Способ определения величин деформаций стенки резервуара вертикального цилиндрического


 


Владельцы патента RU 2581722:

Федеральное государственное бюджетное образовательное учреждение высшего образования "Сибирский государственный университет геосистем и технологий" (СГУГиТ) (RU)

Изобретение относится к области геодезического контроля вертикальных цилиндрических резервуаров. В заявленном способе определения величин деформаций стенки резервуара производят сканирование внешней поверхности резервуара при помощи наземного лазерного сканера. Определяют пространственные координаты по осям X, Y, Z точек отражения лазерного луча от поверхности резервуара в условной системе координат. Выполняют регистрацию сканов между собой, производят обработку данных результатов наземного лазерного сканирования с помощью программного обеспечения, производят обработку данных результатов наземного лазерного сканирования с помощью программного обеспечения, позволяющего выполнить привязку сканов к заданной системе координат. Передают полученную цифровую информацию в компьютерную программу, производят построение цифровой точечной трехмерной модели внешней поверхности стенки резервуара, далее выполняют развертывание полученной объединенной цифровой точечной трехмерной модели на плоскость, получают развертку в виде плоской точечной модели поверхности, в которой координата Z показывает удаление любой точки от вертикальной оси вышеупомянутого резервуара, а также взаимное отклонение от вертикали между точками, выполняют построение карты деформаций боковой поверхности стенки резервуара в виде изолиний, оценивают характер и величину деформаций стенки резервуара путем сравнения фактических значений деформаций стенки по оси Z с требованиями нормативных значений. Технический результат - повышение точности и достоверности определения величин деформаций стенки резервуара вертикального цилиндрического. 1 ил.

 

Данный способ относится к области геодезического контроля резервуаров вертикальных цилиндрических стальных и может быть использован при наблюдении за деформациями стальных и железобетонных резервуаров вертикальных цилиндрических, предназначенных для хранения и проведения торговых операций с нефтью, нефтепродуктами и прочими жидкостями, а так же при их техническом диагностировании и поверке.

Известен способ определения геометрических параметров резервуара геометрическим методом [ГОСТ 8.570-2000 «Резервуары стальные вертикальные цилиндрические. Методика поверки», утвержден Постановлением Государственного комитета РФ по стандартизации и метрологии от 23 апреля 2001 г. №185-ст., введен в действие с 1 января 2002 г.], взятый в качестве прототипа.

Сущность данного способа состоит в том, что величины деформаций стенки резервуара вертикального цилиндрического определяются с помощью шаблонов, отвесов или геодезическими методами с помощью измерительной каретки с теодолитом. Измерения производят два раза в каждой точке для каждого пояса резервуара. Расхождения между результатами двух измерений должны находиться в пределах, указанных в технической документации.

Недостатком этого способа является низкая точность и высокая трудоемкость, так как данный способ предполагает контроль геометрических параметров в дискретных точках, он основан на интерполяции между измерениями, в результате чего не учитываются фактические изменения неровности стенки резервуара, что не позволяет достоверно оценить качество боковой поверхности стенки резервуара, а значит, его состояние в целом. Также, данный способ предполагает наличие человеческого фактора в процессе контроля, что так же ведет к снижению достоверности и точности.

Задачей предлагаемого изобретения является повышение точности и достоверности определения величин деформаций стенки резервуара вертикального цилиндрического.

Поставленная задача достигается тем, что в способе определения величин деформаций стенки резервуара вертикального цилиндрического геодезическим методом но внешней боковой поверхности вышеупомянутого резервуара согласно изобретению устанавливают специальные марки в фиксированных местах, производят измерения по внешней поверхности вышеупомянутого резервуара путем сканирования этой поверхности при помощи наземного лазерного сканера с линейной дискретностью шага сканирования в пределах от 0,3 до 1,0 см, не менее чем с четырех сканерных станций на расстоянии от 10 до 20 м от резервуара. Полученные данные передают в ПЭВМ, выполняют объединение сканов между собой, при этом качество объединения полученных данных контролируют путем выполнения следующих условий:

- средняя квадратическая погрешность единицы веса объединения сканов не должна превышать ±1,0 мм;

- расхождение координат расположения специальных марок не должно превышать ±2,0 мм;

- средняя квадратическая ошибка определения элементов внешнего ориентирования для линейных величин не должна превышать ±1,5 мм, а для угловых величин -±10″.

Далее производят обработку данных результатов наземного лазерного сканирования с помощью программного обеспечения, позволяющего выполнить привязку сканов к заданной системе координат, производят построение цифровой точечной трехмерной (3D) модели внешней боковой поверхности стенки резервуара. В этой же программе выполняют развертывание полученной объединенной цифровой точечной трехмерной (3D) модели на плоскость путем перевода всех ее точек из цилиндрической в плоскую прямоугольную систему координат. Получают развертку в виде плоской точечной модели поверхности, в которой координата Z показывает удаление любой точки от вертикальной оси вышеупомянутого резервуара, а также взаимное отклонение от вертикали между точками. Выполняют построение карты деформаций боковой поверхности стенки резервуара вертикального цилиндрического в виде изолиний, оценивают характер и величину деформаций стенки резервуара вертикального цилиндрического путем сравнения фактических значений деформаций стенки по оси Z с требованиями нормативных значений.

Указанная совокупность признаков позволяет повысить эффективность контроля степени деформаций боковой поверхности стенки резервуара за счет повышения оперативности и достоверности оценки полученной информации непосредственно на месте измерения в режиме реального времени. Кроме того, указанная совокупность признаков позволяет повысить точность измерений, так как по сканерным данным можно строить практически в автоматическом режиме цифровую модель всей боковой поверхности стенки резервуара, используя любое количество точек на стенке резервуара, и тем самым повышать точность определения величин деформаций боковой поверхности стенки резервуара.

Способ поясняется чертежом. На Фиг. 1 представлена цифровая плоская, двумерная точечная модель боковой поверхности стенки резервуара вертикального цилиндрического.

Предлагаемый способ осуществляется следующим образом. Для определения геометрических характеристик резервуара вертикального цилиндрического выбирают шаг сканирования, количество станций и место их расположения. Шаг сканирования должен быть подобран с учетом того, чтобы плотность точек, измеряемых на боковой поверхности стенки резервуара, позволяла с достаточной точностью и достоверностью определять его геометрию, учитывая деформацию стенок резервуара при его заполнении. Также цифровые точечные модели, полученные с разных станций, должны иметь достаточную плотность в зонах перекрытий, для качественного объединения их в единую модель.

Снаружи резервуара вертикального цилиндрического устанавливают наземный лазерный сканер с собственной программой обработки данных, принадлежащей данному оборудованию, и в соответствии с эксплуатационной документацией на прибор (ЭД) автоматически определяют координаты точек, принадлежащих внешней поверхности стенки резервуара, выполняют измерение расстояний при помощи встроенного лазерного дальномера, при этом для каждого измерения фиксируют вертикальные и горизонтальные углы, шаг сканирования. Предварительно осуществляют разбивку внешней поверхности вышеупомянутого резервуара и в фиксированных местах устанавливают специальные марки, производят построение цифровой точечной трехмерной (3D) модели внешней поверхности стенки резервуара путем сканирования внешней поверхности резервуара при помощи наземного лазерного сканера с линейной дискретностью шага сканирования в пределах от 0,3 до 1,0 см, не менее, чем с четырех сканерных станций на расстоянии от 10 до 20 м от резервуара, выполняют объединение сканов между собой, при этом качество объединения полученных данных контролируют путем выполнения следующих условий:

- средняя квадратическая погрешность единицы веса объединения сканов не должна превышать ±1,0 мм;

- расхождение координат расположения специальных марок не должно превышать ±2,0 мм;

- средняя квадратическая ошибка определения элементов внешнего ориентирования для линейных величин не должна превышать ±1,5 мм, а для угловых величин -±10″.

Далее производят обработку данных результатов наземного лазерного сканирования с помощью программного обеспечения, позволяющего выполнить привязку сканов к заданной системе координат, и производят построение объединенной цифровой точечной трехмерной (3D) модели внешней поверхности стенки резервуара. При исследовании степени деформации стенки резервуара необходимо трехмерное представление данных преобразовать в двумерное. Для этого в этой же программе выполняют развертывание полученной объединенной цифровой точечной трехмерной (3D) модели на плоскость путем перевода всех ее точек из цилиндрической в плоскую прямоугольную систему координат, т.е. преобразуют координаты точек, принадлежащих боковой поверхности стенки из цилиндрической системы координат в прямоугольную. Результатом развертки является цифровая плоская, двумерная точечная модель поверхности, в которой координата Z характеризует отклонение боковой поверхности стенки от вертикальной оси вышеупомянутого резервуара, а также взаимное отклонение от вертикали между точками, принадлежащими боковой поверхности стенки резервуара. Такая операция облегчает обработку цифровой точечной модели, поскольку ее интерпретация в виде плоского чертежа более наглядна. На основании цифровой плоской точечной модели выполняют построение карты деформаций боковой поверхности стенки резервуара вертикального цилиндрического путем нанесения изолиний, которые наглядно показывают все деформации. Кроме того, на эту карту можно нанести рисунок сварных швов, мест подключения трубопроводов, что повышает ее информативность и позволяет более летально проанализировать и оценить характер и величину деформаций стенки резервуара вертикального цилиндрического путем сравнения фактических значений деформаций стенки по оси Z с требованиями нормативных значений (см. Фиг. 1).

В настоящее время не существует достоверного геодезического способа определения величин деформаций стенки резервуара вертикального цилиндрического. Предлагаемый инновационный способ позволит проводить поверку и техническую диагностику резервуаров вертикальных цилиндрических с относительной погрешностью измерений 0,07%. Кроме того, данный способ, основанный на бесконтактном дистанционном методе, не требует предварительного освобождения его от нефтепродуктов, зачистки, определения объема внутренних элементов конструкций и других затратных мероприятий, связанных с простоем, а значит - с упущенной коммерческой прибылью.

Способ определения величин деформаций стенки резервуара вертикального цилиндрического геодезическим методом по внешней боковой поверхности вышеупомянутого резервуара, отличающийся тем, что устанавливают специальные марки в фиксированных местах, производят измерения по внешней боковой поверхности вышеупомянутого резервуара путем сканирования этой поверхности при помощи наземного лазерного сканера с линейной дискретностью шага сканирования в пределах от 0,3 до 1,0 см, не менее чем с четырех сканерных станций на расстоянии от 10 до 20 м от резервуара, полученные данные передают в ПЭВМ, выполняют объединение сканов между собой, при этом качество объединения полученных данных контролируют путем выполнения следующих условий:
- средняя квадратическая погрешность единицы веса объединения сканов не должна превышать ±1,0 мм;
- расхождение координат расположения специальных марок не должно превышать ±2,0 мм;
- средняя квадратическая ошибка определения элементов внешнего ориентирования для линейных величин не должна превышать ±1,5 мм, а для угловых величин - ±10′′,
производят обработку данных результатов наземного лазерного сканирования с помощью программного обеспечения, позволяющего выполнить привязку сканов к заданной системе координат, производят построение цифровой точечной трехмерной (3D) модели внешней боковой поверхности стенки резервуара, в этой же программе выполняют развертывание полученной объединенной цифровой точечной трехмерной (3D) модели на плоскость путем перевода всех ее точек из цилиндрической в плоскую прямоугольную систему координат, получают развертку в виде плоской точечной модели поверхности, в которой координата Z показывает удаление любой точки от вертикальной оси вышеупомянутого резервуара, а также взаимное отклонение от вертикали между точками, выполняют построение карты деформаций боковой поверхности стенки резервуара вертикального цилиндрического в виде изолиний, оценивают характер и величину деформаций стенки резервуара вертикального цилиндрического путем сравнения фактических значений деформаций стенки по оси Z с требованиями нормативных значений.



 

Похожие патенты:

Изобретение относится к средствам измерения относительной продольной деформации на поверхности материальных тел. Экстензометр содержит два референтных тела в виде заостренных инденторов, при этом один индентор жестко связан с корпусом прибора, другой установлен с возможностью перемещения, а также систему передачи этих перемещений.

Изобретение относится к контрольно-измерительной технике, в частности для измерения деформаций (напряжений) в различных конструкциях посредством поляризационно-оптических преобразователей, и может быть использовано в строительстве, на транспорте, в промышленных производствах, в контрольно-измерительной аппаратуре.

Изобретение относится к трубопроводному транспорту и может быть использовано для диагностики технического состояния надземных переходов магистральных трубопроводов, а также автоматического восстановления геометрии трубы надземного перехода по результатам диагностики.

Изобретение относится к устройствам измерения распределения температуры, в котором оптическое волокно используется в качестве чувствительного элемента, а именно является чувствительным элементом распределенного датчика температуры, в котором используется способ, основанный на явлении вынужденного рассеяния Мандельштамма-Бриллюэна (ВРМБ), возникающего в оптическом волокне.

Изобретение относится к способу бесконтактных измерений геометрических параметров объекта в пространстве. При реализации способа на поверхности объекта выделяют одну и/или более обособленную зону, для которой можно заранее составить несколько разных упрощенных математических параметрических моделей на основании заранее известных геометрических закономерностей исследуемого объекта, характеризующих форму, положение, движение, деформацию.

Способ относится к исследованиям деформации материала в процессе механической обработки резанием. Деформируемую в процессе резания поверхность образца освещают когерентным монохроматическим излучением.

Изобретение относится к области авиации, в частности к системам контроля состояния летательных аппаратов в процессе эксплуатации. Система контроля технического состояния конструкций летательного аппарата содержит датчики технического состояния лопастей винта вертолета или консолей крыла самолета и блок-регистратор, размещенный на их борту.

Изобретение относится к области неразрушающего контроля и касается способа диагностирования состояния конструкции. Способ включает в себя формирование на участке вероятного возникновения дефекта конструкции датчика.

Изобретение относится к области экспериментальных методов исследования механических напряжений и деформаций в деталях машин и элементах конструкций и может быть использовано для определения пластических деформаций изделия в машиностроении, авиастроении и других отраслях промышленности. Способ осуществляют следующим образом.

Изобретение относится к контрольно-измерительной технике и может быть использовано в строительстве, на транспорте, в промышленных производствах, в контрольно-измерительной аппаратуре.

Изобретение относится к области прецизионного приборостроения и может быть использовано при создании первичных чувствительных элементов оптических преобразователей деформаций спектрального типа. В заявленном способе изготовления чувствительного элемента спектрального преобразователя деформации на поверхности упругого элемента располагают нефоточувствительное оптическое волокно и наносят слой оптически-прозрачного нефоточувствительного стеклокристаллического материала, сборку из упругого элемента, оптического волокна и стеклокристаллического материала помещают в печь, где производят пайку соединения металл-стекло. Далее извлекают из печи и остужают со скоростью не более 5-8°C/мин в структуре нефоточувствительного оптического волокна, покрытого слоем затвердевшего оптически-прозрачного нефоточувствительного стеклокристаллического материала. При этом в зоне максимальной деформации упругого элемента формируют решетку Брэгга, а материалы конструктивных составляющих чувствительного элемента спектрального преобразователя деформации выбирают с близкими значениями коэффициента температурного расширения. Технический результат - упрощение технологии изготовления чувствительного элемента спектрального преобразователя деформации и повышение точности спектрального преобразования. 2 ил.

Изобретение относится к определению напряженно-деформированного состояния металлических конструкций высокорисковых объектов нефтяной, газовой и химической отраслей промышленности, систем транспорта и переработки нефти и газа с помощью тензочувствительных хрупких покрытий, что позволяет получить наглядную картину наибольшей концентрации напряжений, получить данные для оценки и прочности потенциально опасных объектов. Хрупкое покрытие для исследования деформаций и напряжений выполнено из смеси эпоксидной смолы ЭД-20, отвердителя полиэтиленполиамина (ПЭПА) и фреона-26 при следующем соотношении компонентов, мас. %: смола 20-60, отвердитель 1-3, фреон 79-37. Техническим результатом изобретения является обеспечение возможности ранней диагностики и увеличение чувствительности метода. 1 табл.
Наверх