Способ лазерной обработки неметаллических материалов

Изобретение относится к способу лазерной обработки неметаллических материалов и может быть использовано для скрайбирования полупроводниковых, керамических и стеклообразных материалов. Осуществляют облучение поверхности материала импульсным лазерным излучением. Требуемая глубина канавки достигается в зависимости от значения безразмерного параметра, равного произведению показателя поглощения материала на длине волны лазерного излучения на глубину канавки, а также за счет воздействия одного или двух лазерных импульсов, плотности энергии в каждом из которых определяют в зависимости от удельной энергии сублимации материала, показателя поглощения на длине волны лазерного излучения и коэффициента отражения. Технический результат заключается в снижении энергетических затрат при обработке неметаллических материалов лазерным излучением. 2 н.п. ф-лы, 1 ил.

 

Изобретение относится к области технологических процессов и может быть использовано для скрайбирования полупроводниковых, керамических и стеклообразных материалов.

Известен способ обработки неметаллических материалов, применяемый для аморфизации кремния и заключающийся в облучении поверхности пластины импульсом лазерного излучения [1]. Также известен способ обработки неметаллических материалов, применяемый для отжига ионно-легированного кремния [2]. Недостатком указанных способов является то, что характеристики лазерных импульсов позволяют довести поверхность пластины в зоне воздействия лазерного излучения до температуры плавления, но не позволяют осуществлять скрайбирование пластины.

Также известен способ обработки неметаллических материалов [3], в котором обработка пластин осуществляется путем облучения поверхности импульсом лазерного излучения. Временная форма импульса описывается определенным соотношением в зависимости от плотности потока энергии лазерного излучения, констант b1 и b2, характеризующих фронт и спад лазерного импульса от длительности лазерного импульса, текущего времени от начала воздействия, плотности энергии и максимального значения плотности потока лазерного излучения в импульсе. Эффект достигается тем, что формируют лазерный импульс, временная форма которого описывается так:

,

где q(t) - плотность потока энергии лазерного излучения, Вт/м2;

τ - длительность импульса лазерного излучения, с;

b1 и b2 - константы, характеризующие фронт и спад лазерного импульса;

t - текущее время от начала воздействия, с.

Указанный способ позволяет минимизировать термоупругие напряжения в поглощающем слое материала пластины, но не позволяет осуществлять скрайбирование неметаллических материалов при минимальных энергетических затратах.

Известен способ лазерной обработки [4], в частности, используемый для создания отверстий в пластинах, в котором плотность энергии, поглощенная в испаренном слое материала, определяется формулой (1):

где z - координата, измеряемая от поверхности вглубь материала;

ρ - плотность материала;

Lu - скрытая теплота испарения единицы массы материала.

Формула (1) характеризует стационарный процесс испарения материала под действием лазерного излучения при его поглощении в очень тонком поверхностном слое материала (много меньше толщины испаренного слоя). Формулу (1) нельзя использовать, когда поглощение лазерного излучения происходит в объеме материала, например в слое материала толщиной в несколько миллиметров. Недостатком данного способа является отсутствие возможности определения оптимального значения плотности энергии лазерного излучения при обработке материалов, обладающих объемным поглощением излучения с длиной волны, на которой происходит обработка материала.

Известен также способ лазерной обработки неметаллических материалов [5], заключающийся в облучении их поверхности лазерными импульсами с плотностью энергии в каждом импульсе, определяемой по формуле (2):

где е - основание натурального логарифма;

Q - удельная энергия сублимации материала, Дж/м3;

χ - показатель поглощения материала пластины на длине волны лазерного излучения, м-1;

R - коэффициент отражения материала.

При такой плотности энергии воздействующего лазерного излучения происходит сублимация поглощающего слоя материала толщиной 1/χ, причем энергетические затраты на единицу массы сублимирующего материала будут минимальны. Если при скрайбировании пластин требуется глубина канавки больше, чем 1/χ, то производят воздействие несколькими импульсами. Количество импульсов лазерного излучения определяется как отношение требуемой глубины канавки к толщине сублимирующего слоя материала при воздействии одного импульса:

где h - требуемая глубина канавки при скрайбировании.

Общее количество воздействующих импульсов лазерного излучения определяется по формуле:

где L - длина канавки при скрайбировании;

d - диаметр лазерного луча.

Данный способ является наиболее близким по технической сущности к предлагаемому. Недостатком способа является то, что он не позволяет проводить скрайбирование неметаллических пластин при минимальных энергетических затратах, когда требуемое количество лазерных импульсов N1 не является целочисленным. Например, пластина из цветного оптического стекла ЖЗС12 имеет показатель поглощения на длине волны 1,06 мкм 10 см-1 [6], а требуется глубина канавки при скрайбировании 0,12 или 0,18 см.

Задачей изобретения является снижение энергетических затрат при скрайбировании неметаллических материалов, обладающих объемным поглощением лазерного излучения, например, полупроводниковых, керамических и стеклообразных материалов.

Поставленная задача решается за счет того, что скрайбирование пластины на глубину в интервале 1/χ<h<2/χ осуществляют воздействием одного или двух лазерных импульсов с плотностями энергии на поверхности пластины соответственно:

где W1 - плотность энергии при воздействии одного лазерного импульса;

W2 - суммарная плотность энергии при воздействии двух лазерных импульсов.

Ниже приводится более подробное описание способа обработки неметаллических материалов со ссылкой на фиг. 1.

Сущность способа состоит в следующем. Плотность энергии на поверхности пластины, удельное энерговыделение Е при поглощении лазерного излучения в материале и координата х, отсчитываемая от поверхности материала вглубь, связаны формулой (3) [5]:

Сублимация материала произойдет на глубину х при условии Е(x)≥Q.

При воздействии одного лазерного импульса требуемая плотность энергии на поверхности пластины, обеспечивающая сублимацию материала на глубину h, рассчитывается по формуле (4):

При воздействии двух лазерных импульсов вначале воздействуют на пластину с плотностью энергии, определяемой по уравнению (2), затем, после сублимации слоя материала толщиной 1/χ, с плотностью энергии (5):

Суммарная плотность энергии воздействующего лазерного излучения во втором случае будет иметь вид (6):

Определим лучший вариант воздействия с точки зрения минимизации энергетических затрат на обработку. Для этого разделим уравнение (4) на уравнение (6). После простых математических преобразований получим (7):

Зависимость отношения W1/W2 от безразмерного параметра χh в интервале значений 1<χh<2 представлена на фиг.1. Видно, что при 1<χh<1,46 отношение W1/W2<1. Следовательно, в указанном интервале целесообразно получать требуемую глубину канавки при воздействии одного импульса с плотностью энергии, определяемой по формуле (4). При 1,46<χh<2 режим воздействия двумя последовательными импульсами с плотностями энергии, определяемыми по формулам (2) и (5) соответственно, является предпочтительнее. При χh=1,46 W1/W2≈1,0008. Таким образом, выбор режима обработки в зависимости от значения параметра χh позволяет уменьшить энергетические затраты при скрайбировании максимум на 25-35%.

Технологические лазеры, как правило, работают в частотно-импульсном режиме. Поэтому, при получении заданной глубины канавки посредством воздействия двух импульсов, целесообразно вначале пройти по контуру канавки глубиной 1/χ, а затем, перестроив лазер, повторно пройти по тому же контуру с плотностью энергии, определяемой по формуле (5). При достаточной точности технологического оборудования отмеченный выше режим обработки возможно применить ко всей партии пластин: вначале на всех пластинах партии получают канавки глубиной 1/χ, а затем, перестроив лазер на необходимый энергетический режим, для всей партии пластин осуществляют углубление канавки до требуемой величины.

Таким образом, выбор режима обработки в зависимости от требуемой глубины канавки и показателя поглощения материала позволяет уменьшить энергетические затраты максимум на 25-35%.

Литература

1. Боязитов P.M. и др. Аморфизация и кристаллизация кремния субнаносекундными лазерными импульсами. Тезисы докладов Всесоюзной конференции по взаимодействию оптического излучения с веществом. Ленинград. 11-18 марта 1988 г., с.24.

2. Кузменченко Т.А. и др. Лазерный отжиг ионно-легированного кремния излучением с длиной волны 2,94 мкм. Тезисы докладов Всесоюзной конференции по взаимодействию оптического излучения с веществом. Ленинград. 11-18 марта 1988 г., с.29.

3.RU 22111753, 2004 г.

4. Лазерная техника и технология. В 7 кн. Кн.4. Лазерная обработка неметаллических материалов: Учебное пособие для ВУЗов / А.Г. Григорьянц, А.А. Соколов. Под ред. А.Г. Григорьянца. - М.: Высшая школа. 1998. - 191 с. ISBN 5-06-001453-3.

5. RU 2486628, 2013 г.

6. ГОСТ 9411-90 Стекло цветное оптическое. М.: Издательство стандартов. 1992. - 48 с.

1. Способ лазерной обработки неметаллических материалов, включающий облучение поверхности материалов импульсами лазерного излучения с заданной плотностью энергии в импульсе, отличающийся тем, что при скрайбировании с глубиной канавки в интервале 1<χh<1,46, плотность энергии лазерного импульса определяют по формуле:

где е - основание натурального логарифма; Q - удельная энергия сублимации материала, Дж/м3; χ - показатель поглощения материала пластины на длине волны лазерного излучения, м-1; R - коэффициент отражения материала.

2. Способ лазерной обработки неметаллических материалов, включающий облучение поверхности материалов импульсами лазерного излучения с заданной плотностью энергии в импульсе, отличающийся тем, что при скрайбировании с глубиной канавки в интервале 1,46≤χh<2 после воздействия первого лазерного импульса с плотностью энергии в импульсе, определяемой по формуле:

где е - основание натурального логарифма; Q - удельная энергия сублимации материала, Дж/м3; χ - показатель поглощения материала пластины на длине волны лазерного излучения, м-1; R - коэффициент отражения материала, последовательно воздействуют на поверхность материала вторым лазерным импульсом с плотностью энергии в импульсе, определяемой по формуле:



 

Похожие патенты:

Изобретение относится к способу ремонта металлической детали. Осуществляют наплавку поврежденных частей детали порошком металла на упомянутую деталь.

Изобретение относится к способу лазерной сварки труб большого диаметра. Перед сваркой продольного шва выполняют прихваточный шов, во время сварки которого с наружной стороны трубы, непосредственно перед зоной сварки упомянутым лазерным датчиком фиксируют через определенное расстояние по всей длине трубы три точки на виртуально получаемой поперечной плоскости разделки: точку стыка кромок и две точки их краев, лежащих на касательной к поперечной плоскости труб.

Изобретение относится к лазерной технике для распределения или переключения произвольно поляризованного излучения от одного лазерного источника по ряду оптических направлений с контролируемой поляризацией и мощностью.

Изобретение относится к способу производства стальной трубы с помощью лазерной сварки. Сварку выполняют с использованием множества лазерных лучей, каждый из которых имеет диаметр пятна, составляющий 0,3 мм или более на верхней поверхности открытой трубы.

Изобретение относится к способу изготовления многослойной монококовой конструкции (варианты) и может быть использовано в авиационной и ракетной технике. Сначала выполняют послойный электронный чертеж изготавливаемой конструкции.

Изобретение относится к способу изготовления изделий сложной формы из порошковых систем и может найти применение в разных отраслях машиностроения, например, для изготовления сопел, завихрителей, вставок и других элементов ракетных двигателей и турбин.

Изобретение относится к способу получения износостойкого покрытия на деталях и может найти применение при восстановлении изношенных и упрочнении новых деталей в различных отраслях машиностроения.

Изобретение относится к способу получения износостойкого покрытия на деталях и может найти применение при восстановлении изношенных и упрочнении новых деталей в различных отраслях машиностроения.

Изобретение относится к способу и устройству лазерной перфорации многослойных рулонных материалов и предназначено, в частности, для применения в космической технике при изготовлении экранно-вакуумной теплоизоляции космических аппаратов (КА).

Изобретение относится к лазерному сварочному устройству для сварки первой части листового металла со второй частью листового металла. Устройство содержит раму (5), поддерживающую головку (6), которая излучает лазерный луч (7), и насадку (8), которая подает сварочную проволоку (9), которые конфигурированы для образования валика сварного шва вдоль линии соединения между первой и второй частями листового металла.

Изобретение относится к машиностроению, в частности к области термической обработки инструмента. Способ упрочнения разделительного штампа включает лазерную закалку боковых рабочих поверхностей путем оплавления припусков за один проход при перемещении луча лазера по стыку припусков и последующий лазерный отпуск. После лазерной закалки выполняют обработку холодом до температуры окончания мартенситного превращения, а лазерный отпуск выполняют с помощью непрерывного излучения многоканального CO2 лазера на режимах, обеспечивающих нагрев стали в зоне закалки в интервале температур Ac1÷560°C, где Ac1 - критическая температура, при которой в стали начинает формироваться аустенит: мощность лазерного излучения P при выполнении лазерного отпуска в 4÷5 раз меньше, чем при выполнении лазерной закалки, скорость сканирования луча ν и диаметр пятна излучения d на обрабатываемой поверхности для выполнения лазерной закалки и лазерного отпуска одинаковы. 2 ил.

Изобретение относится к лазерной сварке двух стальных деталей (1, 2) и может быть использовано в автомобилестроении. Лазерный луч (3) и металлическую присадочную проволоку (4) непрерывно перемещают вдоль соединительной линии между двумя деталями (1, 2) таким образом, что этот лазерный луч (3) непрерывно плавит металлическую присадочную проволоку (4) так, чтобы образовывать непрерывный сварочный шов (5) между двумя деталями (1, 2). Защитный газ вдувают на сварочный шов. Защитный газ представляет собой сжатый воздух, свободный от газов, отличающихся от тех, что содержатся в окружающем воздухе. Устройство содержит форсунку для вдувания воздуха, присоединенную к источнику сжатого воздуха. В результате предотвращается образование пористости сварных швов и, соответственно, повышается качество сварных деталей. 4 н. и 2 з.п. ф-лы, 3 ил.

Изобретение относится к способу и устройству структурирования поверхности твердого тела с покрытием из твердого материала и полученной при этом упаковочной фольге. Создают структуру, как минимум, одной области поверхности твердого тела, посредством первого лазера, предпочтительно, эксимерного лазера (1), имеющего продолжительность импульса в наносекундном диапазоне. На нее накладывают вторую рифленую структуру посредством второго лазера (15), предпочтительно, имеющего продолжительность импульса в фемтосекундном диапазоне. Создание структуры посредством эксимерного лазера производят согласно технологии проекции шаблона, а создание структуры посредством лазера с продолжительностью импульса в фемтосекундах - согласно технологии фокусировки. Изобретение позволяет осуществлять рациональное производство очень сложных, сильно защищенных от подделок отличительных маркировок и/или эстетически привлекательных, эффективных с точки зрения оптической дифракции цветных образцов. 3 н. и 17 з.п. ф-лы, 13 ил.

Изобретение относится к сварке и может найти применение в машиностроении, теплоэнергетике, металлургии и др. Изобретение позволяет изготавливать крупногабаритные плоские тонколистовые оребренные панели с листовыми ребрами, а также упрощает способ и устройство для его осуществления. На панели выполняют отверстия, равномерно расположенные вдоль линий сваривания, а на ребрах выполняют шипы в виде выступов. Устанавливают ребра на панель. Фиксируют ребра в этом положении и загибают выступающие шипы. Устанавливают панель на выполненные в виде сегментов опоры плиты стола, располагая ребра в V-образных пазах опор. Закрепляют панель прижимными элементами и производят лазерную прихватку ребер. Затем обваривают места выступа шипов и осуществляют лазерную приварку ребер через лист панели. Устройство для линейной сварки плоской тонколистовой панели включает стол (1), плиту (2) с опорами (3) в виде сегментов с пазами (4). Прижимные элементы выполнены в виде уголков (5) и прижимов (6). Опоры 3 снабжены V-образными пазами (7), оси которых совпадают с продольными осями привариваемых ребер (8). Уголки (5) расположены в пазах (4) опор (3). На панели (9) выполнены прямоугольные отверстия (10), ориентированные по месту расположения ребер (8), на которых выполнены шипы (11), расположенные напротив отверстий (10). 2 н. и 8 з.п. ф-лы, 4 ил.

Изобретение относится к системе восстановления ковочного штампа (1) лазерной наплавкой. Система включает в себя устройство (10) детектирования формы (2) штампа (1), подлежащего восстановлению, сварочное устройство (30), конфигурированное для нанесения наплавляемого материала на штамп (1), и процессор (20), конфигурированный для задания траекторий (11) наплавки, чтобы приводить в действие сварочный аппарат (30), причем траектории наплавки задаются согласно распознанной форме (2) и заранее заданной форме штампа (1). 18 з.п. ф-лы, 8 ил.

Изобретение может быть использовано при производстве медалей нумизматического, фаллеристического назначения или монето-жетонных изделий, применяемых в наличном денежном обращении. После предварительного уплотнения поверхностных слоев заготовки осуществляют их холодное пластичное деформирование посредством штемпелей пресса. При этом производят тиснение отполированных локально расположенных декоров, негативное изображение которых выполнено на рабочих поверхностях штемпелей и отполировано. Одновременно с тиснением на поверхности заготовки упомянутых декоров на части их отполированных поверхностей получают маркирующие метки. Негативы упомянутых маркирующих меток выполнены на штемпеле путем микрогравирования с помощью лазерного оборудования с программным управлением. Позитив изображения маркирующих меток идентифицируют на поверхностях отполированных декоров изделия с использованием увеличивающих оптических средств. При реализации изобретения обеспечивается высокопроизводительный без потери металла процесс маркирования изделий, изготовленных с декором, который соответствует требованиям художественной и тезаврационной привлекательности. 4 з.п. ф-лы, 2 ил.

Изобретение относится к способу формирования полого структурного элемента замкнутого сечения. Способ формирования полого структурного элемента включает штамповку верхнего компонента из листового металла с незамкнутым сечением, выполненного с двумя в основном параллельными выступающими вниз стыковочными фланцами, штамповку нижнего компонента из листового металла с незамкнутым сечением, выполненного с двумя в основном параллельными выступающими вверх стыковочными фланцами и стыковую сварку стыковочных фланцев верхнего и нижнего компонентов из листового металла друг с другом. Причем перед сваркой штампованные стыковочные фланцы верхнего и нижнего компонентов из листового металла одновременно подрезают посредством резки лазерной установкой с пятью степенями свободы таким образом, чтобы они взаимодополняли друг друга. При этом верхний и нижний компоненты из листового металла закреплены в креплении в пространственном соответствии. По одному из вариантов подрезанные края верхнего и нижнего компонентов сваривают друг с другом посредством непрерывной стыковой лазерной сварки. Изобретение также относится к структурному элементу, представляющему собой рычаг подвески автомобиля, или лонжерон моторного отсека автомобиля, или балку для подрамника подвески автомобиля. Достигается уменьшение массы изделия. 4 н. и 2 з.п. ф-лы, 8 ил.

Изобретение относится к способу сварки деталей различного диаметра и разной толщины и может быть использовано в приборостроении, в электронной и радиотехнической промышленности. Для сварки используют переходник 3, на одном конце которого формируют технологический бурт 4. На другом конце переходника 3 выполняют центрирующую кольцевую проточку 5. На детали 2 выполняют центрирующий кольцевой выступ 6 под кольцевую проточку 5 переходника 3. Детали 1, 2, 3 соединяют, удерживают, фиксируют прихватками. Сваривают детали лазерным лучом 8. Луч 8 фокусируют на стык свариваемых деталей. За счет уменьшения тепловложения при сварке достигается уменьшение деформации при нагреве и усадке, в результате получают прочные, герметичные, неразъемные соединения деталей разного диаметра и толщины. 6 з.п. ф-лы, 3 ил.

Изобретение относится к лазерной сварке алюминиевых сплавов и может быть использовано в различных областях машиностроения, судостроения, авиационно-космической промышленности. Сварку деталей осуществляют при одновременном воздействии лазерного луча и дуги в одну сварочную ванну в среде инертного газа. Лазерный луч и дуговую горелку наклоняют в противоположные стороны относительно нормали к поверхности свариваемых деталей. Лазерный луч фокусируют над поверхностью свариваемых деталей с диаметром пятна на поверхности, равным (0,4÷0,6) мм, впереди точки дугового разряда на заданном расстоянии от нее с пороговой плотностью мощности, необходимой для начала процесса сварки, а по ходу движения лазерный луч наклоняют вперед на угол 8-9°. Дуговую горелку располагают позади лазерного луча под углом 40-50°. Расстояние между центром пятна лазерного излучения и точкой дугового разряда поддерживают равным (0,1÷0,2) диаметра электрода. Изобретение обеспечивает получение стабильного по глубине сварного шва с характеристиками шва, близкими к 1, а также отсутствие таких дефектов как поры, при минимальных энергетических затратах и высокой скорости самого процесса сварки. 1 з.п. ф-лы, 1 ил., 1 пр.

Изобретение относится к способу и устройству для структурирования поверхности (9) твердого материала, нанесенного на твердое тело, и упаковочной фольге с тиснением, которое нанесено штампами для тиснения или валами для тиснения. Создают структуру как минимум одной области поверхности твердого тела, имеющей покрытие ta-C, для чего используют шаблон (18) в гомогенном пятне (FS) оптической системы для придания формы лучу посредством способа проекции шаблона, а также диаграммы (6) перед оптикой отображений. Структуру получают посредством эксимерного лазера, имеющего длительность импульса в пределах наносекунды (1), и используют некоторое количество сочетаний шаблонов и диафрагм (18, 6), установленных в обменное устройство (28). Обменное устройство приспособлено под размещение одного из шаблонов (18) и одной из диафрагм (6) в траекторию луча лазера независимо друг от друга. Шаблоны (18) и диафрагмы (6) устанавливают в держатели с сохранением способности линейного и кругового перемещения и вращения вокруг своей оси. Изобретение позволяет осуществлять рациональное производство очень сложных, защищенных от подделок отличительных характеристик и/или эстетически привлекательных, эффективных с точки зрения оптической дифракции цветных образцов. 3 н. и 19 з.п. ф-лы, 13 ил.

Изобретение относится к способу лазерной обработки неметаллических материалов и может быть использовано для скрайбирования полупроводниковых, керамических и стеклообразных материалов. Осуществляют облучение поверхности материала импульсным лазерным излучением. Требуемая глубина канавки достигается в зависимости от значения безразмерного параметра, равного произведению показателя поглощения материала на длине волны лазерного излучения на глубину канавки, а также за счет воздействия одного или двух лазерных импульсов, плотности энергии в каждом из которых определяют в зависимости от удельной энергии сублимации материала, показателя поглощения на длине волны лазерного излучения и коэффициента отражения. Технический результат заключается в снижении энергетических затрат при обработке неметаллических материалов лазерным излучением. 2 н.п. ф-лы, 1 ил.

Наверх