Спектрозональный позиционно-чувствительный детектор гамма-излучения


 


Владельцы патента RU 2574415:

Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт автоматики им. Н.Л. Духова" (ФГУП "ВНИИА") (RU)

Изобретение относится к области регистрации ионизирующих излучений и может быть использовано при создании радиационных детекторов, применяемых в геофизической аппаратуре нейтрон-гамма и гамма-гамма каротажа. Сущность изобретения заключается в том, что спектрозональный позиционно-чувствительный детектор гамма-излучения содержит сцинтиллятор, находящийся в оптическом контакте с фотоприемником, при этом сцинтиллятор состоит из двух или более вложенных друг в друга цилиндрических наборов волоконных сцинтиллирующих элементов, разделенных цилиндрическими фильтрами рентгеновского или гамма-излучения, в каждом цилиндрическом наборе волоконные сцинтиллирующие элементы расположены параллельно оси устройства, снабжены светоотражающими оболочками и светонепроницаемыми покрытиями, противоположные торцы волоконных сцинтиллирующих элементов соединены посредством оптических соединителей с двумя волоконными световодами, находящимися с противоположной стороны в оптическом контакте с двумя матричными фотоприемниками, число фоточувствительных элементов в каждом из которых равно или больше числа волоконных сцинтиллирующих элементов. Технический результат - повышение углового разрешения при определении азимутального распределения гамма-излучения в плоскости, перпендикулярной оси корпуса устройства. 1 ил.

 

Изобретение относится к области регистрации ионизирующих излучений и может быть использовано при создании радиационных детекторов, применяемых в геофизической аппаратуре нейтрон-гамма и гамма-гамма каротажа для определения пространственного и энергетического распределения гамма-излучения, поступающего из скважины.

В настоящее время для детальных геологических исследований, проводимых в скважинах, широко используются ядерно-физические методы. К ним относятся, в частности, методы нейтронного каротажа, основанные на применении в качестве источника зондирующего излучения нейтронных источников: ампульных или нейтронных генераторов, излучающих быстрые нейтроны. При этом нейтронные генераторы могут быть непрерывного действия или импульсными.

К наиболее информативным методам нейтронного каротажа относится метод импульсного нейтронного каротажа (ИНК), сущность которого заключается в следующем.

В скважину спускают нейтронный генератор, который периодически в течение коротких (несколько мкс) интервалов времени облучает породу вокруг скважины потоком быстрых нейтронов с энергией 14 МэВ. Эти нейтроны распространяются в исследуемой породе практически изотропно, претерпевая при этом упругие и неупругие рассеяния на атомных ядрах породы.

Другим широко применяемым ядерно-физическим методом является гамма-гамма каротаж (ГГК). В случае ГГК среда внутри скважины облучается гамма-квантами изотопного источника, в качестве которого обычно используется Cs-137, и регистрируется обратно рассеянное излучение.

Результаты измерения зависят от количества детекторов, расстояния между ними и источником излучения, положения скважинного прибора относительно стенок скважины. Применение большого количества детекторов в скважинной аппаратуре практически не осуществимо. Выходом из положения в данном случае является применение позиционно-чувствительного детектора. Для коррекции данных с учетом произвольного положения скважинного прибора в скважине необходимо, чтобы этот детектор обладал также избирательностью по направлению прихода излучения. Спектральная избирательность детектора дает дополнительную информацию о плотности среды и эффективном заряде ее атомов.

Известен «Скважинный позиционно-чувствительный счетчик гамма-излучения», состоящий из корпуса-катода, по оси симметрии которого на опорных изоляторах размещен анод, выполненный в виде нити с жестко закрепленными на ней перегородками в виде стеклянных бусинок диаметром не менее 1 мм, которые разделяют анодную нить на участки-секции. Патент RU 2152105, МПК G01T 1/18, G01V 5/06. 2000 г. Аналог.

Недостатками аналога является невозможность определить направление, под которым излучение приходит на детектор в плоскости, перпендикулярной оси корпуса-катода (отсутствие азимутального углового разрешения), отсутствие спектральной избирательности.

Известны "Метод и аппаратура для нейтронного каротажа, использующая позиционно-чувствительный нейтронный детектор», который содержит сцинтиллятор с осью, параллельной оси корпуса прибора, и фотоумножители на противоположных концах сцинтиллятора, каждый фотоумножитель подключен к соответствующему амплитудному анализатору и через него - к контроллеру, служащему для определения осевого положения зарегистрированного нейтрона по отношению амплитуд оптических сигналов, зарегистрированных фотоумножителями. Патент СА 2798070, МПК G01V 5/10. 2011 г. Аналог.

Недостатком аналога является невозможность определить направление, под которым излучение приходит на детектор в плоскости, перпендикулярной оси корпуса прибора (отсутствие азимутального углового разрешения).

Известны «Азимутально-чувствительные гамма-детекторы», включающие сцинтиллятор, форма которого обеспечивает азимутальную чувствительность относительно оси скважины, или множество сцинтилляторов, разделенных отражающим материалом, помещенном между сцинтилляторами, каждый сцинтиллятор находится в оптическом контакте с фотодетектором. Заявка Норвегии NO 20120033, МПК: G01V 5/10, 2012. Прототип.

Недостатком прототипа является низкое угловое разрешение при определении азимутального распределения гамма-излучения в плоскости, перпендикулярной оси корпуса устройства, обусловленное низким угловым разрешением функций отклика устройств, основанных на применении защитного экрана/коллиматора или сцинтиллятора нецилидрической формы.

Техническим результатом изобретения является повышение углового разрешения при определении азимутального распределения гамма-излучения в плоскости, перпендикулярной оси корпуса устройства.

Технический результат достигается тем, что в спектрозональном позиционно-чувствительном детекторе гамма-излучения, содержащем сцинтиллятор, находящийся в оптическом контакте с фотоприемником, сцинтиллятор состоит из двух или более вложенных друг в друга цилиндрических наборов волоконных сцинтиллирующих элементов, разделенных цилиндрическими фильтрами рентгеновского или гамма-излучения, в каждом цилиндрическом наборе волоконные сцинтиллирующие элементы расположены параллельно оси устройства, снабжены светоотражающими оболочками и светонепроницаемыми покрытиями, противоположные торцы волоконных сцинтиллирующих элементов соединены посредством оптических соединителей с двумя волоконными световодами, находящимися с противоположной стороны в оптическом контакте с двумя матричными фотоприемниками, число фоточувствительных элементов в каждом из которых равно или больше числа волоконных сцинтиллирующих элементов.

Устройство детектора схематично показано на чертеже. Справа показано поперечное сечение детектора в частном случае применения трех цилиндрических наборов волоконных сцинтиллирующих элементов и двух цилиндрических фильтров рентгеновского или гамма-излучения, где:

1, 5, 6 - внешний, средний и внутренний соответственно цилиндрические наборы волоконных сцинтиллирующих элементов;

2 - волоконные световоды;

3 - матричные фотоприемники;

4 - оптические соединители;

7 - цилиндрические фильтры из материалов, ослабляющих рентгеновское и/или гамма-излучение.

Устройство содержит: цилиндрические наборы 1, 5 и 6 волоконных сцинтиллирующих элементов, цилиндрические фильтры 7, оптические соединители 4, волоконные световоды 2 и матричные фотоприемники 3, каждый из которых состоит из набора фоточувствительных элементов (на чертеже не показаны).

В каждом из цилиндрических наборов 1, 5 и 6 волоконные сцинтиллирующие элементы располагаются параллельно оси прибора на одном расстоянии от нее и изготавливаются из материала, обеспечивающего регистрацию рентгеновского или гамма-излучения. Для этого могут применяться волоконные или матричные сцинтилляторы, например, из иодистого натрия, пластмассового сцинтиллятора с добавками тяжелых металлов.

Угловое разрешение устройства определяется отношением поперечного сечения волоконного сцинтиллирующего элемента к радиусу цилиндрического набора, в котором этот элемент находится. В том случае, когда это отношение различно для различных цилиндрических наборов, берется его наибольшее значение.

Диаметр генератора нейтронов, применяемого в скважинном устройстве, составляет обычно не более 34 мм, а внутренний диаметр корпуса скважинного устройства составляет не менее 80 мм. При диаметре волоконного сцинтиллирующего элемента, составляющем 1 мм (диаметр обычно применяемых сцинтилляторов составляет порядка 1 см), и радиусе окружности, например, 20 мм (для внутреннего цилиндрического набора 6) угловое разрешение составляет 1/20 радиана или менее 3°.

В настоящее время изготавливаются волоконные сцинтиллирующие элементы различного поперечного сечения: круглые, квадратные и прямоугольные. Размер поперечного сечения обычно не превышает нескольких миллиметров и может быть одинаковым или разным в цилиндрических наборах разного диаметра. Размер поперечного сечения волоконных сцинтиллирующих элементов в цилиндрических наборах выбирается исходя из требуемого углового разрешения устройства, которое определяется отношением поперечного сечения волоконного сцинтиллирующего элемента к радиусу цилиндрического набора.

Максимальная длина волоконного сцинтиллирующего элемента определяется длиной ослабления в нем света, испускаемого во время сцинтилляционной вспышки, и может достигать при применении пластмассового сцинтиллятора нескольких метров.

Для улучшения светосбора и увеличения доли света, переносимого на торцы волоконного сцинтиллирующего элемента, поверхность элемента покрывают светоотражающим покрытием с меньшим, чем у волокна, коэффициентом преломления (одно- и двухслойные), либо выращивают волокна с заданным радиальным градиентом состава (Н.В. Классен, В.Н. Курлов, С.Н. Россоленко, О.А. Кривко, А.Д. Орлов, С.З. Шмурак. Сцинтилляционные волокна и наносцинтилляторы для улучшения пространственного, спектрометрического и временного разрешения радиационных детекторов. Известия РАН. Серия Физическая, 2009, том 73, №10, с. 1451-1456; Патент РФ №2411543, MПK: G01T 1/20, 2008 г.).

Для предотвращения попадания света от сцинтилляционной вспышки, возникшей в волоконном сцинтиллирующем элементе, в соседние элементы поверхность элемента покрыта также светонепроницаемым тонким покрытием, например, из алюминия, двуокиси титана, окиси магния. Толщина покрытия, обеспечивающая полное поглощение света, составляет не более 1 мкм.

Противоположные торцы каждого волоконного сцинтиллирующего элемента соединены с помощью оптических соединителей 4 с волоконными световодами 2 с оптическим контактом. Оптические соединители 4 обеспечивают механическую связь торцов волоконного сцинтиллирующего элемента с торцами волоконных световодов 2. Поперечное сечение волоконных световодов 2 обычно равно или больше поперечного сечения волоконного сцинтиллирующего элемента для того, чтобы уменьшить потери света в месте сопряжения торцов волоконного сцинтиллирующего элемента и волоконных световодов 2. Волоконные световоды 2 изготавливаются обычно из стекла или пластмассы со светоотражающими и светопоглощающими покрытиями, выполняющими ту же роль, что и в случае волоконных сцинтиллирующих элементов. Торцы каждого из волоконных световодов 2 соединены с оптическим контактом с матричными фотоприемниками 3, состоящими из набора фоточувствительных элементах (на чертеже не показаны).

Матричные фотоприемники 3 содержат фоточувствительные элементы, в качестве которых быть использоваться фотодиоды, например кремниевые фотоумножители или элементы двухкоординатных фотоумножителей. Общее число фоточувствительных элементов в каждом матричном фотоприемнике 3 должно быть не меньше числа волоконных сцинтиллирующих элементов во всех цилиндрических наборах.

Фоточувствительные элементы матричных фотоприемников 3 и волоконные сцинтиллирующие элементы, входящие в наборы 1, 5, 6, заранее пронумерованы. Также заранее определено, к каким двум фоточувствительным элементам двух противоположно установленных матричных фотоприемников приходят фотоны от того или иного волоконного сцинтиллирующего элемента.

Фильтры рентгеновского или гамма-излучения 7 применяются для поглощения части спектра падающего на них излучения. Фильтры обычно изготавливают из алюминия, меди, свинца, вольфрама, других металлов (Г.Х. Салахутдинов. «Методы диагностики рентгеновского излучения плазмы сцинтилляционными и трековыми детекторами». Дисс. на соискание степени д. ф.-м. н., 2010 г.). Толщина фильтра между двумя цилиндрическими наборами волоконных сцинтиллирующих элементов зависит от спектра падающего излучения.

Количество цилиндрических наборов также зависит от спектра падающего излучения и количества энергетических окон, в которых восстанавливается спектр излучения, конструктивной возможности размещения.

Устройство работает следующим образом.

На детектор падает рентгеновское или гамма-излучение, выходящие из стенок скважины. Интенсивность этих излучений имеет осевое и азимутальное распределение. Осевое распределение связано со слоевой структурой породы, окружающей скважину. Азимутальное распределение вызвано, в основном, несимметричным положением скважинного устройства по отношению к скважине.

Рентгеновские или гамма-кванты, попавшие в волоконные сцинтиллирующие элементы внешнего цилиндрического набора 1, поглощаются в них, вызывая сцинтилляционные вспышки. Те кванты, которые прошли через волоконные сцинтиллирующие элементы внешнего цилиндрического набора 1, не поглотившись, поступают на цилиндрический фильтр 7, расположенный между наборами 1 и 5, и частично поглощаются в нем.

В элементах набора 1 и в фильтре 7 поглощаются в первую очередь кванты, энергия которых находится в нижней части энергетического спектра, и поэтому более эффективно испытывающие фотопоглощение. Вследствие этого на волоконные сцинтиллирующие элементы среднего цилиндрического набора 5 падает более «жесткая» часть спектра излучения. Таким образом, волоконные сцинтиллирующие элементы цилиндрического набора 1 облучаются всем спектром излучения, а цилиндрических наборов 5 и 6 - частями спектра, характеризующимися все более высокой средней энергией квантов. Интенсивность излучения, регистрируемого волоконными сцинтиллирующими элементами цилиндрических наборов 1, 5 и 6, оказывается пропорциональной интенсивности излучения в соответствующих частях спектра исходного излучения.

Фотоны от сцинтилляционных вспышек, возникших в волоконных сцинтиллирующих элементах цилиндрических наборов 1, 5 и 6, с помощью светоотражающей оболочки транспортируются к их торцам.

Светопоглощающее покрытие, нанесенное на волоконные сцинтиллирующие элементы цилиндрических наборов 1, 5 и 6, препятствует прохождению сцинтилляционных фотонов из одного элемента в другой, предотвращая связанное с этим прохождением ухудшение пространственного разрешения.

Фотоны, дошедшие до торцов волоконных сцинтиллирующих элементов цилиндрических наборов 1, 5 и 6, через оптические соединители 4, соединенные с оптическим контактом с волоконными световодами 2, переносятся по ним на фоточувствительные элементы матричных фотоприемников 3, где и регистрируются, вызывая электрический сигнал.

При регистрации электрический сигнал, поступивший с разных концов волоконного сцинтиллирующего элемента, анализируется. По соотношению амплитуд сигналов с противоположных концов волоконного сцинтиллирующего элемента определяется осевая координата взаимодействия излучения. Точность определения осевой координаты составляет порядка 1 см (В.Н. Дубинина, В.Е. Ковтун. «Концепция радиационного портального монитора нового поколения», Вестник Харьковского университета №845 (2009) 108-121; патент РФ №2351954, МПК: G01T 3/06, 2009 г.).

По интенсивности сигналов, поступивших с волоконных сцинтиллирующих элементов, расположенных при различных азимутальных углах по отношению к оси скважинного устройства, определяется азимутальное распределение поступившего излучения, которое в предположении однородности породы вокруг скважины используется для определения положения скважинного устройства по отношению к скважине, а также для коррекции интенсивности сигналов (заявка на патент US 2013/0187035, МПК: G01V 5/08, G01V 5/10, 2013 г.), поступивших с различных волоконных сцинтиллирующих элементов, с учетом найденного положения.

По отношению сигналов, полученных с различных цилиндрических наборов, с учетом положения скважинного устройства относительно оси скважины определяется спектр падающего на устройства излучения, например, методом, описанным в работе: V. Mikerov, A. Koshelev, А. Sviridov, D. Yurkov. A Scintillation Multi-Energy Sensor for X-Rays - Conceptual Study, IEEE Transactions on Nuclear Science, Vol.: 60, Issue: 2, 2013 г.

Спектрозональный позиционно-чувствительный детектор гамма-излучения, содержащий сцинтиллятор, находящийся в оптическом контакте с фотоприемником, отличающийся тем, что сцинтиллятор состоит из двух или более вложенных друг в друга цилиндрических наборов волоконных сцинтиллирующих элементов, разделенных цилиндрическими фильтрами рентгеновского или гамма-излучения, в каждом цилиндрическом наборе волоконные сцинтиллирующие элементы расположены параллельно оси устройства, снабжены светоотражающими оболочками и светонепроницаемыми покрытиями, противоположные торцы волоконных сцинтиллирующих элементов соединены посредством оптических соединителей с двумя волоконными световодами, находящимися с противоположной стороны в оптическом контакте с двумя матричными фотоприемниками, число фоточувствительных элементов в каждом из которых равно или больше числа волоконных сцинтиллирующих элементов.



 

Похожие патенты:

Изобретение относится к области регистрации ионизирующих излучений. Спектрометрический позиционно-чувствительный детектор содержит сцинтиллятор, состоящий из трех вложенных друг в друга наборов сцинтиллирующих элементов, расположенных параллельно оси устройства, внешний и средний наборы образованы сцинтиллирующими волокнами из материала, обеспечивающего регистрацию тепловых нейтронов, а сцинтиллирующие элементы внутреннего набора образуют цилиндр и выполнены в форме одинаковых по размеру угловых секторов и обеспечивают регистрацию гамма-излучения, количество угловых секторов составляет два и более, каждый угловой сектор снабжен спектросмещающим волокном, проходящим через центр углового сектора параллельно оси устройства, сцинтиллирующие элементы среднего набора помещены внутрь нейтронного замедлителя трубчатой формы, заполняющего пространство между внешним и внутренним наборами, на внешней поверхности нейтронного замедлителя расположен экран, поглощающий тепловые нейтроны, сцинтиллирующие элементы всех наборов и спектросмещающие волокна внутреннего набора снабжены светоотражающими оболочками, на поверхность сцинтиллирующих элементов нанесено светонепроницаемое покрытие, противоположные торцы каждого сцинтиллирующего элемента внешнего и среднего наборов, а также противоположные торцы каждого спектросмещающего волокна внутреннего набора соединены посредством оптических соединителей с двумя волоконными световодами, находящимися с противоположной стороны в оптическом контакте с двумя матричными фотоприемниками, число фоточувствительных элементов в каждом из которых равно или больше числа сцинтиллирующих элементов.

Изобретение относится к пикселированному детектору. Пикселированное детекторное устройство содержит матрицу детекторов, имеющую множество детекторных пикселей; и матрицу кристаллов, имеющую множество сцинтилляторных кристаллов и расположенную в геометрическом соответствии с матрицей детекторов; при этом упомянутые детекторные пиксели и упомянутые сцинтилляторные кристаллы сдвинуты в по меньшей мере одном измерении по отношению друг к другу на, по существу, половину размера сцинтилляторных кристаллов.

Способ по изобретению заключается в создании прочных тонких, механических поддерживающих структур для электромагнитного калориметра. Такими структурами являются ячеистые структуры из пропитанной эпоксидным связующим ткани из углеродного волокна. Техническим результатом, достигаемым при использовании способа по изобретению, является возможность изготовления механической структуры из углеродного волокна с высокой прочностью и точностью по толщине тонких стенок 20 мкм и плоскостности.

Изобретение относится к детектирующему устройству для фотонов или ионизирующих частиц. Детектирующее устройство для фотонов или ионизирующих частиц содержит детектирующую систему с несколькими детектирующими блоками, каждый из которых включает сцинтиллятор, соединенный со считывающей поверхностью считывателя электрического заряда, при этом сцинтиллятор выполнен с возможностью генерации ячейковых зарядов на считывающей поверхности при улавливании фотонов или ионизирующих частиц; коллиматор, присоединенный к сцинтиллятору напротив считывателя электрического заряда, выполненный с возможностью пропускания фотонов или ионизирующих частиц, имеющих направление движения, совпадающее с продольной осью коллиматора, и остановки фотонов или ионизирующих частиц (Р'), имеющих направление движения, отличающееся от направления продольной оси коллиматора; и несколько детектирующих систем, равномерно отстоящих друг от друга вокруг центральной оси детектирующей сборки, при этом детектирующее устройство сформировано в виде стопки из нескольких детектирующих сборок, каждая из которых повернута на угол вокруг центральной оси детектирующей сборки относительно соседней детектирующей сборки или соседних детектирующих сборок.

Изобретение может быть использовано в детекторах ионизирующего излучения в виде электромагнитных волн низких энергий, гамма-, рентгеновского излучения, космических лучей и частиц.

Изобретение относится к детекторам рентгеновского излучения. Сущность изобретения заключается в том, что детектор (1) рентгеновского излучения содержит: устройство (3) обнаружения света для обнаружения света (R), падающего на его поверхность (12) обнаружения; сцинтилляционный слой (5) для преобразования падающих рентгеновских лучей (Х) в свет; отражательный слой (9) для отражения света (В), формируемого в пределах сцинтилляционного слоя, по направлению к устройству обнаружения света; светоизлучающий слой (7), заключенный между сцинтилляционным слоем и отражательным слоем, причем расстояние (d) между сцинтилляционным слоем и отражательным слоем меньше 50 мкм, и при этом светоизлучающий слой содержит ОСИД (8).

Изобретение относится к системам формирования изображения на основе излученной энергии. Система детектирования для детектирования электромагнитного излучения содержит корпус двухэкранного детектора, имеющий три смежные боковые стенки, которые образуют область передней стороны, область второй стороны и область третьей стороны, стенки трех сторон соединены одна с другой под углом, так что заключают в себе объем, имеющий форму треугольной призмы, и каждая боковая стенка имеет внутреннюю поверхность; подложку, расположенную на каждой из упомянутых внутренних поверхностей первой и второй боковых стенок, причем каждая подложка дополнительно содержит активную область для приема и преобразования электромагнитного излучения в свет, образуя тем самым экраны детектора; и фотодетектор, расположенный в непосредственной близости к третьей боковой стороне, при этом упомянутый фотодетектор имеет чувствительную к свету активную область.

Изобретение относится к технологии получения сцинтилляционных монокристаллов и может быть использовано при изготовлении чувствительных элементов детекторов гамма- и рентгеновского излучения Сцинтилляционные монокристаллы La(1-m-n)HfnCemBr(3+n), где m - мольная доля замещения La церием (0,0005≤m≤0,3), n - мольная доля замещения La гафнием (0≤n≤0,015), получают из смеси бромидов металлов.

Изобретение относится к области ядерного приборостроения и может быть использовано при создании аппаратуры радиационного контроля для определения спектрометрических, радиометрических и дозиметрических параметров загрязненной среды при одновременной регистрации альфа-, бета- и гамма-излучений.

Изобретение относится к области регистрации широких атмосферных ливней (ШАЛ) на поверхности Земли и может быть использовано для исследования первичных космических лучей.

Изобретение относится к области детектирования частиц ионизирующего излучения. Сцинтилляционный радиационно-стойкий детектор представляет собой рабочий объем с зеркально или диффузно отражающими стенками, внутри которого плотно к стенкам размещен полистирольный сцинтиллятор в виде пластины с канавками на фронтальной поверхности или отверстиями в пластине, через которые проходят спектросмещающие волокна, один или оба торца которых пристыкованы к фоточувствительным поверхностям фотоприемников, расположенных внутри или вне рабочего объема, при этом сцинтиллятор и спектросмещающие волокна, размещенные в рабочем объеме детектора, содержат соответственно сцинтилляционные и спектросмещающие добавки, высвечивающие в области длин волн более 550 нм. Технический результат - упрощение технологии изготовления сцинтилляционных детекторов при одновременном улучшении их характеристик. 1 з.п. ф-лы, 3 ил.

Изобретение может быть использовано в медицине и технике при изготовлении рентгеновских устройств с энергией излучения более 20 кэВ для диагностики и дефектоскопии. Рентгенолюминофор имеет химическую формулу (Gd1-x-yTbxHfy)2O2-z(ΣHal)zS, где ΣHal=F1- и Cll-, F1- и Br1- или F1- и J1-, 0,01<х≤0,2; 0,001<у<0,1; 0,001<z≤0,1. Пикселированный экран имеет многоэлементное покрытие из элементов квадратной формы со стороной не более 55 мкм и высотой не более 30 мкм на основе указанного рентгенолюминофора. В качестве разделительного слоя экран содержит сетку из оксида гадолиния со свободным сечением свыше 60%, которая соприкасается с многоэлементным покрытием. Указанные элементы сформированы на зеркальном покрытии несущей пластины из поликарбоната толщиной 1,5 мм. На поверхности пикселированного слоя в оптическом контакте с каждым его элементом закреплена матрица кремниевых фотодиодов. Рентгенолюминофор негигроскопичен, устойчив к воздействию атмосферы, имеет высокую спектральную яркость и переменную длительность послесвечения. 2 н. и 3 з.п. ф-лы, 3 ил.

Изобретение относится к области ядерного приборостроения и может быть использовано при радиационном мониторинге в качестве носимого средства поиска источника гамма-излучения. Устройство для определения направления на источник гамма-излучения по двум координатам в телесном угле 2π стерадиан содержит видеокамеру, корпус, защитный экран, детекторную сборку из четырех сцинтилляционных счетчиков, преобразователь высоковольтный, контроллер, дисплей, модуль согласования и блок аккумуляторный. Выходы четырехканального преобразователя высоковольтного, обеспечивающего электропитание сцинтилляционных счетчиков, подключены к четырем входам детекторной сборки. Четыре выхода детекторной сборки подключены к аналоговым входам четырехканального контроллера. Четыре аналоговых выхода контроллера подключены к входам преобразователя высоковольтного для установки его выходных напряжений. Выход контроллера подключен к входу модуля согласования для передачи накопленной счетчиками информации. Модуль согласования подключен к входу дисплея и выходу видеокамеры и управляет их работой. Питание устройства осуществляется от блока аккумуляторного, выходы которого подключены к входу модуля согласования и входу преобразователя высоковольтного. Все компоненты устройства размещены в одном корпусе. Технический результат - увеличение диапазона измерения направления на источник излучения по двум координатам до телесного угла 2π стерадиан (вся передняя полусфера) и уменьшение веса устройства. 5 ил.

Изобретение относится к детектору излучения для детектирования фотонов высокой энергии. Детектор излучения для детектирования излучения высокой энергии содержит: сцинтилляторную группу с двумя сцинтилляторными элементами для преобразования первичных фотонов падающего излучения во вторичные фотоны согласно характеристическому спектру испускания, причем верхний из сцинтилляторных элементов расположен наверху, а нижний из сцинтилляторных элементов расположен внизу детектора излучения; два органических фотодетектора для преобразования упомянутых вторичных фотонов в электрические сигналы, причем упомянутые фотодетекторы обладают различными спектрами поглощения без перекрытия и могут быть считаны по отдельности, при этом упомянутые фотодетекторы расположены под верхним сцинтилляторным элементом и над нижним сцинтилляторным элементом соответственно. Технический результат - повышение пространственного разрешения детектора излучения. 2 н. и 10 з.п. ф-лы, 2 ил.
Наверх