурой, где: точка O - заданная точка облучаемого элемента внутри расчетного защитного экрана, бесконечно малый телесный угол dΩ, расстояния R1, R2 и радиальная толщина экрана x.

Способ определения локальных доз ионизирующих излучений космического пространства в данной точке облучаемого элемента за расчетным защитным экраном с аналитической формой поверхности заключается в том, что исходя из характеристик орбиты и срока активного существования космической аппаратуры задают величины локальных доз Dj в центре эталонного защитного экрана сферической формы в зависимости от его толщины Xj в дискретном виде. Используют непрерывную аналитическую аппроксимацию дискретной зависимости заданных локальных доз Dj от толщины Xj эталонного защитного экрана сферической формы, для определения радиальной толщины расчетного защитного экрана разбивают расчетный защитный экран на сектора со стандартными поверхностями, представляют внутреннюю и внешнюю стандартные поверхности расчетного защитного экрана аналитическими функциями координат, определяют радиальные толщины расчетного защитного экрана. Оценивают величину локальной дозы ионизирующих излучений космического пространства, приходящихся на облучаемый элемент через все стандартные поверхности, используя выражение в виде интеграла по полному телесному углу, подынтегральное выражение которого представляют в виде аналитической аппроксимации дискретной зависимости дозы ионизирующих излучений космического пространства в зависимости от радиальной толщины расчетного защитного экрана с аналитической формой поверхности. Вычисляют интеграл с помощью системы компьютерной алгебры, сравнивают полученную локальную дозу с допустимой дозой для выбранного облучаемого элемента, в зависимости от результата уточняют конструкцию расчетного защитного экрана или, при необходимости, заменяют облучаемый элемент.

Во многих практически важных случаях конструкция расчетного защитного экрана может быть с достаточной точностью представлена в виде защитного экрана, внутренняя и внешняя поверхности которого, в целом или в отдельных своих секторах, могут быть представлены в виде аналитических поверхностей, то есть поверхностей, форма которых может быть описана аналитической функцией координат. В качестве примеров часто встречающихся аналитических поверхностей можно привести плоскость, цилиндр, конус, сферу.

Непрерывная аналитическая аппроксимация дискретной зависимости заданных локальных доз Dj для каждого вида ионизирующих излучений космического пространства в центре эталонного защитного экрана сферической формы в зависимости от его толщины Xj выполняется непрерывными аналитическими функциями D(x, ak, bk) специального вида, которые зависят как от непрерывной переменной толщины экрана х, так и от совокупности коэффициентов ak, bk. В зависимости от вида ионизирующих излучений космического пространства функции D(x, ak, bk) имеют следующий общий вид:

- для электронов ЕРПЗ

- для протонов ЕРПЗ

- для протонов СКЛ

Аппроксимация дискретных зависимостей Dj от Xj непрерывными аналитическими функциями специального вида (4), (5) и (6) позволяет с достаточной точностью в компактном и удобном для использования виде представить информацию, содержащуюся в соответствующих исходных дискретных зависимостях. Аппроксимацию выполняют, используя нелинейный метод наименьших квадратов, описанный в книге Ф.А. Живописцев, В.А. Иванов «Регрессионный анализ в экспериментальной физике». Издательство Московского университета, 1995, стр. 155-173. Функционал метода наименьших квадратов выбирают в виде, описываемом следующей формулой:

В результате применения метода наименьших квадратов получают значения коэффициентов ak, bk для каждой из функций D(x, ak, bk), соответствующих выбранному виду ионизирующих излучений космического пространства. Выбирают систему координат с началом в данной точке облучаемого материала. Разбивают расчетный защитный экран на ряд секторов, в каждом из которых форма внутренней и внешней поверхностей расчетного защитного экрана описывается аналитической функцией координат. Сумма телесных углов этих секторов должна составлять полный телесный угол 4 π стерадиан:

где:

- L - количество секторов разбиения полного телесного угла;

- Ωl - телесный угол l-го сектора.

В каждом таком секторе радиальную толщину расчетного защитного экрана записывают как аналитическую функцию координат радиального направления, равную разности аналитических функций R1, R2 (фигура) расстояний от начала координат до внешней и внутренней поверхности расчетного защитного экрана в виде следующей формулы:

где:

- x(Ω) - радиальная толщина экрана в заданном направлении;

- R2(Ω) - расстояние до внешней поверхности расчетного защитного экрана в заданном направлении;

- R1(Ω) - расстояние до внутренней поверхности расчетного защитного экрана в заданном направлении.

Используя введенные ранее обозначения, общее выражение для локальной дозы в данной точке облучаемого элемента за расчетным защитным экраном с аналитической формой поверхности и для выбранного вида ионизирующих излучений космического пространства запишем в виде суммы составляющих доз по отдельным секторам:

Определение численного значения отдельных интегралов, входящих в формулу (10), производится с использованием системы компьютерной алгебры, например Mathcad.

В отличие от метода секторирования и «лучевого метода» предлагаемый способ вычисления локальных доз ионизирующих излучений космического пространства не содержит ошибок, связанных с приближением формы защитного экрана совокупностью конечного числа сегментов с постоянной внутри сегмента радиальной толщиной. Предлагаемый способ определения локальных доз ионизирующих излучений космического пространства за защитными экранами с аналитической формой поверхности разделен на три последовательно выполняемые операции. В первой операции производится вычисление коэффициентов аналитической аппроксимации дозовых зависимостей ионизирующих излучений космического пространства. Во второй операции разбивают расчетный защитный экран на ряд секторов, в каждом из которых форма внутренней и внешней поверхностей расчетного защитного экрана описывается аналитической функцией координат и с помощью формулы (9) вычисляют радиальную толщину расчетного защитного экрана в данном направлении для каждого из таких секторов. Третья операция содержит только процедуру численного вычисления средствами системы компьютерной алгебры, например Mathcad, суммы интегралов (10), аналитическая структура которых определена двумя первыми операциями способа.

Таким образом, данный способ позволяет производить быстрые инженерные оценки величин поглощенных доз ионизирующих излучений космического пространства, что делает его более эффективным и не требует написания сложного программного кода и его интеграции с САПР.

Способ определения локальных доз ионизирующих излучений космического пространства в облучаемом элементе, расположенном за расчетным защитным экраном с аналитической формой поверхности, заключающийся в том, что задают величины локальных доз Dj в центре эталонного защитного экрана сферической формы в зависимости от толщины Xj эталонного защитного экрана сферической формы в дискретном виде, отличающийся тем, что преобразуют дискретную зависимость заданных локальных доз Dj от толщины Xj эталонного защитного экрана сферической формы в непрерывную зависимость, разбивают расчетный защитный экран на сектора со стандартными поверхностями, представляют внутреннюю и внешнюю стандартные поверхности расчетного защитного экрана аналитическими функциями координат, определяют радиальные толщины расчетного защитного экрана, оценивают величину локальной дозы ионизирующих излучений космического пространства, приходящуюся на облучаемый элемент через все стандартные поверхности, используя выражение в виде интеграла по полному телесному углу от непрерывной зависимости локальных доз и радиальной толщины расчетного защитного экрана, который вычисляют с помощью системы компьютерной алгебры, сравнивают полученную локальную дозу с допустимой дозой для выбранного облучаемого элемента, в зависимости от результата уточняют конструкцию расчетного защитного экрана или, при необходимости, заменяют облучаемый элемент.



 

Похожие патенты:

Изобретение относится к системам и способу хранения и обработки радиоизотопов. Система включает в себя бассейн хранения для хранения множества радиоактивных предметов, погруженных в защищающую от радиации и охлаждающую жидкость.

Изобретение относится к области защиты сухопутной и морской техники от естественного и искусственного излучения. .

Изобретение относится к устройству для уменьшения диаметра входа в перчаточную камеру (2). .

Изобретение относится к ядерной технике и может быть использовано для реабилитации хранилищ отработавшего ядерного топлива (ОЯТ), в том числе аварийных. .

Изобретение относится к технологиям вывода из эксплуатации больших уран-графитовых реакторов и может быть использовано для обеспечения минимальных пределов радиационного воздействия остановленного реактора на окружающую среду, население и персонал.

Изобретение относится к средствам механизации обращения и проведения работ по обезвреживанию и утилизации экологически особо опасных объектов и изделий, содержащих взрывчатые, химические и другие вещества, в том числе радиоактивные, на месте их обнаружения.

Изобретение относится к крепежной технике и предназначено для использования при проведении монтажных и демонтажных работ по закреплению плит биологической защиты от радиационного фона в отсеках трюмных помещений сложной конфигурации и находящихся в затесненных условиях корабельной ядерной энергетической установки (ЯЭУ).

Изобретение относится к ядерной технике и может быть использовано для выгрузки чехлов с отработавшим ядерным топливом (ОЯТ) из хранилищ, в частности из аварийных. .

Изобретение относится к устройствам для защиты от ионизирующего излучения и может быть использовано при строительстве или реабилитации объектов использования атомной энергии, в том числе хранилищ отработавшего ядерного топлива и радиоактивных отходов.

Изобретение относится к изделиям, включающим в себя полотна (ткани), компаунды и пленки (пленочные слои), которые могут обеспечить защиту от вредных воздействий, представляющих угрозу жизни (радиация, химические вещества, биологические агенты, огонь, металлические метательные снаряды).
Изобретение относится к области ядерной техники. .

Изобретение относится к области производства строительных материалов и элементов. .

Изобретение относится к атомной энергетике и промышленности и может быть использовано при консервации на длительный период выведенных главным образом в результате аварии, объектов, на которых в результате аварии произошли разрушения защитных оболочек и/или других защитных барьеров делящихся ядерных материалов и выход радиоактивных веществ в производственные помещения и окружающую среду.

Изобретение относится к обработке металлов давлением и может быть использовано в судостроительной и атомной промышленности. .

Изобретение относится к радиационно-защитным экранам, выполненным из строительных блоков, и предназначено для защиты мишеней ускорителей заряженных частиц средних и высоких энергий.

Изобретение относится к области космического материаловедения, а именно к терморегулирующим покрытиям класса «солнечные отражатели». Радиационно-защитное терморегулирующее покрытие включает верхний слой покрытия, содержащий в качестве связующего водный раствор литиевого жидкого стекла, наполнители BaSO4, Ва(AlO2)2, и нижний слой покрытия, состоящий из водного раствора литиевого жидкого стекла и наполнителей - порошок Bi2O3 и порошок BaWO4.
Наверх