Способ изготовления дисперсных магнитопроводов

Изобретение относится к области электротехники, а именно к способу изготовления дисперсных магнитопроводов, которые могут быть использованы в условиях отрицательных температур. Способ включает формирование тела магнитопровода из порошка электротехнической стали с величиной частиц 0,001-0,35 мм, которые помещают в полость формы, имеющей не менее двух перегородок толщиной 0,4 мм. Порошок из частиц перемешивают с электролитом в количестве 1,0-1,8% от объема металлического порошка, после чего форму помещают в среду с температурой ниже температуры замерзания электролита на 5-78°C, после затвердевания электролита части магнитопровода извлекают из формы, устанавливают на него катушки, при этом торцы магнитопроводов смачивают смесью, содержащий электролит и частицы электротехнической стали, соединяют между собой и помещают в среду температур ниже температуры замерзания электролита. Состав электролита при его замерзании обеспечивает формирование монолитной конструкции магнитопровода без снижения его магнитных характеристик, что является техническим результатом изобретения. 1 пр.

 

Изобретение относится к технологии изготовления дисперсных магнитопроводов, используемых при производстве трансформаторов в электротехнической, радиотехнической и других отраслях промышленности и предназначенных для работы и хранения в условиях отрицательных температур, например в условиях открытого космоса, Арктики, Антарктики.

Известен способ изготовления ленточного магнитопровода (а.с. №1226544, кл. H01F 41/02), включающий навивку, отжиг, пропитку лаком и разрезку. Намотку производят одновременно двумя лентами разной ширины, а при пропитке заполняют лаком и зазоры, образованные разностью ширин лент.

Недостатками этого способа изготовления магнитопроводов являются: пропитка кремнийорганическим лаком и сушка, что повышает затраты на производство и снижает производительность (увеличивается время изготовления магнитопроводов, работа должна производится в вакуумной камере), ухудшаются условия охлаждения магнитопроводов. Навивка магнитопроводов лентами разной ширины усложняет технологию намотки и увеличивает габариты магнитопровода ввиду необходимости обеспечения требуемой площади поперечного сечения магнитопроводов.

Наиболее близким способом изготовления магнитопроводов, выбранным в качестве прототипа, является способ изготовления разрезных ленточных магнитопроводов (RU №2345433, кл. H01F 41/02. Опубл. 27.01.2009 г.).

Недостатками этого способа изготовления магнитопроводов являются: низкая производительность, большие энергетические затраты на производство магнитопроводов из-за необходимости специального технологического оборудования.

Задачей, решаемой настоящим изобретением, является упрощение технологии, снижение энергетических затрат и затраты на производство магнитопроводов, предназначенных для работы в отрицательных температурах. Технический результат - исключается необходимость в специальном оборудовании для осуществления способа и операциях (разрезание ленты магнитопровода, шлифовка его торцов, нагревательные печи).

Настоящая задача решается тем, что в способе изготовления дисперсных магнитопроводов, включающем формирование тела магнитопровода и установку на него катушки, магнитопровод формируют из порошка электротехнической стали с величиной частиц 0,001-0,35 мм, который помещают в полость формы, имеющей не менее двух перегородок толщиной 0,4 мм, затем перемешивают с электролитом в количестве 1,0-1,8% от объема металлического порошка, после чего форму помещают в среду с температурой ниже температуры замерзания электролита на 5-78°C, после затвердевания электролита части магнитопровода извлекают из формы, устанавливают на него катушки, торцы магнитопроводов смачивают смесью, содержащей электролит и частицы электротехнической стали, соединяют их между собой и помещают в среду температур ниже температуры замерзания электролита.

Сравнение заявленного технического решения с прототипом позволило установить соответствие их критерию «новизна»

При изучении других известных технических решений в данной области техники признаки, отличающие заявляемое изобретение от прототипа, не были выявлены и поэтому они обеспечивают заявленному техническому решению соответствие критериям «новизна» и «изобретательский уровень».

Предлагаемый способ осуществляется следующим образом.

Ситом с ячейкой 0,1×0,1 просеяли порошок ПЖ2.160.28 (ГОСТ 9849-86), в который по объему добавили электролит (состав NaCl - 10%, 90% - H2O) и перемешали. Приготовленную смесь заформовали в форму, содержащую две перегородки и поместили в среду, где температура составляла минус 8°C. После затвердевания из формы извлекли две части магнитопровода, установили на каждом катушку (обмотку), торцы магнитопровода смочили составом, содержащим частицы порошка ПЖВ 2.160.28 и электролита, и затем поместили в среду с отрицательной температурой (минус 16°C). К одной из катушек припаяли провод с вилкой, ко второй катушке (обмотке) - лампочку 10 В).

Составы из электролита (вода-натрий хлор) можно готовить различного состава, что обеспечивает температуру его замерзания до минус 24°C (эвтектическая точка),

Таким же образом можно готовить, например, электролит состава: этиленгликоль - вода с различной температурой замерзания от - 4 до - 78°C с температурой кристаллизации, включая и эвтектический состав, где температура замерзания минус 78°C.

Нижний предел зерен 0,001 мм, например 0,0009, увеличивает энергозатраты на размол и просев через сито, верхний - 0,35 мм, например 0,5 мм, увеличивается вероятность нагрева зерен и вихревыми высокочастотными токами, которые могут возникнуть на его поверхности.

Толщина перегородок определяется максимальной величиной зерна 0,35 мм, которое наносится в зазор между частями (торцами) магнитопровода при их соединения.

Количество электролита определяется необходимым объемом для смачивания всех зерен, и при кристаллизации смесь должна образовывать монолит. При содержании в смеси воды меньше 1%, например 0,5%, образуются объемы зерен, которые не подвергались смачиванию, что снижает механическую прочность дисперсного магнитопровода после кристаллизации электролита. В случае увеличения электролита в смеси больше чем 1,8%, например 2,3%, приводит к увеличению расстояния между зернами, что снижает электротехнические характеристики магнитопровода (магнитные свойства).

Температура - нижний предел минус 5°C - определяется таянием электролита, находящегося в составе магнитопровода, например +5°C, при этой температуре утрачивается механическая прочность магнитопровода. Верхний предел, например -90°C, определяется хрупкостью затвердевшего электролита, а также его электротехническими свойствами при низких температурах.

Собранная схема с дисперсным магнитопроводом позволила осуществить трансформацию тока с использованием зерен металла вместо пластин (листа), а механическая прочность обеспечивалась путем кристаллизации электролита при отрицательных температурах между зернами (гранулами) магнитопровода.

Способ изготовления дисперсных магнитопроводов, включающий формирование тела магнитопровода и установку на него катушки, отличающийся тем, что магнитопровод формируют из порошка электротехнической стали с величиной частиц 0,001-0,35 мм, который помещают в полость формы, имеющей не менее двух перегородок толщиной 0,4 мм, затем перемешивают с электролитом в количестве 1,0-1,8% от объема металлического порошка, после чего форму помещают в среду с температурой ниже температуры замерзания электролита на 5-78°C, после затвердевания электролита части магнитопровода извлекают из формы, устанавливают на него катушки, торцы магнитопроводов смачивают смесью, содержащей электролит и частицы электротехнической стали, соединяют их между собой и помещают в среду температур ниже температуры замерзания электролита.



 

Похожие патенты:

Изобретение относится к электротехнике, к изготовлению трансформаторов. Технический результат состоит в снижении индуктивности рассеяния, сопротивления, улучшении теплоотвода от внутренних рядов обмотки, снижении уровня шума.

Изобретение принадлежит области техники быстрого отверждения аморфного сплава, а конкретно относится к широкой ленте из аморфного сплава на основе железа, в которой ширина составляет 220-1000 мм, толщина составляет 0,02-0,03 мм, поперечное отклонение толщины составляет менее +/-0,002 мм, коэффициент слоистости составляет более 0,84, магнитная индукция насыщения составляет более 1,5 Тл, потери в железе составляют менее 0,20 Вт/кг, при условиях, когда частота составляет 50 Гц, и максимальная магнитная индукция составляет 1,3 Тл, а мощность возбуждения составляет менее 0,50 ВА/кг.

Изобретение относится к электротехнике, к технологии изготовления пластинчатых трансформаторов и может быть использовано в электротехнической и радиотехнической промышленности.

Изобретение относится к электротехнике и может быть использовано при изготовлении стыковых магнитопроводов в трансформаторах. Технический результат состоит в обеспечении стабильности технических параметров трансформаторов за счет получения зазоров в стыковых магнитопроводах любой требуемой величины, одинаковых по всей площади сопряжения.

Изобретение относится к электротехнике и может быть использовано в трансформаторах. Технический результат состоит в упрощении конструкции и эксплуатации.

Редкоземельный спеченный магнит состоит по существу из 26-36 вес.% R, 0,5-1,5 вес.% В, 0,1-2,0 вес.% Ni, 0,1-3,0 вес.% Si, 0,05-1,0 вес.% Cu, 0,05-4,0 вес.% M, а остальное - Т и случайные примеси, где R представляет собой редкоземельный элемент, Т представляет собой Fe или Fe и Со, М выбран из Ga, Zr, Nb, Hf, Ta, W, Mo, Al, V, Cr, Ti, Ag, Mn, Ge, Sn, Bi, Pb и Zn.

Изобретение относится к электротехнике, а именно к способу обработки шихтованного магнитопровода броневого трансформатора, содержащего ярма и стержни, набранные из отдельных слоев ферромагнитных прямоугольных узких и широких пластин и включает следующие технологические операции.

Изобретение относится к области электротехники и может быть использовано для изготовления ротора-рабочего колеса аксиальных центробежных двигателей-насосов. Технический результат состоит в обеспечении высокой точности изготовления рабочего колеса-ротора аксиальных центробежных двигателей-насосов, высокой надежности соединения ротора и рабочего колеса.

Изобретение относится к электротехнике. Технический результат состоит в снижении потерь в подшипнике и улучшении эффективности работы осевого канала.

Изобретение относится к электротехнике, к магнитам из редкоземельных металлов. Технический результат состоит в повышении коэрцитивной силы без добавления большого количества таких редкоземельных металлов, как Dy и Tb.

Изобретение относится к электротехнике, к изготовлению элементов магнитной системы, используемых для локализации и направления основного магнитного потока, а также магнитного потока рассеивания. Технический результат состоит в повышении надежности и за счет увеличения электрической и механической прочности, снижении электромагнитных потерь, улучшении их магнитных характеристик, повышении технологичности изготовления и снижении себестоимости. Способ включает изготовление не менее одной заготовки путем навивки полосы из электротехнической стали в направлении прокатки на оправку заданной формы и одновременную дополнительную изоляцию витков полосы между собой, разрезку витой заготовки по радиальному размеру, зачистку и травление разрезанных торцов и дальнейшую термообработку. Дополнительную изоляцию витков полосы проводят нанесением в процессе навивки на поверхность полосы изоляционного склеивающего компаунда. Затем проводят стяжку заготовки по радиальному размеру лентой на основе стекловолокнистого материала. Термообработку проводят при температуре не выше 300°С. Из охлажденной после термообработки заготовки вдоль радиального размера вырезают участок длиной не менее 20 мм. Затем внутрь вырезанного участка устанавливают и плотно закрепляют вставку, которую изготавливают по крайней мере из одного пакета соединенных по направлению прокатки изолированных полос электротехнической стали, покрытых изолирующим склеивающим компаундом, дополнительно изолированных по торцам прокладками из диэлектрического материала. Шихтованную часть поверхности пакетов вставки устанавливают напротив шихтованной поверхности витых разрезных заготовок. 3 з.п. ф-лы, 3 ил.

Изобретение относится к электротехнике и может быть использовано в муфтах вентиляторов транспортных средств. Технический результат состоит в упрощении конструкции. Оппозитный стальной сердечник содержит пазы (12; 13) стального сердечника, расположенные в осевом направлении аналогично обратными сторонами друг к другу на корпусе (11) электромагнитного стального сердечника. Способ изготовления оппозитного стального сердечника включает прямое вытягивание корпуса (11) стального сердечника с образованием пазов стального сердечника, расположенных аналогично обратными сторонами друг к другу, или прямое выдавливание корпуса (11) стального сердечника с образованием пазов стального сердечника, расположенных аналогично обратными сторонами друг к другу. Электромагнитная муфта вентилятора, выполненная с помощью оппозитного стального сердечника, содержит первый рабочий зазор (841) и второй рабочий зазор (842) соответственно на двух сторонах корпуса (11) электромагнитного стального сердечника устройства с оппозитным стальным сердечником. 4 н. и 19 з.п. ф-лы, 11 ил.
Наверх