Наглядное пособие для демонстрации принципа работы одиночного тросового молниеотвода



Наглядное пособие для демонстрации принципа работы одиночного тросового молниеотвода

 


Владельцы патента RU 2567696:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Кубанский государственный аграрный университет" (RU)

Изобретение относится к области образования и наглядных учебных пособий, в частности, к наглядным пособиям для демонстрации принципа работы одиночного тросового молниеотвода. Для повышения качества обучения за счет улучшения наглядности принципа работы и определения высоты одиночного тросового молниеотвода модель молниеотвода включает две вертикальные телескопические оси одинаковой высоты, вершины которых связаны горизонтальной нитью, а модель зоны защиты содержит две плоские грани и два полуконуса, вертикальные оси которых совпадают с осями телескопических стержней и находятся на расстоянии S друг от друга, а плоскости граней являются общими касательными к полуконусам и пересекаются по горизонтальной прямой, проходящей через вершины конусов. 1 ил.

 

Изобретение относится к области наглядных пособий, в частности к наглядным пособиям для демонстрации принципа работы одиночного тросового молниеотвода, а также для изучения факторов, влияющих на высоту молниеотвода, и для экспериментального определения высоты молниеотвода методом физического моделирования.

Известно наглядное пособие для демонстрации принципа работы одиночного стержневого молниеотвода, которое представляет собой словесное (вербальное) описание (Политехнический словарь. - М.: Советская энциклопедия, 1977. С. 297). Такое пособие позволяет обучающимся понять назначение молниеотвода, но не позволяет освоить принцип определения высоты молниеотвода.

Известно наглядное пособие для демонстрации принципа работы молниеотвода, включающее модели защищаемого сооружения, молниеотвода и зоны защиты. Причем модели защищаемого сооружения, молниеотвода и зоны защиты выполнены в виде плоской расчетной схемы (Инструкция по устройству молниезащиты зданий, сооружений и промышленных коммуникаций. СО 153-34.21.122-2003. Утверждена Приказом Министерства энергетики России от 30 июня 2003 г. №280. П. 3.3.2.2., рис. 3.2.). Однако расчетная схема и формулы не обеспечивают необходимой наглядности, что влечет ухудшение качества обучения.

Наиболее близким по технической сущности к изобретению является наглядное пособие для демонстрации принципа работы молниеотвода, включающее трехмерные модели защищаемого сооружения, молниеотвода с телескопическими стержнями, и зоны защиты, выполненной в виде полой тонкостенной фигуры (Заявка на изобретение 2013120444/12(030257) от 30.04.2013). Такое пособие позволяет наглядно продемонстрировать обучающимся принцип определения требуемой высоты одиночного стержневого молниеотвода, но не позволяет наглядно продемонстрировать обучающимся принцип определения высоты одиночного тросового молниеотвода. Это приводит к снижению качества обучения в результате плохой наглядности.

Техническим решением задачи является повышение качества обучения за счет улучшения наглядности принципа работы и определения высоты одиночного тросового молниеотвода.

Указанный технический результат достигается тем, что в известном наглядном пособии для демонстрации принципа работы одиночного стержневого молниеотвода, включающем трехмерные модели защищаемого сооружения, молниеотвода с телескопическими стержнями и зоны защиты, выполненной в виде полой тонкостенной фигуры, согласно изобретению, модель молниеотвода включает две вертикальные телескопические оси одинаковой высоты, вершины которых связаны горизонтальной нитью, а модель зоны защиты содержит две плоские грани и два полуконуса, вертикальные оси которых совпадают с осями телескопических стержней и находятся на расстоянии S друг от друга, а плоскости граней являются общими касательными к полуконусам и пересекаются по горизонтальной прямой, проходящей через вершины конусов.

Новизну авторы и заявитель усматривают в том, что модель молниеотвода включает две вертикальные телескопические оси одинаковой высоты, вершины которых связаны горизонтальной нитью, а модель зоны защиты содержит две плоские грани и два полуконуса, вертикальные оси которых совпадают с осями телескопических стержней и находятся на расстоянии S друг от друга, а плоскости граней являются общими касательными к полуконусам и пересекаются по горизонтальной прямой, проходящей через вершины конусов.

Заявленное решение не следует явным образом из уровня техники, что позволяет сделать вывод о соответствии данного решения критерию "изобретательский уровень".

Данное техническое решение может быть использовано в учебном процессе, при обучении студентов и специалистов правилам определения высоты тросового молниеотвода с заданным местом его установки для конкретного защищаемого объекта, что позволяет сделать вывод о соответствии решения критерию "промышленная применимость".

Сущность изобретения поясняется чертежом, где на фиг. 1 приведена схема предлагаемого наглядного пособия.

Наглядное пособие включает трехмерный макет защищаемого объекта 1 в масштабе µ, расположенный на горизонтальной поверхности 2. На поверхности 2 находятся точки 3 и 3а установки молниеотвода, модель которого включает две вертикальные телескопические оси 4 и 4а одинаковой высоты h, вершины которых связаны горизонтальной нитью 5, а модель зоны защиты содержит две плоские грани 6 и 6а и два полуконуса 7 и 7а, вертикальные оси которых совпадают с осями телескопических стержней 4 и 4а и находятся на расстоянии S друг от друга, а плоскости граней 6 и 6а являются общими касательными к полуконусам 7 и 7а и пересекаются по горизонтальной прямой АВ, проходящей через вершины конусов 7 и 7а. При этом углы α при вершинах конусов 7 и 7а равны друг другу и находятся в диапазоне 41-55°. Вершины стержней 4, 4а выше вершин полуконусов 7, 7а на величину h1. Расстояние от оснований стержней 4, 4а до вершин полуконусов 7, 7а - h0.

При надежности защиты 0,9 угол α при вершинах полуконусов между его осью и образующей равен 55°. При надежности защиты 0,99 угол α равен 45°. При надежности защиты 0,999 угол α равен 41°.

Работа происходит следующим образом.

При определении высоты тросового молниеотвода, который должен быть установлен в точках 3 и 3а и при этом обеспечить защиту объекта 1, находящегося на поверхности 2, с надежностью 0,9 необходимо выполнить следующую последовательность действий. Телескопические стержни 4 и 4а устанавливаются на максимальную длину. Основание стержня 4 помещается в точку 3 установки молниеотвода на горизонтальной поверхности 2, а основание стержня 4а помещается в точку 3а установки молниеотвода на горизонтальной поверхности 2. Модель зоны защиты, включающая полуконусы 7, 7а и плоскости 6, 6а, опускаются вручную вниз, уменьшая длину телескопических стержней 4, 4а на одинаковую величину, до тех пор, пока любой из элементов 7, 7а, 6 или 6а коснется модели 1 защищаемого объекта в любой точке С, D, Ε или F. Измеряется длина h0 участка телескопического стержня от его основания (точка 3) до вершины полуконуса 7. Затем устанавливается участок телескопических стержней 4 и 4а, который находится над вершинами полуконусов 7 и 7а, на длину h1, которая рассчитывается по формуле:

Формула (1) получена в результате ряда математических преобразований из данных таблицы 3.5 и рис. 3.2 Инструкции по устройству молниезащиты зданий, сооружений и промышленных коммуникаций. СО 153-34.21.122-2003. Утверждена Приказом Министерства энергетики России от 30 июня 2003 г. №280. П. 3.3.2.1.

Высота молниеотвода h в масштабе µ определяется как сумма h0 и h1:

Высота молниеотвода Η в натуральных единицах, установленного в заданных точках 3 и 3а, который обеспечивает защиту объекта с надежностью 0,9, определяется с учетом масштаба µ:

Высота молниеотвода, обеспечивающая защиту объекта с надежностью 0,99, определяется аналогично описанному выше для надежности защиты 0,9, за исключением того, что используются полуконусы с углом α=45° при вершине между осью конуса и его образующей, a h1 определяется по выражению

Высота молниеотвода, обеспечивающая защиту объекта с надежностью 0,999, определяется аналогично описанному выше для надежности защиты 0,9, за исключением того, что используется конус с углом α=41° при вершине между осью полуконуса и его образующей, a h1 определяется по выражению

Таким образом, наглядное пособие позволяет наглядно продемонстрировать обучающимся принцип определения высоты одиночного тросового молниеотвода, обеспечивающего необходимую надежность защиты от 0,9 до 0,999. Обучающиеся видят отличие формы зоны защиты при разной надежности защиты, видят, что высота молниеотвода определяется по условию касания элементами модели зоны защиты защищаемого объекта. Обучающиеся видят и понимают, почему высота молниеотвода различна при различной надежности защиты. Это приводит к повышению качества обучения за счет улучшения наглядности принципа работы и принципа определения высоты одиночного тросового молниеотвода.

Наглядное пособие для демонстрации принципа работы одиночного тросового молниеотвода, включающее трехмерные модели защищаемого сооружения, молниеотвода с телескопическими стержнями и зоны защиты, выполненной в виде полой тонкостенной фигуры, отличающееся тем, что модель молниеотвода включает две вертикальные телескопические оси одинаковой высоты, вершины которых связаны горизонтальной нитью, а модель зоны защиты содержит две плоские грани и два полуконуса, вертикальные оси которых совпадают с осями телескопических стержней и находятся на расстоянии S друг от друга, а плоскости граней являются общими касательными к полуконусам и пересекаются по горизонтальной прямой, проходящей через вершины конусов.



 

Похожие патенты:

Изобретение относится к стендам для лабораторных работ, применяемым при обучении студентов, изучающих дисциплину «Электротехнология». Автоматизированный тепловой пункт (устройство преобразования электрической энергии в тепловую), содержит параллельно соединенные между собой тэновый, электродный и вихревой подогреватели воды, отопительный прибор, бойлер со змеевиком, насос, термодатчики, щит управления, расходомер, систему трубопроводов, при этом в него введены электромагнитные клапаны, программируемый контроллер для управления и регулирования режимами нагрева, бойлер выполнен сообщающимся с атмосферой для осуществления процесса тепломассообмена, сборка всех элементов выполнена с использованием резьбовых соединений предусматривающее возможность введения в процесс новых элементов.

Изобретение относится к электродинамике и и может быть использовано для экспериментальной проверки эффекта возбуждения вихревого электрического поля при движении магнитного поля, создаваемого движением постоянного магнита.

Изобретение относится к учебным пособиям по физике. Стержень с грузом установлен с возможностью совершать колебательные движения в вертикальной плоскости.

Изобретение относится к обучающим приспособлениям для демонстрации электромагнитных явлений. На одном конце плоского стержня закреплена катушка-моток, а на другом выполнено подвесное отверстие для подвеса стержня и магнит.

Изобретение относится к области измерительной и учебной техники и может быть использовано для изучения явлений электромагнетизма. По периметру диэлектрического диска впрессованы металлические шарики, диаметр которых равен толщине диска.

Изобретение относится к учебным приборам и может быть использовано в лабораторном практикуме по курсу физики для получения и углубления знаний физических законов и явлений.

Изобретение относится к учебным приборам и может быть использовано в лабораторном практикуме по курсу физики. На противоположных сторонах подвижной муфты первыми концами шарнирно соединены две тяги.

Изобретение относится к учебным приборам и может быть использовано в лабораторном практикуме по курсу физики для получения и углубления знаний физических законов и явлений.

Изобретение относится к области образования и наглядных учебных пособий, в частности к наглядным пособиям для демонстрации принципа работы одиночного стержневого молниеотвода.

Изобретение относится к учебным приборам по физике. Малые листы электропроводящей бумаги создают сопротивления R/2, R, 2R и уложены на планшете.

Изобретение относится к физике магнитного поля, создаваемого магнитными системами, полюсы которых взаимно перемещаются. Технический результат состоит в исследовании распределения угловых скоростей вращающегося магнитного поля в различных сечениях магнитного зазора при взаимном перемещении магнитных полюсов относительно друг друга. Устройство для исследования вращательного движения магнитного поля при взаимном перемещении магнитных полюсов, в частности при их взаимном вращении с разной угловой скоростью и в различных направлениях без изменения расстояния между этими полюсами, состоит из пары тороидов, намагниченных на их плоских гранях и ориентированных друг к другу соосно с противоположными магнитными полюсами, которые механически связаны с двумя синхронными реверсируемыми двигателями с подключенными к ним двумя перестраиваемыми по частоте генераторами переменного тока. Одна или несколько прямоугольных рамок из тонкого проводника помещены в магнитный зазор между магнитными полюсами одной из сторон прямоугольной рамки так, что проводники этой стороны ортогональны вектору магнитной индукции в магнитном зазоре, а также ортогональны вектору угловой скорости взаимно вращающихся намагниченных тороидов. Выводы рамок включены последовательно к регистрирующему возникающую э.д.с. в этих частях проводников рамок измерительному прибору, например вольтметру постоянного тока. 4 ил.

Изобретение относится к электротехнике. Технический результат состоит в возможности выявления физической структуры и поведения магнитного поля между магнитными полюсами, один из которых вращается относительно другого. Устройство содержит ротор и статор, выполненные в виде отрезков концентрически расположенных цилиндров из ферромагнетика. Обмотка подмагничивания ротора подключена к регулируемому источнику постоянного тока, закреплена на статоре бесконтактно к расположенной в ней части магнитопровода ротора. В тороидальном магнитном зазоре размещена часть рабочей обмотки в виде рамки из проводника, механически связанной с управляемым приводом ее перемещения внутри магнитного зазора с измерением величины перемещения. Выводы рамки подключены к входу усилителя постоянного тока. Замыкание магнитной цепи «ротор-статор» осуществлено с помощью цилиндрического элемента ротора на его противоположном конце относительно обмотки подмагничивания ротора, близко расположенного к трубчатому магнитопроводу статора, являющемуся корпусом устройства, в котором через подшипниковую пару закреплена ось вращения ротора, механически связанная с синхронным двигателем. На его электрические входы подано переменное напряжение от перестраиваемого по частоте генератора переменного тока. Информационные выходы измерителя перемещения рамки, регулируемого источника постоянного тока и перестраиваемого по частоте генератора переменного тока, а также выход усилителя постоянного тока подключены к входам устройства обработки и отображения информации. 3 ил.
Наверх