Способ производства нестабилизированной аустенитной коррозионно-стойкой стали



Способ производства нестабилизированной аустенитной коррозионно-стойкой стали
Способ производства нестабилизированной аустенитной коррозионно-стойкой стали
Способ производства нестабилизированной аустенитной коррозионно-стойкой стали

 


Владельцы патента RU 2583220:

Федеральное Государственное Унитарное Предприятие "Центральный научно-исследовательский институт черной металлургии им. И.П. Бардина" (ФГУП "ЦНИИчермет им. И.П. Бардина") (RU)

Изобретение относится к области черной металлургии, в частности к производству нестабилизированной аустенитной коррозионно-стойкой стали с повышенным комплексом служебных свойств. В способе осуществляют расплавление шихтовых материалов в печи с получением легированного хромом и никелем расплава полупродукта, который переливают в ковш и подают в агрегат аргонно-кислородного рафинирования и осуществляют обезуглероживание расплава до содержания углерода не более 0,02% с последующей передачей ковша на установку печь-ковш, где осуществляют раскисление и легирование до получения заданного химического состава стали. Легирование осуществляют последовательно путем введения в расплав стали азота в количестве 0,08÷0,30% от массы расплава и мишметалла количестве 0,05÷0,35% от массы расплава. Изобретение позволяет повысить прочность при сохранении пластичности в используемых коррозионно-стойких низкоуглеродистых хромоникелевых сталях типа 18-10-11, что обеспечивает уменьшение веса сварных конструкций, увеличение надежности работы и срока их службы, а также снизить потери металла при производстве металлопродукции за счет повышения технологической пластичности при горячей деформации. 1 з.п. ф-лы, 2 пр., 3 табл.

 

Изобретение относится к области черной металлургии, в частности к производству и применению нестабилизированной аустенитной коррозионно-стойкой стали с повышенным комплексом служебных свойств. Изобретение может быть использовано в электросталеплавильных цехах металлургических и машиностроительных заводов.

Способ основан на том, что широко используемые в мировой экономике нестабилизированные коррозионно-стойкие стали легируются одновременным введением небольших количеств азота и редкоземельных элементов (Се, Y, La, Pr) или их соединений (мишметалла).

Так, широко используемые в мировой экономике, аустенитные коррозионно-стойкие стали (типа 304L AISI, отечественный аналог 03X18H11), обладая достаточно хорошим комплексом физико-механических свойств, имеют ряд недостатков, основными из которых являются: низкая гарантированная прочность (σ02 - расчетный параметр) при комнатной температуре и высокая склонность к росту зерна при нагреве под горячую деформацию, что приводит к снижению технологической пластичности.

Известны способы повышения прочности хромоникелевых коррозионно-стойких сталей легированием карбидообразующими элементами, которые позволяют не только устранить склонность к межкристаллитной коррозии (МКК), но и одновременно на 10-20 Н/мм2 повысить гарантированный уровень прочности (σ02), о чем свидетельствуют данные [1].

Гарантированные в ГОСТ 5949 свойства двух марок коррозионно-стойкой стали: 08X18H10 и 08X18H10T, т.е. нестабилизированной (08X18H10) и стабилизированной (08X18H10T) приведены в таблице 1.

Приведенные данные показывают, что гарантированные свойства прочности стабилизированной стали σв на 20 Н/мм2 превышают те же свойства нестабилизированной стали.

Известен также способ производства широко используемой для сильных окислительных сред нестабилизированной коррозионно-стойкой стали марки 03X18H11, включающий расплавление легированных хромом и никелем отходов, окислительное обезуглероживание в вакууматорах различной конструкции [2], прототип.

Указанный способ обеспечивает в стали стабильность аустенита (парамагнитность), отсутствие склонности к МКК, отличную пластичность в холодном состоянии (δ5≥40%), но довольно низкие значения гарантированной прочности после закалки (σв=440 Н/мм2, σ02=155 Н/мм2), что является главным недостатком этого способа. При этом сталь обладает пониженной технологической пластичностью при горячей обработке давлением. Другим недостатком известного способа является отсутствие в технологическом цикле производства стали приемов, позволяющих:

- повысить расчетные (гарантированные) параметры прочности стали без снижения показателей физических и пластических свойств горячекатаного (г/к) и холоднокатаного (х/к) листа, сортового металла, ленты, труб и др. при температурах эксплуатации готовой металлопродукции;

- улучшить технологическую пластичность стали при горячей деформации: ковке, прокатке, прошивке, прессовании и т.п. операциях.

Задачи, на решение которых направлено предлагаемое изобретение:

- установить технологические приемы производства нестабилизированной коррозионно-стойкой стали, обеспечивающие повышение на 25-30% гарантированной прочности по сравнению с гарантированной прочностью сталей марок 03X18H11, 04X18H10, 08X18H10 [1];

- повысить технологическую пластичность стали при горячей деформации.

Технический результат изобретения заключается в повышении прочности при сохранении пластичности в широко используемых коррозионно-стойких низкоуглеродистых хромоникелевых сталях типа 18-10-11, что обеспечивает уменьшение веса конструкций, в т.ч. сварных, увеличение надежности работы и срока их службы, а также в снижение потерь металла при производстве металлопродукции за счет повышения технологической пластичности при горячей деформации.

Заявленный технический результат достигается тем, что в способе производства нестабилизированной коррозионно-стойкой стали, включающем расплавление шихтовых материалов и получение легированного хромом и никелем полупродукта, внепечную обработку полупродукта до получения заданного химического состава по основным легирующим элементам, отличающийся тем, что в расплав стали последовательно вводятся азот в количестве 0,08÷0,30% и один или несколько элементов редкоземельной группы в количестве 0,05÷0,35%. При этом РЗМ в расплав вводится в количестве в 1,5÷3,5 раза большем, чем суммарное содержание серы и фосфора и других контролируемых вредных примесей.

Сущность изобретения заключается в том, что предложенные технологические приемы производства стали вкупе с основной технологией выплавки, позволяют сформировать в стали микроструктуру, обеспечивающую повышение гарантированной прочности производимой металлопродукции, улучшение технологической пластичности при горячей обработке давлением. Увеличение гарантированной прочности в стали (σ02≥285 Н/мм2) достигается введением азота. Наиболее полно упрочнение нестабилизированной стали азотом происходит, когда его содержание составляет 0,08÷0,30%. Азот - элемент внедрения, находясь в твердом γ-растворе, вызывает упрочнение матрицы, которое начинается при его содержании в стали не менее 0,08%. Верхний предел по содержанию азота (0,30%) ограничивается пределом его растворимости в жидком металле во избежание появления несплошностей в слитках при кристаллизации.

Положительное действие РЗМ основано на том, что они образуют с рядом входящих в сталь вредных примесей, в том числе и цветных металлов, достаточно прочные и тугоплавкие соединения, температура плавления которых намного выше температуры плавления железа: CeS - 2450, Ce4Bi2 - 1630, СеО2 - 1930°C. РЗМ, в т.ч. церий, обладая большим сродством к сере, образуют очень стойкие и тугоплавкие химические соединения (сульфиды) со структурными формулами MeS, Me3S4, Me2S3, MeS2, температура плавления которых составляет 2450, 2050, 1890 и 1700°C, соответственно. Эти соединения достаточно дисперсны и создают барьерный эффект для роста зерен при нагреве под горячую деформацию, что положительно сказывается на технологической пластичности стали.

Легирование аустенитных хромоникелевых сталей РЗМ на 0,05% существенно улучшает технологическую пластичность при горячей прокатке. РЗМ, растворяясь в пограничных зонах кристаллитов, упрочняют границы зерен и замедляют диффузионные процессы в этих местах. А механические свойства при высоких температурах главным образом определяются именно состоянием границ зерен. Введение в сталь РЗМ менее 0,05% не дает должного эффекта, введение РЗМ в количествах более 0,35% не только экономически нецелесообразно, но может привести к обратному эффекту по причине образования и скопления по границам зерен и в межзеренных пространствах чрезмерного количества соединений и оксидов РЗМ, которые вызовут ухудшение разливочных свойств стали и снижение пластичности при горячей деформации.

Выполнение соотношения РЗМ/S+P=1,5÷3,5 обусловлено с одной стороны техническими требованиями, которые обеспечивают устранение вредного влияния сопутствующих примесей: серы, фосфора и, возможно, цветных металлов. И с другой стороны экономическими соображениями, когда в сталь достаточно ввести минимальное количество РЗМ. Если сталь относительно чистая по сере и фосфору достаточно ввести РЗМ в количестве ближе к минимальному пределу. Когда сталь загрязнена вредными примесями значительно, РЗМ вводятся в количестве ближе к верхнему уровню. Примеры осуществления изобретения.

Предлагаемый способ опробован на примере производства 3-х марок стандартных нестабилизированных сталей 03X18H11, 04X18H10 и 03X18H10 ГОСТ 5949. Результаты исследований опытного металла представлены в табл. 2 и 3.

Пример 1. Опробование способа при производстве стали марки 03X18H11.

В электродуговой печи выплавляется полупродукт стали, содержащий хром, никель, продувкой кислородом окисляют углерод до содержания 0,2-0,3%. Расплав переливают в ковш и подают в агрегат аргоно-кислородного рафинирования (АКР). В агрегате АКР расплав обезуглероживают продувкой кислорода до содержания углерода ≤0.02%. При температуре металла 1680-1700°C вакуумирование и продувку кислородом заканчивают. После вакуумной обработки ковш с металлом передается на установку «ковш-печь», где осуществляется: десульфурация (при необходимости), введение азотированного феррохрома (марки ФХ003 по ГОСТ 4757) в количестве из расчета заданного содержания азота в пределах 0,08-0,30%, введение РЗМ (мишметалла) из расчета его содержания от 0,05 до 0,35%, окончательная корректировка химсостава и температуры металла перед подачей на разливку (см. таблицы 2 и 3).

Пример 2. Опробование способа при производстве стали марки 04X18H10.

Расплавление шихтовых материалов и производство полупродукта, внепечная обработка в АКР осуществляется по той же схеме, что в примере 1. Доводка химического состава, легирование азотом и РЗМ (мишметаллом) производится в АКР, где посредством дозаторов вводятся последовательно азотированный феррохром и РЗМ (мишметалл) в заданных количествах (см. таблицы 2 и 3).

Пример 3. Опробование способа при производстве стали марки 08X18H10.

Расплавление шихтовых материалов и производство полупродукта для стали 08X18H10 осуществляется по той же схеме, что в примере 1. Полученный полупродукт выливают в ковш, передают на агрегат «ковш-печь», где расплав раскисляют, вводят легирующие элементы и получают заданный химический состав стали. После получения заданного химического состава, расплав через донные пористые фурмы, последовательно продувают газообразным азотом до заданной концентрации (в пределах 0,08-0,30%) с интенсивностью порядка 630 л/мин·т в течение 5-10 мин, и вводят РЗМ (мишметалл) из расчета, чтобы его содержание в стали составляло (1,5-3,0)·(P+S + контролируемые примеси) (см. таблицы 2 и 3).

Химический состав стандартных и сталей, выполненных по предлагаемому способу, представлен в таблице 2.

Анализ данных таблицы 2 показывает, что химический состав всех выплавленных сталей соответствует марочному составу по ГОСТ 5632 «Стали высоколегированные и сплавы коррозионно-стойкие, жаростойкие и жаропрочные». Следует отметить, что по контролируемым вредным примесям, в частности сере и фосфору, стали, легированные азотом и РЗМ, существенно чище.

Результаты исследований комплекса механических свойств при комнатной температуре и технологической пластичности при высоких температурах представлены в таблице 3.

Данные таблицы 3 показывают, что параметры прочности сталей, легированных азотом и РЗМ, превышают те же показатели сталей, которые азотом и РЗМ не легированы: по временному сопротивлению разрыву (σв) на 25-40%, по пределу текучести (σ02) на 32-48%. При этом необходимо отметить, что пластичность при комнатной температуре в упрочненных сталях остается на высоком уровне.

Технологическая пластичность упрочненных по способу сталей при высоких температурах, оцениваемая по числу скручиваний до разрушения, также значительно выше в сталях, легированных азотом и РЗМ.

Таким образом, заявленный способ производства нестабилизированной аустенитной коррозионно-стойкой стали позволяет повысить на 25-35% показатели прочности и существенно, более чем на 40%, увеличить технологическую пластичность при температурах горячей деформации. Следует отметить, что при этом отпадает необходимость легирования сталей дорогостоящими карбидообразующими элементами (Ti, Nb и др.) для предотвращения склонности к МКК, которое обеспечивается низким (не более 0,03%) содержанием углерода.

Внедрение способа в промышленность дает возможность увеличить уровень гарантированной прочности готовой металлопродукции, и тем самым, создаются предпосылки для снижения металлоемкости конструкций, в т.ч. сварных, повышения надежности и срока службы металлоизделий.

Использование изобретения позволяет устранить указанные недостатки и обеспечить:

а) повышение на 20-30% параметров гарантированной прочности (σв и σ02);

в) повысить технологическую пластичность стали при горячей обработке давлением (прокатке, ковке, прессовании и др.) за счет устранения склонности к чрезмерному росту зерна при высоких температурах 900-1250°C.

Источники информации

1. ГОСТ 5949-75. Сталь сортовая и калиброванная коррозионно-стойкая, жаростойкая и жаропрочная. Технические условия.

2. Каблуковский А.Ф., Молчанов О.Е., Каблуковская М.А. Краткий справочник электросталевара. М.: «Металлургия», 1994, с. 150-152.

1. Способ производства нестабилизированной аустенитной коррозионно-стойкой стали, включающий расплавление шихтовых материалов в печи и получение легированного хромом и никелем расплава полупродукта, который переливают в ковш и подают в агрегат аргонно-кислородного рафинирования и осуществляют обезуглероживание расплава до содержания углерода не более 0,02% с последующей передачей ковша на установку печь-ковш, в которой осуществляют раскисление и легирование до получения заданного химического состава стали, отличающийся тем, что легирование осуществляют последовательно путем введения в расплав стали азота в количестве 0,08÷0,30% от массы расплава и мишметалла в количестве 0,05÷0,35% от массы расплава.

2. Способ по п. 1, отличающийся тем, что мишметалл вводят в расплав в количестве в 1,5÷3,5 раза большем, чем суммарное содержание серы, фосфора и других контролируемых вредных примесей.



 

Похожие патенты:

Изобретение относится к области металлургии. Для улучшения магнитных свойств стали осуществляют нагрев стального сляба, содержащего, в мас.

Изобретение относится к черной металлургии, а именно к получению сталей, применяемых в серийном и массовом производстве ответственных деталей машин. Сталь имеет следующий химический состав, мас.%: углерод 0,09-0,15, кремний 0,17-0,37, марганец 0,30-0,60, хром 0,40-0,70, никель 0,50-0,80, висмут 0,08-0,13, кальций 0,002-0,003, алюминий 0,005-0,015, железо - остальное.

Изобретение относится к области черной металлургии, а именно к углеродистым сталям, используемым при изготовлении труб нефтяного сортамента. Сталь содержит, мас.%: 0,46-0,50 углерода, 0,65-0,85 марганца, 0,17-0,37 кремния, ≤0,030 серы, ≤0,030 фосфора, ≤0,30 меди, ≤0,30 никеля, ≤0,30 хрома, 0,01-0,06 алюминия, железо - остальное.

Изобретение относится к области черной металлургии, а именно к получению сталей, применяемых в серийном и массовом производстве ответственных деталей машин. Сталь имеет следующий химический состав, мас.%: углерод 0,16-0,21, кремний 0,17-0,37, марганец 0,70-1,10, хром 0,80-1,10, никель 0,80-1,10, висмут 0,08-0,13, кальций 0,002-0,003, алюминий 0,005-0,015, железо - основа.
Изобретение относится к области металлургии, а именно к трубе из аустенитной нержавеющей стали, используемой в установках по производству электроэнергии. Сталь содержит, мас.%: от 14 до 28 Cr и от 6 до 30 Ni.

Изобретение относится к металлургии, в частности к хромоникелевым литым сталям, предназначенным для изготовления деталей, работающих в агрессивных атмосферах при температурах 1100-1400°C.

Изобретение относится к области металлургии и может быть применено для получения штрипсов с категорией прочности К60 (Х70), используемых при строительстве магистральных нефтегазопроводов.

Изобретение относится к металлургии, более точно к прокатному производству, и может быть использовано при производстве толстолистового проката классов прочности К52-К60, Х52-Х70, L385-L485 для изготовления электросварных труб магистральных трубопроводов.

Изобретение относится к способу производства нетекстурированной электротехнической стали с высокой магнитной индукцией. Способ включает выплавку стали с химическим составом, вес.%: Si 0,1-1, Al 0,005-1,0, C≤0,004, Mn 0,10-1,50, P≤0,2, S≤0,005, N≤0,002, Nb+V+Ti≤0,006, остальное Fe и неустранимые включения, получение отливки в виде стального прутка, нагрев стального прутка до температуры в диапазоне 1150-1200°C, выдержку при этой температуре в течение определенного времени, горячую прокатку с температурой конца прокатки 830-900°C с получением стальной полосы, охлаждение ее до температуры ≥570°C и смотку горячекатаной полосы в рулон, правку горячекатаной полосы путем холодной прокатки с коэффициентом обжатия 2-5%, непрерывную нормализацию холоднокатаной полосы при температуре не ниже 950°C, выдержку при этой температуре в течение 30-180 с, травление нормализованной полосы и последующую холодную прокатку с суммарным коэффициентом обжатия 70-80% до получения листа из холоднокатаной стали конечной толщины, отжиг холоднокатаного листа конечной толщины путем его нагрева со скоростью нагрева не менее 100°C/с до температуры в диапазоне 800-1000°C, выдержки при этой температуре в течение 5-60 с и последующего медленного охлаждения до температуры 600-750°C со скоростью охлаждения 3-15°C/с, что позволяет увеличить магнитную индукцию нетекстурированной электротехнической стали минимум на 200 Гс без увеличения потерь железа.

Изобретение относится к области металлургии, конкретнее к прокатному производству, и может быть использовано при изготовлении электросварных труб для строительства газопроводов и нефтепроводов в северных районах и сейсмических зонах.

Изобретение относится к области металлургии и может быть использовано при производстве марганецсодержащей стали с использованием в качестве легирующих - оксидных марганецсодержащих материалов.

Изобретение относится к области металлургии, в частности к способу получения стали с низким, менее 0,035 вес.%, содержанием углерода. Способ включает следующие этапы: доведение жидкой стальной композиции в сталеплавильной печи до температуры выпуска, заданной для обессеривания, выпуск в ковш неуспокоенной жидкой стальной композиции с уровнем кислорода примерно от 600 до 1120 ppm, подачу шлакообразующего соединения в ковш для образования шлаковой корки на жидкой стальной композиции в ковше, перемещение жидкой стальной композиции в ковше в вакуумный дегазатор, обезуглероживание жидкой стальной композиции в вакуумном дегазаторе при разрежении ниже 650 миллибар, транспортировку жидкой стальной композиции в ковше в металлургическую ковшовую печь и раскисление жидкой стальной композиции, возвращение после раскисления в вакуумный камерный дегазатор для обессеривания и дегазации жидкой стальной композиции и разливку жидкой стальной композиции.

Изобретение относится к области черной металлургии, а именно к производству качественных сталей с внепечной обработкой. В способе осуществляют выпуск металла в сталь-ковш при температуре металла не менее 1680°C в течение не менее 4 мин, во время выпуска присаживают кальцийсодержащие шлакообразующие материалы в количестве не менее 2,8 кг/т стали и марганецсодержащие ферросплавы в количестве не более 7 кг/т стали, затем в течение 7-15 мин производят вакуумирование металла, после чего осуществляют ввод алюминия до его содержания в металле в количестве 0,04-0,06%, легирование кремний- и марганецсодержащими ферросплавами в количестве 5-20 кг/т стали, затем на установке печь-ковш проводят нагрев металла до температуры 1620-1650°C, производят ввод кальцийсодержащих шлакообразующих материалов в количестве 1-2 кг/т стали, после чего осуществляют повторное вакуумирование металла в течение 13-18 мин, а затем выполняют окончательное легирование металла и его обработку кальцийсодержащим реагентом в количестве 0,05-0,3 кг/т стали.
Изобретение относится к области черной металлургии, в частности к способу производства ниобийсодержащей стали. Cпособ включает выплавку металла в сталеплавильном агрегате, выпуск металла в сталь-ковш.

Изобретение относится к области металлургии, в частности к составам смесей для легирования и модифицирования сталей, используемых для производства литых изделий высокой эксплуатационной надежности для работы техники, железнодорожных вагонов в сложных низкотемпературных климатических условиях.

Изобретение относится к области черной металлургии, в части производства особонизкоуглеродистых сталей с внепечной обработкой и разливкой на установках непрерывной разливки стали.

Изобретение относится к области черной металлургии, в частности, к способам обработки жидкого металла в ковше. В способе осуществляют выпуск плавки из сталеплавильного агрегата, ввод раскислителей и жидкого шлака предыдущей плавки.

Изобретение относится к области черной металлургии и может быть использовано для совершенствования технологии микролегирования стали бором. Микролегирование стали бором осуществляют на выпуске присадкой в ковш алюминия и комплексного сплава ферросиликобора в количестве 4,0-7,5 кг/т стали с отношением алюминия к ферросиликобору в пределах (0,25-0,50), при этом ферросиликобор содержит, мас.%: 60-65 Si и 0,5-2,0 В.

Изобретения относятся к области металлургии, в частности к оборудованию для внепечной обработки жидкого металла в ковше, и могут быть использованы для ввода в жидкий металл алюминия в виде проволоки и других добавок в составе порошковых проволок.
Изобретение относится к черной металлургии, а именно к внепечной обработке стали порошкообразными реагентами. Проволока содержит стальную оболочку и порошковый наполнитель, содержащий компоненты в следующем соотношении, мас.%: кальций 26-55, кремний 31-65, алюминий не более 3,0, углерод не более 2,0, фосфор не более 0,05, марганец не более 1,0, хром не более 0,5, железо - остальное.

Изобретение относится к области металлургии, в частности к способу получения стали с низким, менее 0,035 вес.%, содержанием углерода. Способ включает следующие этапы: доведение жидкой стальной композиции в сталеплавильной печи до температуры выпуска, заданной для обессеривания, выпуск в ковш неуспокоенной жидкой стальной композиции с уровнем кислорода примерно от 600 до 1120 ppm, подачу шлакообразующего соединения в ковш для образования шлаковой корки на жидкой стальной композиции в ковше, перемещение жидкой стальной композиции в ковше в вакуумный дегазатор, обезуглероживание жидкой стальной композиции в вакуумном дегазаторе при разрежении ниже 650 миллибар, транспортировку жидкой стальной композиции в ковше в металлургическую ковшовую печь и раскисление жидкой стальной композиции, возвращение после раскисления в вакуумный камерный дегазатор для обессеривания и дегазации жидкой стальной композиции и разливку жидкой стальной композиции.
Наверх