Способ обескремнивания алюминатных растворов



 


Владельцы патента RU 2582416:

Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр" (RU)

Изобретение может быть использовано в производстве глинозема из нефелинового или бокситового сырья методом спекания. Способ обескремнивания алюминатных растворов включает обработку растворов кальцийсодержащим реагентом в батареях, состоящих из последовательно соединенных реакторов с мешалками. Полученную суспензию перемешивают в реакторах при температуре 85-95°C в течение нескольких часов, сгущают и фильтруют. Обработку растворов проводят кальцийсодержащим реагентом, разделенным по крайней мере на три части. Каждую часть вводят одновременно и непрерывно в отдельный реактор, входящий в состав батареи. Батарея состоит по крайней мере из трех последовательно соединенных реакторов с мешалками. При этом в первый реактор батареи вводят большую часть кальцийсодержащего реагента или кальцийсодержащий реагент вводят в равных частях в каждый реактор батареи. В качестве кальцийсодержащего реагента может быть использован гидрокарбоалюминат кальция. Изобретение позволяет снизить расход кальцийсодержащего реагента на процесс обескремнивания более чем на 30 % при одновременном повышении кремниевого модуля алюминатного раствора. 3 з.п. ф-лы, 1 ил., 1 табл.

 

Изобретение относится к технологии гидрометаллургических процессов и, в частности, к производству глинозема из нефелинового или бокситового сырья по способу спекания.

Обескремнивание - технологическая операция в процессе производства глинозема из низкосортного алюминийсодержащего сырья методом спекания, которая необходима для производства качественного глинозема путем удаления из растворов примеси SiO2. В качестве «обескремнивающих» используются различные кальцийсодержащие реагенты.

Известен способ обескремнивания алюминатных растворов, направляемых на разложение с целью производства качественного глинозема, заключающийся в том, что в алюминатный раствор вводят известковое молоко, т.е. пульпу гидроксида кальция - Ca(OH)2. Процесс проводят при постоянном перемешивании и температуре 95°С в течение 1-3 ч. При взаимодействии алюминатного раствора с известковым молоком образуется гидрогранат кальция (3CaO×Al2O3×mSiO2×6Η2O). Таким образом, кремнезем переходит из алюминатного раствора в осадок гидрограната кальция, который выводится из процесса, а очищенный алюминатный раствор с кремневым модулем MSiO2=Al2O3/SiO2>1000 ед. направляется на разложение методом карбонизации (Справочник металлурга по цветным металлам/ М., Металлургия, 1970 г., с. 160).

К недостаткам этого способа следует отнести:

- большой удельный расход извести и связанные с этим повышенные потери глинозема с гидрогранатом кальция:

- использование пульпы гидроксида кальция предопределяет ввод в алюминатный раствор вместе с Ca(OH)2 воды, которую потом необходимо удалить методом выпаривания.

Наиболее близким по технической сущности к заявляемому решению является способ глубокого обескремнивания алюминатных растворов в батарее, состоящей из нескольких последовательно соединенных аппаратов с мешалками, путем введения в первый (головной) из них кальцийсодержащего реагента, Ca(OH)2, перемешивание полученной суспензии в течение 2-3 ч при температуре до 95°C, сгущение и фильтрацию суспензии, использование обескремненного раствора для разложения методом карбонизации (Н.И. Еремин, А.Н. Наумчик, В.Г. Казаков. Процессы и аппараты глиноземного производства. М., Металлургия, 1980 г., с. 236-237). Данный способ по основному признаку, связанному с обескремниванием алюминатных растворов с использованием кальцийсодержащего реагента, принят нами за прототип.

К недостаткам этого способа следует отнести большой расход кальцийсодержащего реагента и связанные с этим повышенные потери глинозема с гидрогранатом (3CaOхAl2O3х mSiO2х5,0-6,0 H2O). Снижение потерь глинозема за счет некоторого увеличения кремневого модуля раствора перед глубоким обескремниванием путем нагрева и выдержки при высокой температуре, что рекомендуется в прототипе, приводит лишь к повышенным энергетическим затратам на производство глинозема, поскольку этот процесс осуществляется в автоклавных батареях. (Справочник металлурга Производство глинозема. М., Металлургия, 1970, с. 161).

В основу изобретения положена задача, направленная на снижение энергетических затрат на процесс обескремнивания, которое может быть достигнуто за счет уменьшения количества известняка, подвергаемое обжигу при высокой температуре с целью последующего получения пульпы гидроксида кальция (известкового молока).

При этом техническим результатом является снижение расхода кальцийсодержащего реагента при одновременном повышении кремниевого модуля алюминатного раствора.

Достижение вышеуказанного технического результата обеспечивается тем, что в способе обескремнивания алюминатных растворов, включающем обработку растворов кальцийсодержащим реагентом в батареях, состоящих из последовательно соединенных реакторов с мешалками, перемешивание суспензии в реакторах при температуре 85-95°C в течение нескольких часов, сгущение и фильтрацию полученной суспензии, обработку растворов проводят кальцийсодержащим реагентом, разделенным по крайней мере на три части, при вводе одновременно и непрерывно каждой части в отдельный реактор, входящий в состав батареи, состоящей по крайней мере из трех последовательно соединенных реакторов с мешалками.

Вариантами осуществления способа обескремнивания могут быть варианты, когда:

- в первый реактор, входящий в состав батареи, вводят большую часть кальцийсодержащего реагента.

- кальцийсодержащий реагент вводят в равных частях в каждый реактор батареи.

- в качестве кальцийсодержащего реагента используют, например, гидрокарбоалюминат кальция.

Деление объема кальцийсодержащего реагента (КСР) не менее чем на три части и одновременная дозировка каждой из них в свой реактор, входящий в состав непрерывной батареи, состоящей не менее чем из трех последовательно соединенных аппаратов с мешалками, позволяет в процессе обескремнивания алюминатных растворов сократить расход кальцийсодержащего реагента и, при прочих равных условиях, значительно повысить кремниевый модуль алюминатного раствора.

Аппаратурно-технологическая схема для реализации способа представлена на фиг. 1.

Алюминатный раствор подается в первый (головной) реактор 1, входящий в состав непрерывной батареи, состоящей из нескольких (не менее трех) последовательно соединенных реакторов с мешалками 2, 3, 4.

Кальцийсодержащий реагент (КСР), используемый в процессе обескремнивания алюминатных растворов, делится не менее чем на три части, каждая из которых одновременно и непрерывно вводится в свой реактор, входящий в состав батареи, состоящей не менее чем из трех последовательно соединенных реакторов батареи. Полученная суспензия насосом 5 откачивается в сгуститель 6. Нижний продукт со сгустителя (сгущенная суспензия) направляется в репульпатор 7, откуда насосом 5 откачивается на фильтрование на фильтр 10. Твердая фаза (кек) с фильтра 10 сбрасывается в репульпатор 8, из которого откачивается на приготовление шихты для спекания алюминийсодержащего сырья с известняком.

Слив со сгустителя 6 (обескремненный алюминатный раствор) направляется в репульпатор 9, откуда насосом 5 откачивается на карбонизацию.

Фильтрат с фильтра 10 (обескремненный алюминатный раствор), отбираемый с фильтра через ресивер 11, смешивается со сливом со сгустителя и также направляется на карбонизацию.

Пример реализации способа представлен в таблице.

Обескремниванию подвергались алюминатные растворы следующего состава, в г/л:

Na2Oоб=82,2-86,8; Na2Oку=69,8-72,2; Al2O3=77,8-80,6; SiO2=0,16-0,188. Каустический модуль растворов, исходный кремневый модуль - µsio2=417-502 ед. Температура и время процесса были постоянными и составляли соответственно: Т=90°C, τ=4 часа. Дозировка КСР (в пересчете на содержание в нем СаОакт) изменялась от 3 до 6,0 г/л алюминатного раствора. Каждая порция реагента вводилась в процесс через один час.

Очевидно, что повышение дозировки КСР от 3,0 до 6,0 г/л, при прочих равных условиях, позволяет повысить кремневый модуль алюминатного раствора от 1450 ед. до 5220 ед. (опыты 5, 6, 7).

Здесь же представлены данные по одновременной - 100% (опыт 1) и дробной дозировке КСР (опыты 2, 3) в процесс. Как видно, при расходе реагента 4,0 г/л алюминатного раствора увеличение дробности ввода КСР в процесс позволяет, при прочих равных условиях, повысить кремневый модуль раствора до µsio2=5250 ед., т.е. получить такой же, как при повышенном до 6 г/л расходе КСР и 100% дозировке реагента.

Эффективность дробной дозировки кальцийсодержащего реагента, в качестве которого может быть использован гидрокарбоалюминат кальция (ГКАК) 4СаО×Al2O3×CO2×11H2O для глубокого обескремнивания алюминатных растворов, можно объяснить следующим. После автоклавного обескремнивания при t=150°C алюминатный раствор с содержанием примерно 3-4 г/л твердой фазы алюмосиликата натрия (N2O×Al2O3×2SiO2×nН2О) поступает в реакторы обескремнивания. В эти же реакторы подается ГКАК. При взаимодействии с алюминатным раствором образуется так называемый гидрогранат (3СаО×Al2O3×nSiO2×6H2O), растворимость которого значительно ниже растворимости алюмосиликата натрия. Гидрогранат «экранирует» поверхность алюмосиликата, предотвращая его растворение в алюминатном растворе. При разовой, а не дробной дозировке ГКАК гидрогранат кристаллизуется в виде самостоятельной твердой фазы и на «экранирование» не остается материала. В качестве кальцийсодержащего реагента, помимо гидрокарбоалюмината кальция, может быть использован и гидроксид кальция Са(ОН)2 с достижением того же технического результата, при котором его расход на процесс обескремнивания алюминатных растворов также снижается более чем на 30%.

1. Способ обескремнивания алюминатных растворов, включающий обработку растворов кальцийсодержащим реагентом в батареях, состоящих из последовательно соединенных реакторов с мешалками, перемешивание суспензии в реакторах при температуре 85-95°C в течение нескольких часов, сгущение и фильтрацию полученной суспензии, отличающийся тем, что обработку проводят кальцийсодержащим реагентом, разделенным по крайней мере на три части, при вводе одновременно и непрерывно каждой части в отдельный реактор, входящий в состав батареи, состоящей по крайней мере из трех последовательно соединенных реакторов с мешалками.

2. Способ по п. 1, отличающийся тем, что в первый реактор, входящий в состав батареи, вводят большую часть кальцийсодержащего реагента.

3. Способ по п. 1, отличающийся тем, что кальцийсодержащий реагент вводят в равных частях в каждый реактор батареи.

4. Способ по п. 1, отличающийся тем, что в качестве кальцийсодержащего реагента используют, например, гидрокарбоалюминат кальция.



 

Похожие патенты:
Изобретение может быть использовано в химической промышленности. Способ получения оксида алюминия в процессе Байера включает добавление одного или более полисахаридов, один из которых представляет собой склероглюкан, в раствор потока текучей среды указанного процесса на стадии осаждения тригидрата оксида алюминия.

Изобретение может быть использовано в химической промышленности. Способ получения оксида алюминия в процессе Байера включает добавление одного или более чем одного сшитого полисахарида в количестве от 0,1 до 100 частей на миллион к раствору указанного процесса на стадии осаждения тригидрата оксида алюминия.

Изобретение относится к технологии получения технологических солевых растворов горнорудного производства, в частности к повышению стабильности этих растворов. .
Изобретение относится к цветной металлургии, а именно к технологии очистки алюминатных растворов от примесей при получении глинозема из алюминийсодержащего сырья, в том числе бокситов.

Изобретение относится к области химии и металлургии и может быть использовано в производстве глинозема из алюминиевой руды. .
Изобретение относится к цветной металлургии, в частности к обескремниванию натриевых алюминатных растворов процесса Байера. .
Изобретение относится к цветной металлургии, а именно к технологии переработки алюминийсодержащего сырья. .
Изобретение относится к цветной металлургии, а именно к технологии очистки алюминатных растворов от примесей при получении глинозема из алюминийсодержащего сырья, в том числе бокситов.
Наверх