Пикселированное детекторное устройство



Пикселированное детекторное устройство
Пикселированное детекторное устройство
Пикселированное детекторное устройство
Пикселированное детекторное устройство
Пикселированное детекторное устройство
Пикселированное детекторное устройство
Пикселированное детекторное устройство

 


Владельцы патента RU 2567400:

КОНИНКЛЕЙКЕ ФИЛИПС ЭЛЕКТРОНИКС Н.В. (NL)

Изобретение относится к пикселированному детектору. Пикселированное детекторное устройство содержит матрицу детекторов, имеющую множество детекторных пикселей; и матрицу кристаллов, имеющую множество сцинтилляторных кристаллов и расположенную в геометрическом соответствии с матрицей детекторов; при этом упомянутые детекторные пиксели и упомянутые сцинтилляторные кристаллы сдвинуты в по меньшей мере одном измерении по отношению друг к другу на, по существу, половину размера сцинтилляторных кристаллов. Технический результат - уменьшение перекрестных помех между пикселями, повышение эффективности улавливания света. 2 н. и 7 з.п. ф-лы, 6 ил.

 

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ

Настоящее изобретение относится к пикселированному детекторному устройству для использования в ядерном формировании изображений, таком как позитронно-эмиссионная томография (PET). Более конкретно, настоящее изобретение относится к пикселированному детектору, в котором матрица сцинтилляторного материала соединяется с матрицей фотодетекторов, как, например, в PET или в однофотонной эмиссионной компьютерной томографии (SPECT).

УРОВЕНЬ ТЕХНИКИ

В предшествующих устройствах ядерного формирования изображений детекторы гамма-излучения используют сцинтилляторы, которые преобразуют падающее гамма-излучение в свет, который затем обнаруживается посредством фотоэлектронных умножителей (PMT). Сцинтиллятор является материалом, который демонстрирует сцинтилляцию - свойство свечения при возбуждении посредством ионизирующего излучения. Вследствие нескольких недостатков фотоэлектронных умножителей, имеется интерес в замене их на твердотельные световые датчики, такие как лавинные фотодиоды, возбуждаемые в режиме Гейгера, называемые, например, кремниевые фотоумножители (SiPM). Обычные SiPM имеют более хорошее разрешение по времени и энергии, чем обычные PMT. Разрешение по времени, значительно более хорошее, чем одна наносекунда, становится более ценным, так как сканеры PET на основе времени пролета (TOF-PET) становятся более преобладающими, однако, имеются серьезные преграды для принятия этой новой технологии.

Пикселированный детектор состоит из полупроводниковой микросхемы с высоким удельным сопротивлением, содержащей пикселированные фотодиоды с их соответственной считывающей электроникой. Эта полупроводниковая микросхема также называется слоем диодного детектирования. Для высокой чувствительности отношение диодной области к полной области в расчете на пиксель, называемое коэффициент заполнения, должно быть высоким, обычно выше 50%. Рентгеновские лучи абсорбируются в сцинтилляторных кристаллах, которые находятся наверху и оптически соединены со слоем диодного детектирования. Оптические фотоны, сгенерированные в сцинтилляторных кристаллах, обнаруживаются посредством диодов соответствующих индивидуальных пикселей в слое диодного детектирования и преобразуются в электрические сигналы. Сигнал каждого пиксельного диода считывается посредством специального канала считывающей электроники на полупроводниковой микросхеме.

Гамма-камера, также называемая сцинтилляционная камера или камера Ангера, является устройством, используемым, чтобы формировать изображение испускающих гамма-излучение радиоизотопов, способ, известный как сцинтиграфия. Применения сцинтиграфии включают в себя первоначальную разработку медикаментов и ядерное медицинское формирование изображений, чтобы просматривать и анализировать изображения человеческого тела или распределение инъецированных, введенных посредством вдыхания или проглоченных в медицинских целях радионуклидов, испускающих гамма-лучи. Текущие детекторы SPECT и предыдущие детекторы PET строятся на основе такой камеры Ангера с непрерывным кристаллом NaI:Tl. Современные детекторы PET используют либо блочный детектор, либо матрицы индивидуальных сцинтилляторных кристаллов, которые оптически отделены друг от друга с помощью отражающего материала. Подходящим сцинтиллятором для TOF-PET является LYSO (Lu1,8Y0,2SiO5:Ce), подходящий слой отражения может получаться посредством оборачивания кристаллов в слое тефлона. Такая матрица оптически соединяется с матрицей фотоумножителей PMT, с использованием промежуточного слоя 'световода', чтобы распределять свет, сгенерированный гамма-квантом в индивидуальном сцинтилляторном кристалле, в матрицу PMT, так что является возможным использовать логику Ангера.

Более новые поколения детекторов PET используют намного более маленькие детекторные пиксели, выполненные как кремниевые фотоумножители (SiPM). Упомянутая концепция, в общем, базируется на соединении один к одному сцинтилляторного кристалла и SiPM. Идея состоит в том, чтобы измерять свет, сгенерированный внутри одного сцинтилляторного пикселя с помощью только одного детектора SiPM, чтобы максимизировать сигнал на этом детекторе и чтобы минимизировать скорость считывания данных и влияние темновых скоростей счетов детектора на сигнал. Темновые скорости счетов являются присущим свойством технологии SiPM. При учете даже низких оптических перекрестных помех на соседние пиксели или рассеивания Комптона, должны считываться по меньшей мере девять детекторных пикселей, 'прямой' детекторный пиксель плюс его восемь соседей. Эта более большая область считывания требует увеличенной в девять раз скорости считывания и означает значительно более большой вклад темновых скоростей счетов в сигнал. Перспективная концепция для отражателей в матрицах сцинтилляторов состоит в использовании отражающих листов, например, улучшенных зеркальных отражателей Vikuiti (Vikuiti ESR). Эти диэлектрические зеркала обеспечивают высокую отражательную способность, очень низкие оптические перекрестные помехи и отсутствие оптического поглощения, и они обеспечивают возможность высокого коэффициента заполнения вследствие их толщины только 65 μm. Часть сцинтилляционного света, однако, направляется в промежуток между кристаллом и отражателем, давая более высокий световой выход непосредственно вдоль краев пикселя. Этот увеличенный световой выход из поверхности раздела прямо между кристаллом и отражателем может иметь результатом, что, несмотря на маленькую область поверхности раздела, сцинтилляционный свет из этой области вносит вклад приблизительно 10-20% полного сигнала. В обычном соединении один к одному, однако, чувствительная область каждого детекторного пикселя центрируется под одним сцинтилляторным кристаллом, в то время как нечувствительные области микросхемы (считывающая электроника и т.д.) помещаются под 'промежутками' между кристаллами - что означает, что такой детектор точно упускает большую часть области кристалла, где происходит наивысший световой выход. В дополнение, свет из этих 'промежутков' может вместо этого доходить до соседних детекторных пикселей, тем самым, увеличивая нежелательные световые перекрестные помехи.

Фиг. 1 показывает схематичный вид сверху стандартного пикселированного детекторного устройства с компоновкой сцинтилляторных кристаллов 50 с покрытием 30 отражателя в соответствии один к одному с детекторными пикселями 10 с активной светочувствительной областью.

Фиг. 2A и 2B показывают сечения стандартных устройств пикселированного детектора, как показано на фиг. 1, без (фиг. 2A) и с общей стеклянной подложкой 60 (фиг. 2B). Стрелки показывают свет, испускаемый от краевых областей сцинтилляторных пикселей. Перекрестные помехи будут высокими, и часть света будет теряться при использовании общей стеклянной подложки 60 между кристаллами 50 и детекторными пикселями 10 (фиг. 2B), даже если листы отражателя будут 100% отражающими. Структурирование стеклянной пластины может являться решением, но является рискованным и дорогостоящим.

Следовательно, в вышеописанном стандартном техническом подходе на основе соединения один к одному сцинтилляторных пикселей и детекторных пикселей (например, пикселей SiPM) сигнал теряется, и в высшей степени трудно избежать оптических перекрестных помех между пикселями.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Целью настоящего изобретения является обеспечение пикселированного детекторного устройства с уменьшенными оптическими перекрестными помехами между пикселями, и с более высокой эффективностью улавливания света.

Эта цель достигается посредством пикселированного детекторного устройства согласно п. 1 формулы изобретения и посредством способа производства согласно п. 9 формулы изобретения.

Соответственно, стандартный подход соединения один к одному более не используется и предлагается технологически более легкое решение. Предложенная компоновка использует существенный полупиксельный сдвиг между кристаллами и детекторными пикселями в по меньшей мере одном измерении, так что каждый сцинтилляторный кристалл считывается посредством по меньшей мере двух детекторных пикселей одновременно.

Дополнительно, технические требования для оптического монтажа сильно ослабляются в сравнении со стандартным соответствием один к одному, давая результатом более высокую производительность и уменьшенные затраты производства.

Согласно первому аспекту детекторные пиксели и сцинтилляторные кристаллы могут быть одного и того же размера и сдвинутыми по отношению друг к другу на, по существу, половину их размера в обоих измерениях. В силу этого, каждый сцинтилляторный кристалл считывается посредством четырех детекторных пикселей одновременно. Увеличенный оптический световой выход вблизи краев детектора может, таким образом, полностью обнаруживаться и не ведет к перекрестным помехам с соседним детекторным пикселем, так как эта часть сигнала считывается в любом случае. Излучающий кристалл легко идентифицируется, без потери в разрешении по энергии. Более того, темновая скорость счета происходит только от четырех пикселей. При соответствии один к одному она фактически происходит от девяти пикселей. Если имеются перекрестные помехи через диэлектрические листы в четырех ближайших соседних кристаллах, их эффект будет уменьшаться, так как половина сигнала от этих четырех пикселей подсчитывается для идентифицированного кристалла.

Согласно второму аспекту, который может комбинироваться с вышеописанным первым аспектом, общая подложка может использоваться как для матрицы детекторов, так и матрицы кристаллов. При использовании предложенной компоновки детекторов общая подложка более не будет причинять вред, так как перекрестные помехи более не являются проблемой.

Согласно третьему аспекту, который может комбинироваться с любым из вышеописанных первого и второго аспектов, детекторные пиксели могут размещаться с шагом, который является отличающимся от шага сцинтилляторных кристаллов. С предложенной компоновкой детекторов более не является необходимым использовать в точности один и тот же шаг для кристаллов и детекторных пикселей. Это обеспечивает возможность постоянного шага и точной компоновки сцинтилляторных кристаллов, необходимых для восстановления изображения, и слегка другого шага для детекторных пикселей, так что плитки детекторов могут легко размещаться в более больших модулях без механических проблем. Результирующее пространство между плитками может даже использоваться для считывания данных, когда отражающий слой наносится ниже соответствующих областей стеклянной пластины.

Согласно четвертому аспекту, который может комбинироваться с любым из вышеописанных первого и третьего аспектов, два соседних пикселя из детекторных пикселей могут объединяться, так чтобы образовать блочную структуру матрицы детекторов. Это обеспечивает возможность идентификации кристалла по только трем детекторным пикселям с двойной пиксельной областью, и скорость считывания данных может увеличиваться.

Согласно пятому аспекту, который может комбинироваться с вышеописанными вторым или третьим аспектом, детекторные пиксели могут быть в четыре раза более большими, чем сцинтилляторные кристаллы (50), и при этом один сцинтилляторный кристалл центрируется над одним детекторным пикселем. Тем самым могут достигаться улучшенные скорости считывания.

Согласно шестому аспекту, который может комбинироваться с любым из вышеописанных первого и пятого аспектов, детекторные пиксели на краях матрицы детекторов могут быть уменьшены вдвое в размере. Это обеспечивает возможность более близкого геометрического соответствия матриц сцинтилляторов и детекторов.

Согласно седьмому аспекту, который может комбинироваться с любым из вышеописанных первого и шестого аспектов, между детекторными пикселями может обеспечиваться отражатель, чтобы тем самым учитывать оптические потери в промежутках между детекторами.

Эти и другие аспекты изобретения будут видны из и объяснены со ссылкой на варианты осуществления, описанные ниже.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

В последующих чертежах:

Фиг. 1 показывает схематичный вид сверху стандартного пикселированного детекторного устройства;

Фиг. 2A и 2B показывают сечения стандартных устройств пикселированного детектора как без, так и с общей стеклянной подложкой;

Фиг. 3 показывает вид сверху пикселированного детекторного устройства согласно первому варианту осуществления;

Фиг. 4 показывает сечение пикселированного детекторного устройства согласно первому варианту осуществления;

Фиг. 5 показывает вид сверху пикселированного детекторного устройства с пиксельной структурой блочного типа согласно второму варианту осуществления; и

Фиг. 6 показывает вид сверху пикселированного детекторного устройства с более большой пиксельной областью согласно третьему варианту осуществления.

ПОДРОБНОЕ ОПИСАНИЕ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ

В последующих вариантах осуществления объясняется улучшение пикселированного детекторного устройства посредством отхода от подхода соединения один к одному. Варианты осуществления направлены на детекторы PET и SPECT, построенные на основе пикселированных фотодетекторов, которые могут использовать твердотельную технологию SiPM.

Согласно вариантам осуществления предложенная компоновка детекторов использует полупиксельный сдвиг между кристаллами и детекторными пикселями в обоих измерениях, так что каждый сцинтилляторный пиксель может считываться посредством четырех детекторных пикселей одновременно.

Это обеспечивает возможность легкой идентификации пикселей по четырем соседним детекторным пикселям и удерживает темновую скорость счета низкой, даже если присутствуют умеренные оптические перекрестные помехи между соседями. Такое решение является возможным при использовании подсчета одиночных фотонов как в PET и SPECT. Предложенная структура обеспечивает возможность легкой идентификации пикселей, и использует большой световой выход на краях кристаллов.

Фиг. 3 показывает вид сверху пикселированного детекторного устройства согласно первому варианту осуществления. Между сцинтилляторными кристаллами 50 (с их отражающим слоем 30) и детекторными пикселями 12 вводится полупиксельный сдвиг и обеспечивает возможность идентификации сцинтилляторного кристалла 50 по четырем детекторным пикселям 12 вместо девяти пикселей в случае оптических перекрестных помех. Стеклянные пластины без какого-либо механического структурирования могут использоваться как общая подложка 60 (на фиг. 3 не показана) для детекторных пикселей 12 со светочувствительными областями 12 матрицы детекторов и сцинтилляторных кристаллов 50 матрицы кристаллов. Точность и затраты монтажа сильно уменьшаются. Даже может использоваться разный шаг пикселей и кристаллов, обеспечивая возможность точного шага кристаллов с плиточными детекторами.

Фиг. 4 показывает сечение пикселированного детекторного устройства согласно первому варианту осуществления с общей подложкой 60 и отражающим слоем 30. Как показано посредством стрелок на фиг. 4, свет, испускаемый на краях кристалла двух соседних сцинтилляторных кристаллов 50, обнаруживается в одном и том же детекторном пикселе 12.

Увеличенный оптический световой выход вблизи краев детектора, таким образом, полностью обнаруживается и не ведет к перекрестным помехам с соседним детекторным пикселем, так как эта часть сигнала считывается в любом случае. Излучающий кристалл легко идентифицируется, без потери в разрешении по энергии. Если имеются какие-либо перекрестные помехи через диэлектрические листы в четырех ближайших соседних кристаллах, их эффект будет уменьшаться, так как половина сигнала от этих четырех детекторных пикселей подсчитывается для идентифицированного сцинтилляторного кристалла. Более того, темновая скорость счета происходит только от четырех пикселей. При стандартном соответствии один к одному она фактически происходит от девяти пикселей.

Как уже упоминалось выше, тонкая неструктурированная стеклянная пластина может использоваться как общая подложка 60 для сцинтилляторных кристаллов 50 и детекторных пикселей 12. Оптические перекрестные помехи более не являются проблемой.

В дополнение, технические требования для оптического монтажа могут сильно ослабляться в сравнении с соответствием один к одному, давая результатом более высокую производительность и уменьшенные затраты производства. Не является необходимым использовать в точности один и тот же шаг для сцинтилляторных кристаллов 50 и детекторных пикселей 12. Это обеспечивает возможность постоянного шага и точной компоновки сцинтилляторных кристаллов 50, необходимых для восстановления изображения, и слегка другого шага для детекторных пикселей 12, так что плитки детекторов могут легко размещаться в более больших модулях без механических проблем. Результирующее пространство между плитками может даже использоваться для считывания данных, когда отражающий слой наносится ниже соответствующих областей стеклянной пластины.

В вышеописанном первом варианте осуществления каждый детекторный пиксель 12 точно центрируется под четырьмя сцинтилляторными кристаллами 50.

Фиг. 5 показывает вид сверху пикселированного детекторного устройства согласно второму варианту осуществления с пиксельной структурой блочного типа, отражающим слоем 30 и сцинтилляторными кристаллами 50. Эта модификация обеспечивает некоторую разновидность блочной структуры, где два соседних детекторных пикселя 70 объединены либо посредством дизайна микросхемы, либо посредством программного объединения. Это обеспечивает возможность идентификации кристалла только по трем детекторным пикселям с двойной пиксельной областью. Темновая скорость счета будет увеличена на 50%, но скорость считывания данных из матрицы детекторов (например, микросхемы SiPM) будет уменьшена вдвое. В виду максимальных скоростей считывания от полной системы PET это может являться решением снижения себестоимости.

Фиг. 6 показывает вид сверху пикселированного детекторного устройства согласно третьему варианту осуществления с более большой пиксельной областью, отражающим слоем 30 и сцинтилляторными кристаллами 50. Эта модификация использует в четыре раза более большие детекторные пиксели 72, чем первый вариант осуществления, с одним сцинтилляторным кристаллом 50, центрированным над детекторным пикселем 72, и соседними кристаллами, центрированными над двумя или четырьмя пикселями. Идентификация кристалла может осуществляться посредством различения в свете, распределенном между одним, двумя или четырьмя детекторными пикселями. Это является вариантом выбора для использования с детекторами, которые имеют достаточно низкую темновую скорость счета. По сравнению с первым вариантом осуществления темновая скорость счета является вплоть до в четыре раза более высокой, но полная скорость считывания данных является в четыре раза более низкой.

Детекторные пиксели на краях матрицы детекторов могут либо быть уменьшены вдвое в размере, обеспечивая возможность близкого геометрического соответствия матрицы сцинтилляторов и матрицы детекторов, либо размер пикселей может удерживаться постоянным. При использовании варианта выбора использования слегка разного пиксельного шага на матрице детекторов и кристаллов, это обеспечивает возможность помещать один столбец и ряд кристаллов над соответственными краями детекторов, без проблем выравнивания плиток детекторов. Оптические потери в промежутке между детекторами могут легко учитываться посредством отражателя, размещенного между плитками детекторов. Может выполняться коррекция усиления для всех детекторных пикселей, чтобы учитывать механическую несоосность.

Вышеописанные пикселированные детекторные устройства согласно первому по третий вариантам осуществления могут, таким образом, производиться посредством размещения множества детекторных пикселей в матрице детекторов, размещения множества сцинтилляторных кристаллов в матрице кристаллов в геометрическом соответствии с матрицей детекторов и сдвига детекторных пикселей и сцинтилляторных кристаллов по отношению друг к другу на, по существу, половину размера сцинтилляторных кристаллов в одном или двух измерениях.

Следует отметить, что настоящее изобретение не ограничивается вышеописанными вариантами осуществления. Скорее, пространственный сдвиг между сцинтилляторными кристаллами может быть меньше, чем в точности половина размера пикселя или кристалла и/или может делаться только в одном измерении матрицы. Это может обеспечивать субоптимальные решения, но будет, тем не менее, увеличивать полную производительность. Компоновки предложенных с первого по третий варианты осуществления могут использоваться в камерах PET или SPECT на основе технологии SiPM или других пикселированных полупроводниковых детекторах. В общем, они могут использоваться в любых системах PET, SPECT, PET/CT (компьютерная томография), SPECT/CT, PET/MR (магнитный резонанс), SPECT/MR.

В итоге, был описан пикселированный детектор с улучшенной структурой, чтобы обеспечивать возможность легкой идентификации пикселей даже с большим световым выходом на краях кристалла. Полупиксельный сдвиг между сцинтилляторными кристаллами и детекторными пикселями обеспечивает возможность идентификации кристалла по четырем детекторным пикселям вместо девяти пикселей в случае оптических перекрестных помех. Стеклянные пластины без какого-либо механического структурирования могут использоваться как общая подложка для детекторов и сцинтилляторов.

Из изучения чертежей, раскрытия и прилагаемой формулы изобретения специалистами в данной области техники при использовании на практике заявленного изобретения могут быть понятны и осуществлены другие изменения в раскрытых вариантах осуществления.

В формуле изобретения, слово "содержит" не исключает другие элементы или этапы, и использование единственного числа не исключает множественность. Одиночный процессор, распознающий блок или другой блок может исполнять функции нескольких элементов, изложенных в формуле изобретения. Простой факт того, что некоторые признаки излагаются во взаимно разных зависимых пунктах формулы изобретения не указывает, что комбинация этих признаков не может использоваться для преимущества.

Любые ссылочные позиции в формуле изобретения не должны толковаться как ограничивающие ее объем.

Настоящее изобретение относится к пикселированному детектору с улучшенной структурой, чтобы обеспечить возможность легкой идентификации пикселей даже с большим световым выходом на краях кристалла. Полупиксельный сдвиг между сцинтилляторными кристаллами и детекторными пикселями обеспечивает возможность идентификации кристалла по четырем детекторным пикселям вместо девяти пикселей в случае оптических перекрестных помех. Стеклянные пластины без какого-либо механического структурирования могут использоваться как общая подложка для детекторов и сцинтилляторов.

1. Пикселированное детекторное устройство, содержащее:
матрицу детекторов, имеющую множество детекторных пикселей (12); и
матрицу кристаллов, имеющую множество сцинтилляторных кристаллов (50) и расположенную в геометрическом соответствии с матрицей детекторов;
при этом упомянутые детекторные пиксели (12) и упомянутые сцинтилляторные кристаллы (50) сдвинуты в по меньшей мере одном измерении по отношению друг к другу на, по существу, половину размера сцинтилляторных кристаллов (50).

2. Устройство по п. 1, в котором упомянутые детекторные пиксели (12) и упомянутые сцинтилляторные кристаллы (50) имеют один и тот же размер и сдвинуты по отношению друг к другу на, по существу, половину их размера в обоих измерениях.

3. Устройство по п. 1, дополнительно содержащее общую подложку (60), используемую как для матрицы детекторов, так и матрицы кристаллов.

4. Устройство по п. 1, в котором упомянутые детекторные пиксели (12) размещены с шагом, который является отличающимся от шага сцинтилляторных кристаллов (50).

5. Устройство по п. 1, в котором два соседних пикселя (70) из упомянутых детекторных пикселей (12) объединены так, чтобы образовать блочную структуру упомянутой матрицы детекторов.

6. Устройство по п. 1, в котором упомянутые детекторные пиксели (72) в четыре раза больше, чем упомянутые сцинтилляторные кристаллы (50), и при этом один сцинтилляторный кристалл центрирован над одним детекторным пикселем.

7. Устройство по п. 1, в котором детекторные пиксели на краях упомянутой матрицы детекторов уменьшены вдвое в размере.

8. Устройство по п. 1, дополнительно содержащее отражатель (30), обеспеченный между упомянутыми детекторными пикселями (12).

9. Способ производства пикселированного детекторного устройства, при этом упомянутый способ содержит этапы, на которых:
размещают множество детекторных пикселей (12) в матрице детекторов;
размещают множество сцинтилляторных кристаллов (50) в матрице кристаллов в геометрическом соответствии с матрицей детекторов;
сдвигают упомянутые детекторные пиксели (12) и упомянутые сцинтилляторные кристаллы (50) в по меньшей мере одном измерении по отношению друг к другу на, по существу, половину размера сцинтилляторных кристаллов (50).



 

Похожие патенты:

Способ по изобретению заключается в создании прочных тонких, механических поддерживающих структур для электромагнитного калориметра. Такими структурами являются ячеистые структуры из пропитанной эпоксидным связующим ткани из углеродного волокна. Техническим результатом, достигаемым при использовании способа по изобретению, является возможность изготовления механической структуры из углеродного волокна с высокой прочностью и точностью по толщине тонких стенок 20 мкм и плоскостности.

Изобретение относится к детектирующему устройству для фотонов или ионизирующих частиц. Детектирующее устройство для фотонов или ионизирующих частиц содержит детектирующую систему с несколькими детектирующими блоками, каждый из которых включает сцинтиллятор, соединенный со считывающей поверхностью считывателя электрического заряда, при этом сцинтиллятор выполнен с возможностью генерации ячейковых зарядов на считывающей поверхности при улавливании фотонов или ионизирующих частиц; коллиматор, присоединенный к сцинтиллятору напротив считывателя электрического заряда, выполненный с возможностью пропускания фотонов или ионизирующих частиц, имеющих направление движения, совпадающее с продольной осью коллиматора, и остановки фотонов или ионизирующих частиц (Р'), имеющих направление движения, отличающееся от направления продольной оси коллиматора; и несколько детектирующих систем, равномерно отстоящих друг от друга вокруг центральной оси детектирующей сборки, при этом детектирующее устройство сформировано в виде стопки из нескольких детектирующих сборок, каждая из которых повернута на угол вокруг центральной оси детектирующей сборки относительно соседней детектирующей сборки или соседних детектирующих сборок.

Изобретение может быть использовано в детекторах ионизирующего излучения в виде электромагнитных волн низких энергий, гамма-, рентгеновского излучения, космических лучей и частиц.

Изобретение относится к детекторам рентгеновского излучения. Сущность изобретения заключается в том, что детектор (1) рентгеновского излучения содержит: устройство (3) обнаружения света для обнаружения света (R), падающего на его поверхность (12) обнаружения; сцинтилляционный слой (5) для преобразования падающих рентгеновских лучей (Х) в свет; отражательный слой (9) для отражения света (В), формируемого в пределах сцинтилляционного слоя, по направлению к устройству обнаружения света; светоизлучающий слой (7), заключенный между сцинтилляционным слоем и отражательным слоем, причем расстояние (d) между сцинтилляционным слоем и отражательным слоем меньше 50 мкм, и при этом светоизлучающий слой содержит ОСИД (8).

Изобретение относится к системам формирования изображения на основе излученной энергии. Система детектирования для детектирования электромагнитного излучения содержит корпус двухэкранного детектора, имеющий три смежные боковые стенки, которые образуют область передней стороны, область второй стороны и область третьей стороны, стенки трех сторон соединены одна с другой под углом, так что заключают в себе объем, имеющий форму треугольной призмы, и каждая боковая стенка имеет внутреннюю поверхность; подложку, расположенную на каждой из упомянутых внутренних поверхностей первой и второй боковых стенок, причем каждая подложка дополнительно содержит активную область для приема и преобразования электромагнитного излучения в свет, образуя тем самым экраны детектора; и фотодетектор, расположенный в непосредственной близости к третьей боковой стороне, при этом упомянутый фотодетектор имеет чувствительную к свету активную область.

Изобретение относится к технологии получения сцинтилляционных монокристаллов и может быть использовано при изготовлении чувствительных элементов детекторов гамма- и рентгеновского излучения Сцинтилляционные монокристаллы La(1-m-n)HfnCemBr(3+n), где m - мольная доля замещения La церием (0,0005≤m≤0,3), n - мольная доля замещения La гафнием (0≤n≤0,015), получают из смеси бромидов металлов.

Изобретение относится к области ядерного приборостроения и может быть использовано при создании аппаратуры радиационного контроля для определения спектрометрических, радиометрических и дозиметрических параметров загрязненной среды при одновременной регистрации альфа-, бета- и гамма-излучений.

Изобретение относится к области регистрации широких атмосферных ливней (ШАЛ) на поверхности Земли и может быть использовано для исследования первичных космических лучей.

Изобретение относится к области измерения ядерных излучений, а именно к подсчету количества гамма квантов от различных источников излучения в диапазоне энергий от сотен кэВ до единиц МэВ с загрузкой до 109 имп./мин и может быть использовано для точной регистрации интенсивных потоков гамма излучения.

Изобретение относится к системе измерения данных, пригодной для КТ (компьютерной томографии) и других способов формирования изображения. Система формирования изображения содержит источник излучения, который поворачивается вокруг центральной z-оси системы формирования изображения для выполнения формирующих изображения сканирований; и матрицу неорганических фотодетекторов, включающую в себя несколько дискретных неорганических фотодетекторов, расположенных на изогнутой подложке таким образом, что каждый ряд неорганических фотодетекторов ориентирован вдоль кривой изгиба изогнутой подложки, и каждый столбец неорганических фотодетекторов ориентирован параллельно центральной z-оси системы формирования изображения, причем изогнутая подложка содержит гибкий лист и токопроводящие пути, оперативно соединяющие каждый из неорганических фотодетекторов, по меньшей мере, с одним активным электронным компонентом, расположенным на изогнутой подложке, причем токопроводящие пути расположены на дистальной поверхности изогнутой подложки, которая, по существу, противоположна поверхности подложки, на которой расположены неорганические фотодетекторы, при этом система дополнительно содержит отверстия в подложке, заполненные проводящим материалом для электрического соединения токопроводящих путей с неорганическими фотодетекторами.

Изобретение относится к области регистрации ионизирующих излучений. Спектрометрический позиционно-чувствительный детектор содержит сцинтиллятор, состоящий из трех вложенных друг в друга наборов сцинтиллирующих элементов, расположенных параллельно оси устройства, внешний и средний наборы образованы сцинтиллирующими волокнами из материала, обеспечивающего регистрацию тепловых нейтронов, а сцинтиллирующие элементы внутреннего набора образуют цилиндр и выполнены в форме одинаковых по размеру угловых секторов и обеспечивают регистрацию гамма-излучения, количество угловых секторов составляет два и более, каждый угловой сектор снабжен спектросмещающим волокном, проходящим через центр углового сектора параллельно оси устройства, сцинтиллирующие элементы среднего набора помещены внутрь нейтронного замедлителя трубчатой формы, заполняющего пространство между внешним и внутренним наборами, на внешней поверхности нейтронного замедлителя расположен экран, поглощающий тепловые нейтроны, сцинтиллирующие элементы всех наборов и спектросмещающие волокна внутреннего набора снабжены светоотражающими оболочками, на поверхность сцинтиллирующих элементов нанесено светонепроницаемое покрытие, противоположные торцы каждого сцинтиллирующего элемента внешнего и среднего наборов, а также противоположные торцы каждого спектросмещающего волокна внутреннего набора соединены посредством оптических соединителей с двумя волоконными световодами, находящимися с противоположной стороны в оптическом контакте с двумя матричными фотоприемниками, число фоточувствительных элементов в каждом из которых равно или больше числа сцинтиллирующих элементов. Технический результат - одновременная регистрация тепловых, эпитепловых нейтронов, а также гамма-излучения в одном месте на оси скважинного устройства. 1 ил.

Изобретение относится к области регистрации ионизирующих излучений и может быть использовано при создании радиационных детекторов, применяемых в геофизической аппаратуре нейтрон-гамма и гамма-гамма каротажа. Сущность изобретения заключается в том, что спектрозональный позиционно-чувствительный детектор гамма-излучения содержит сцинтиллятор, находящийся в оптическом контакте с фотоприемником, при этом сцинтиллятор состоит из двух или более вложенных друг в друга цилиндрических наборов волоконных сцинтиллирующих элементов, разделенных цилиндрическими фильтрами рентгеновского или гамма-излучения, в каждом цилиндрическом наборе волоконные сцинтиллирующие элементы расположены параллельно оси устройства, снабжены светоотражающими оболочками и светонепроницаемыми покрытиями, противоположные торцы волоконных сцинтиллирующих элементов соединены посредством оптических соединителей с двумя волоконными световодами, находящимися с противоположной стороны в оптическом контакте с двумя матричными фотоприемниками, число фоточувствительных элементов в каждом из которых равно или больше числа волоконных сцинтиллирующих элементов. Технический результат - повышение углового разрешения при определении азимутального распределения гамма-излучения в плоскости, перпендикулярной оси корпуса устройства. 1 ил.

Изобретение относится к области детектирования частиц ионизирующего излучения. Сцинтилляционный радиационно-стойкий детектор представляет собой рабочий объем с зеркально или диффузно отражающими стенками, внутри которого плотно к стенкам размещен полистирольный сцинтиллятор в виде пластины с канавками на фронтальной поверхности или отверстиями в пластине, через которые проходят спектросмещающие волокна, один или оба торца которых пристыкованы к фоточувствительным поверхностям фотоприемников, расположенных внутри или вне рабочего объема, при этом сцинтиллятор и спектросмещающие волокна, размещенные в рабочем объеме детектора, содержат соответственно сцинтилляционные и спектросмещающие добавки, высвечивающие в области длин волн более 550 нм. Технический результат - упрощение технологии изготовления сцинтилляционных детекторов при одновременном улучшении их характеристик. 1 з.п. ф-лы, 3 ил.

Изобретение может быть использовано в медицине и технике при изготовлении рентгеновских устройств с энергией излучения более 20 кэВ для диагностики и дефектоскопии. Рентгенолюминофор имеет химическую формулу (Gd1-x-yTbxHfy)2O2-z(ΣHal)zS, где ΣHal=F1- и Cll-, F1- и Br1- или F1- и J1-, 0,01<х≤0,2; 0,001<у<0,1; 0,001<z≤0,1. Пикселированный экран имеет многоэлементное покрытие из элементов квадратной формы со стороной не более 55 мкм и высотой не более 30 мкм на основе указанного рентгенолюминофора. В качестве разделительного слоя экран содержит сетку из оксида гадолиния со свободным сечением свыше 60%, которая соприкасается с многоэлементным покрытием. Указанные элементы сформированы на зеркальном покрытии несущей пластины из поликарбоната толщиной 1,5 мм. На поверхности пикселированного слоя в оптическом контакте с каждым его элементом закреплена матрица кремниевых фотодиодов. Рентгенолюминофор негигроскопичен, устойчив к воздействию атмосферы, имеет высокую спектральную яркость и переменную длительность послесвечения. 2 н. и 3 з.п. ф-лы, 3 ил.

Изобретение относится к области ядерного приборостроения и может быть использовано при радиационном мониторинге в качестве носимого средства поиска источника гамма-излучения. Устройство для определения направления на источник гамма-излучения по двум координатам в телесном угле 2π стерадиан содержит видеокамеру, корпус, защитный экран, детекторную сборку из четырех сцинтилляционных счетчиков, преобразователь высоковольтный, контроллер, дисплей, модуль согласования и блок аккумуляторный. Выходы четырехканального преобразователя высоковольтного, обеспечивающего электропитание сцинтилляционных счетчиков, подключены к четырем входам детекторной сборки. Четыре выхода детекторной сборки подключены к аналоговым входам четырехканального контроллера. Четыре аналоговых выхода контроллера подключены к входам преобразователя высоковольтного для установки его выходных напряжений. Выход контроллера подключен к входу модуля согласования для передачи накопленной счетчиками информации. Модуль согласования подключен к входу дисплея и выходу видеокамеры и управляет их работой. Питание устройства осуществляется от блока аккумуляторного, выходы которого подключены к входу модуля согласования и входу преобразователя высоковольтного. Все компоненты устройства размещены в одном корпусе. Технический результат - увеличение диапазона измерения направления на источник излучения по двум координатам до телесного угла 2π стерадиан (вся передняя полусфера) и уменьшение веса устройства. 5 ил.

Изобретение относится к детектору излучения для детектирования фотонов высокой энергии. Детектор излучения для детектирования излучения высокой энергии содержит: сцинтилляторную группу с двумя сцинтилляторными элементами для преобразования первичных фотонов падающего излучения во вторичные фотоны согласно характеристическому спектру испускания, причем верхний из сцинтилляторных элементов расположен наверху, а нижний из сцинтилляторных элементов расположен внизу детектора излучения; два органических фотодетектора для преобразования упомянутых вторичных фотонов в электрические сигналы, причем упомянутые фотодетекторы обладают различными спектрами поглощения без перекрытия и могут быть считаны по отдельности, при этом упомянутые фотодетекторы расположены под верхним сцинтилляторным элементом и над нижним сцинтилляторным элементом соответственно. Технический результат - повышение пространственного разрешения детектора излучения. 2 н. и 10 з.п. ф-лы, 2 ил.
Наверх