Имплантированное ионами цинка кварцевое стекло

Изобретение относится к кварцевым стеклам, имплантированным ионами цинка, и может быть использовано при создании компонентов микро-(нано-) и оптоэлектронных устройств, в частности микроминиатюрных источников света для планарных тонкопленочных волноводных систем и оптических интегральных схем. Кварцевое стекло представляет собой основу из диоксида кремния с модифицированным поверхностным слоем, включающим монофазные включения в виде кристаллических нанокластеров Zn2SiO4, которые имеют диаметры 4÷10 нм и распределены в поверхностном слое стекла на глубинах 10÷50 нм. Стекло получено имплантацией в импульсном режиме при длительности импульсов 0,3-0,4 мс, частоте повторения импульсов 12,5-20 Гц, импульсной плотности тока 0,8-0,9 мА/см2, дозе облучения (4,5-5)·1016 ион/см2, энергии ионов 30-35 кэВ и температуре диоксида кремния 60-350°C. Полученное стекло характеризуется повышенной удельной интенсивностью в зеленой области спектра (500-600 нм). 2 ил., 1 табл., 3 пр.

 

Изобретение относится к кварцевым стеклам, имплантированным ионами цинка, и может быть использовано при создании компонентов микро-(нано-) и оптоэлектронных устройств, в частности микроминиатюрных источников света для планарных тонкопленочных волноводных систем и оптических интегральных схем.

Известен коммерческий люминофор в виде кристаллов и порошков виллемита Zn2SiO4, активированных марганцем [James Н. Schulman J. Appl. Phys. 17, 902 (1946)]. Материал характеризуется полосой фотолюминесценции в зеленой области спектра 500÷550 нм. Однако материал не соответствует требованиям при создании нового поколения приборов оптоэлектроники и нанофотоники с повышенной степенью интеграции светоизлучающих компонентов, в частности, при разработке эффективных микроминиатюрных источников света для планарных тонкопленочных волноводных систем с соответствующей областью прозрачности.

Прототипом изобретения является имплантированное ионами цинка кварцевое стекло [Y. Shen et al. Fabrication and thermal evolution of nanoparticles in SiO2 by Zn ion implantation. Journal of Crystal Growth, 2009, 311, 4605-4609]. Стекло содержит четыре фазы - основу из диоксида кремния, а также микровключения металлического цинка, оксида цинка ZnO и виллемита Zn2SiO4. Фазовый состав определен методом рентгеновской дифракции. Композит получен путем имплантации в диоксид кремния ионов цинка в непрерывном режиме облучения с энергией 45 кэВ, с последующим отжигом полученного материала при температуре 700÷900°C в течение одного часа в кислородной атмосфере. Фаза виллемита образуется при температуре отжига не менее 900°C.

Недостатком прототипа является пониженная удельная интенсивность излучения в зеленой области спектра 500÷600 нм вследствие присутствия фаз металлического цинка и ZnO, обуславливающих наличие полос оптического поглощения в спектральной области 250÷350 нм, что приводит к значительному снижению выхода люминесценции в указанных диапазонах спектра.

Задачей изобретения является создание кварцевого стекла в виде основы SiO2, имеющего зеленое излучение в видимой области (500÷600 нм) с высокой удельной интенсивностью и обеспечение возможности использования кварцевого стекла в микроминиатюрных устройствах оптоэлектроники и фотоники.

Для решения указанной задачи имплантированное ионами цинка кварцевое стекло, представляющее собой основу из диоксида кремния с поверхностным слоем, включающим микрокристаллы виллемита Zn2SiO4, отличается тем, что стекло содержит в поверхностном слое монофазные включения в виде кристаллических нанокластеров Zn2SiO4, которые имеют диаметры 4÷10 нм и распределены в поверхностном слое стекла на глубинах 10÷50 нм.

Фазовый состав стекла определен методом рентгеновской дифракции (фиг. 1). В дифрактограммах имплантированного и отожженного стекла присутствуют рефлексы 110 и 220 (индексы Миллера), соответствующие фазе Zn2SiO4, включающей кристаллические нанокластеры Zn2SiO4, с диаметрами 4÷10 нм, распределенные в поверхностном слое стекла на глубинах 10÷50 нм, и присутствует рефлекс А, соответствующий наличию в стекле кристаллических включений в аморфной основе стекла - диоксиде кремния SiO2. Размер и распределение наночастиц контролировалось методами электронной микроскопии и рентгеновской дифракции. Отсутствие в стекле фаз металлического Zn и оксида ZnO обеспечивает оптическую прозрачность стекла в спектральной области 200÷350 нм, что способствует повышению выхода люминесценции стекла в зеленой области спектра (500÷600 нм, фиг. 2, сплошная линия). Кроме того, возникшая в стекле оптическая прозрачность в области 200÷350 нм обеспечивает возможность введения в стекло дополнительных соактиваторов и сенсибилизаторов люминесценции, имеющих полосы поглощения в этой области спектра и обеспечивающих дополнительное повышение интенсивности излучения стекла в зеленой области спектра.

При фотовозбуждении в ультрафиолетовой области спектра предложенное кварцевое стекло имеет высокое удельное излучение в зеленой полосе спектра (500÷600 нм) с максимумом 521 нм (фиг. 2, сплошная линия). Удельная интенсивность люминесценции полученного материала (фиг. 2, сплошная линия) в 10 раз превышает удельную интенсивность свечения керамики Zn2SiO4 в этой же области спектра (фиг. 2, пунктир). Удельная интенсивность здесь - это отношение интенсивности к объему излучающего слоя, представляющего собой в данном случае поверхностный слой кварцевого стекла размерами 1 см × 1 см × 50 нм.

Новый технический результат - повышение удельной интенсивности излучения и возможность использования в микроминиатюрных устройствах оптоэлектроники и фотоники, обеспечивается в предложенном стекле за счет того, что стекло содержит в поверхностном слое монофазные включения в виде кристаллических нанокластеров Zn2SiO4, которые имеют диаметры 4÷10 нм и распределены в поверхностном слое стекла на глубинах 10÷50 нм. При этом высокая интенсивность излучения в зеленой области спектра (500÷600 нм) обеспечена за счет содержания в поверхностном слое стекла монофазных включений в виде кристаллических нанокластеров Zn2SiO4, имеющих диаметры 4÷10 нм и за счет оптической прозрачности стекла в спектральной области 200÷350 нм.

Увеличение диаметра нанокристаллов более 10 нм приводит к плавному снижению удельной интенсивности зеленого излучения (максимум 521 нм) предложенного стекла. При диаметре нанокристаллов менее 4 нм полоса зеленой люминесценции с максимумом 521 нм в предложенном стекле не проявляется.

Образование нанокристаллов Zn2SiO4 в кварцевом стекле на глубинах менее 10 нм приводит к деградации свойств стекла за счет химического взаимодействия с окружающей средой через слишком тонкий защитный слой диоксида кремния. Формирование нанокристаллов на глубинах более 50 нм не соответствует требованиям при создании современных приборов оптоэлектроники и фотоники с повышенной степенью интеграции светоизлучающих компонентов, а также приводит к необходимости пропорционального увеличения энергии и дозы ионного облучения, что не эффективно.

Повышенная интенсивность излучения в зеленой области спектра является новым, неожиданным техническим результатом изобретения. Другим неожиданным техническим результатом является возможность использования предложенного кварцевого стекла в микроминиатюрных устройствах оптоэлектроники и фотоники. Это обеспечивает, в частности, повышение эффективности работы микроминиатюрных источников света в планарных тонкопленочных волноводных системах.

Изобретение поясняется фигурами, на которых изображены:

фиг. 1 - рентгеновская дифрактограмма предложенного стекла, содержащая рефлексы 110 и 220 фазы Zn2SiO4. и рефлекс А, соответствующий наличию в стекле кристаллических включений в аморфной основе стекла - диоксиде кремния SiO2; по оси абсцисс отложен угол дифракции рентгеновских лучей (, град), по оси ординат отложена интенсивность рентгеновского излучения (отн. ед.);

фиг. 2 - спектры излучения предложенного стекла (сплошная линия) и стекла по прототипу (пунктир), по оси абсцисс отложены длины волн излучения в нм, по оси ординат - удельная интенсивность излучения в относительных единицах.

Предложенное кварцевое стекло получают следующим образом.

Имплантацию ионов цинка в кварцевое стекло SiO2 осуществляют с помощью ионного источника, работающего в импульсном режиме при указанных ниже в таблице параметрах, а также при глубине вакуума (1,4÷2,5)×10-4 Торр. Перед имплантацией вакуум-камеру ионного источника откачивают турбомолекулярным насосом до давления 3×10-5 Торр. Для удаления примесей катода проводят предварительную имплантацию в течение нескольких минут в экран, установленный перед анодом. В качестве катода используют гранулированный цинк с содержанием основного компонента 99,6%, в качестве анода - образцы аморфного кварцевого стекла типа КУ. Перед имплантацией образцы кварцевого стекла промывают в спирте в ультразвуковой ванне.

Отжиг кварцевого стекла после его имплантации ионами цинка производят в воздушной атмосфере с использованием электропечи сопротивления (типа НТ 40/16).

Полученные образцы кварцевого стекла представляют собой плоскопараллельные пластины площадью 1 см2, толщиной 1 мм, с поверхностью оптического качества. Поверхностный слой каждого образца включает нанокластеры Zn2SiO4, нижележащая основа образца состоит из нелегированного диоксида кремния. Фотолюминесценцию полученного кварцевого стекла возбуждают ультрафиолетовым излучением с энергией фотонов в интервале 3÷6 эВ через монохроматор. Фотолюминесцентные спектры регистрируют с помощью фотоумножителя R6358P Hamamatsu.

В нижеуказанной таблице приведены режимы импульсного облучения ионами цинка основы из диоксида кремния, режимы отжига, а также удельные интенсивности излучения полученных образцов (1, 2, 3) предложенного кварцевого стекла.

Фотолюминесцентный спектр излучения образца №3 полученного кварцевого стекла приведен на фиг. 2 (сплошная линия). Спектры излучения образцов №1 и №2 по форме соответствуют спектру образца №3, отличаясь амплитудами излучения, указанными в таблице.

Ниже описаны примеры образцов предложенного кварцевого стекла. Номера примеров соответствуют номерам образцов в таблице.

Пример 1. Имплантацию ионов цинка в кварцевое стекло проводят с помощью ионного источника, работающего в импульсном режиме с длительностью импульсов 0,35 мс, частотой повторения импульсов 17 Гц, импульсной плотностью ионного тока 0,85 мА/см2, дозой облучения 4,7×1016 ион/см2 и энергией ионов цинка 33 кэВ, при температуре диоксида кремния не более 350°C. Последующий отжиг имплантированного ионами цинка кварцевого стекла осуществляют при температуре 870°C в течение 60 мин в воздушной атмосфере. Полученный образец №1 содержит монофазные включения в виде кристаллических нанокластеров Zn2SiO4, которые имеют диаметры 3÷9 нм и распределены в поверхностном слое стекла на глубинах 10÷50 нм. Интенсивность удельного излучения полученного образца №1 составила 2311 отн. ед. в максимуме на длине волны 521 нм.

Пример 2. Имплантацию ионов цинка в кварцевое стекло проводят с помощью ионного источника, работающего в импульсном режиме с длительностью импульсов 0,3 мс, частотой повторения импульсов 12,5 Гц, импульсной плотностью ионного тока 0,8 мА/см2, дозой облучения 4,5×1016 ион/см2 и энергией ионов цинка 30 кэВ, при температуре диоксида кремния не более 60°C. Последующий отжиг имплантированного ионами цинка кварцевого стекла осуществляют при температуре 850°C в течение 50 мин в воздушной атмосфере. Полученный образец №2 содержит монофазные включения в виде кристаллических нанокластеров Zn2SiO4, которые имеют диаметры 3÷9 нм и распределены в поверхностном слое стекла на глубинах 10÷50 нм. Интенсивность излучения полученного образца №2 составила 1956 отн. ед. в максимуме на длине волны 521 нм.

Пример 3. Имплантацию ионов цинка в кварцевое стекло проводят с помощью ионного источника, работающего в импульсном режиме с длительностью импульсов 0,4 мс, частотой повторения импульсов 20 Гц, импульсной плотностью ионного тока 0,6 мА/см2, дозой облучения 5×1016 ион/см2 и энергией ионов цинка 35 кэВ, при температуре диоксида кремния не более 200°C. Последующий отжиг имплантированного ионами цинка кварцевого стекла осуществляют при температуре 900°C в течение 70 мин в воздушной атмосфере. Полученный образец №3 содержит монофазные включения в виде кристаллических нанокластеров Zn2SiO4, которые имеют диаметры 4÷10 нм и распределены в поверхностном слое стекла на глубинах 10÷50 нм. Интенсивность излучения полученного образца №3 составила 2483 отн. ед. в максимуме на длине волны 521 нм.

Имплантированное ионами цинка кварцевое стекло, представляющее собой основу из диоксида кремния с поверхностным слоем, включающим монофазные включения в виде кристаллических нанокластеров Zn2SiO4, отличающееся тем, что оно получено имплантацией в импульсном режиме при длительности импульсов 0,3-0,4 мс, частоте повторения импульсов 12,5-20 Гц, импульсной плотности тока 0,8-0,9 мА/см2, дозе облучения (4,5-5)·1016 ион/см2, энергии ионов 30-35 кэВ и температуре диоксида кремния 60-350°C, при этом нанокластеры Zn2SiO4 имеют диаметры 4-10 нм и распределены в поверхностном слое стекла на глубине 10-50 нм.



 

Похожие патенты:

Изобретение относится к люминесцентным материалам для конверсии вакуумного ультрафиолетового излучения в излучение видимого диапазона, предназначенным для создания функциональных элементов фотонных приборов нового поколения, а также для контроля жесткого ультрафиолетового излучения в вакуумных технологических процессах.

Изобретение относится к области ионнолучевой вакуумной обработки материалов, в частности к способу ионной имплантации поверхностей деталей из конструкционной стали, и может быть использовано в машиностроении для повышения износостойкости деталей машин и механизмов.

Изобретение относится к технологии плазменной обработки поверхности материалов, в частности, для создания высоконадежных защитных покрытий оболочек тепловыделяющих элементов (твэл) ядерного реактора.

Изобретение относится к способу получения покрытия на поверхности металлического изделия и может быть использовано для обработки поверхностей лопаток компрессора газотурбинных двигателей и установок.

Изобретение относится к способу нанесения покрытия на подложку из жаропрочного никелевого сплава и изделию из жаропрочного никелевого сплава. Изделие включает подложку из никелевого сплава и модифицированную подповерхностную область и объемную область.

Изобретение относится к машиностроению и металлургии, а именно к устройству для формирования на поверхности полых стальных деталей наноструктурированных покрытий с эффектом памяти формы.

Изобретение относится к области получения защитно-декоративных покрытий в вакууме. Способ по первому варианту включает физическое PVD осаждение в вакууме адгезионного слоя на изделие, нанесение на адгезионный слой внутреннего слоя и затем выполнение наружного слоя.

Изобретение относится к способу изготовления дифракционных решеток для видимого диапазона, выполненных на основе полимерных материалов. Способ включает в себя формирование заданной дифракционной периодической микроструктуры на полимерной подложке за счёт имплантации ионов металла с энергией 4-1200 кэВ, дозой облучения, которая обеспечивает концентрацию вводимых атомов металла 2.5·1020 - 6.5·1022 атомов/см3 в облучаемой подложке.

Изобретение относится к области машиностроения и может быть использовано для ионно-плазменного упрочнения инструмента с размерами, превышающими габариты рабочей камеры установки.
Изобретение относится к способам защиты лопаток турбомашин из легированных сталей от эрозии и солевой коррозии. Проводят подготовку поверхности пера лопатки под нанесение покрытия электролитно-плазменным полированием в электролите в виде 4 - 8% водного раствора сульфата аммония при напряжении 260-320 В и температуре 60-80°C.
Изобретение относится к области металлургии, в частности к высокопрочным сплавам на основе никеля для получения износостойких покрытий на металлические конструктивные элементы.

Изобретение относится к электронно-лучевой обработке металлов и может быть использовано для создания коррозионно-стойких покрытий на изделиях из титана. .

Изобретение относится к способу получения тонких пленок карбида кремния методом вакуумной лазерной абляции и может быть использовано для получения тонкопленочных покрытий и активных слоев тонкопленочных приемников УФ-излучения в микроэлектронике.

Изобретение относится к обработке материалов , решает задачу повышения их износостойкости и может найти применение в различных областях машиностроения и инструментального производства для повышения срока службы изделий и инструмента, работающих в паре с изделиями из сплавов титана.

Изобретение может быть использовано в химии, биологии и медицине в целях визуализации и диагностики. Неорганические коллоидные полупроводниковые нанокристаллы переносят из органической в водную фазу, не смешивающуюся с органической фазой, с помощью катализатора межфазного переноса.

Изобретение может быть использовано при изготовлении люминесцентных материалов для лазеров, светодиодов, солнечных батарей и биометок. В реактор загружают 2,5-5% раствор желатина в дистиллированной воде при температуре 20-30°C, нагревают его до 40-90°C и заливают 96%-этанол в количестве 2,5% от объема раствора желатина.

Изобретение относится к электронной технике. Цинкооксидный люминофор осаждают из безводной инертной среды на подложку, помещают внутрь вакуумной камеры в зону косвенного подогрева.

Изобретение относится к светопреобразующему укрывному материалу для теплиц и к композиции для получения такого материала и может применяться в сельском хозяйстве и растениеводстве для выращивания растений в защищенном грунте.
Изобретение относится к химической технологии, в частности к способу получения электролюминофоров на основе сульфида цинка. .
Изобретение относится к химической технологии получения электролюминофоров на основе сульфида цинка. .

Изобретение относится к кварцевым стеклам, имплантированным ионами цинка, и может быть использовано при создании компонентов микро- и оптоэлектронных устройств, в частности микроминиатюрных источников света для планарных тонкопленочных волноводных систем и оптических интегральных схем. Кварцевое стекло представляет собой основу из диоксида кремния с модифицированным поверхностным слоем, включающим монофазные включения в виде кристаллических нанокластеров Zn2SiO4, которые имеют диаметры 4÷10 нм и распределены в поверхностном слое стекла на глубинах 10÷50 нм. Стекло получено имплантацией в импульсном режиме при длительности импульсов 0,3-0,4 мс, частоте повторения импульсов 12,5-20 Гц, импульсной плотности тока 0,8-0,9 мАсм2, дозе облучения ·1016 ионсм2, энергии ионов 30-35 кэВ и температуре диоксида кремния 60-350°C. Полученное стекло характеризуется повышенной удельной интенсивностью в зеленой области спектра. 2 ил., 1 табл., 3 пр.

Наверх