Активный гидролокатор

Использование: изобретение относится к гидроакустической технике, конкретнее к области активной гидролокации, в том числе к активным гидролокаторам, предназначенным для обнаружения объектов, измерения координат и параметров движения обнаруженных объектов и классификации обнаруженных объектов. Сущность: определение параметров бликовой структуры выполняется путем измерения временного положения максимумов откликов, соответствующих отдельным бликам, определения интервалов времени между положениями максимумов и интервалов по дистанции между отдельными бликами от объекта. Возможность определения параметров бликовой структуры и, следовательно, классификации обнаруженных объектов по бликовой структуре в заявленном гидролокаторе связана с тем, что длительность откликов на выходе согласованного фильтра для специально сформированного сложного сигнала существенно меньше длительности сигнального отклика для тонального зондирующего сигнала большой длительности. Технический результат: при большой длительности тонального зондирующего сигнала обеспечивается возможность выявления бликовой структуры принимаемого эхосигнала, которая необходима для выполнения классификации обнаруженного объекта по бликовой структуре. 2 ил.

 

Изобретение относится к гидроакустической технике, конкретнее к области активной гидролокации, в том числе к активным гидролокаторам, предназначенным для обнаружения объектов, измерения координат и параметров движения обнаруженных объектов и классификации обнаруженных объектов.

Важной является задача классификации обнаруженных гидролокатором объектов. Классификация по типу обнаруженного объекта выполняется, в том числе, и на основе анализа бликовой структуры эхосигнала от этого объекта.

Следует отметить, что для обеспечения большой дальности обнаружения необходимо применение тональных зондирующих сигналов большой длительности, а для классификации обнаруженного объекта по бликовой структуре необходимо обеспечить высокую разрешающую способность по дистанции, что возможно при тональных зондирующих сигналах малой длительности. Таким образом, для тонального зондирующего сигнала имеет место противоречие между требованиями по дальности обнаружения объекта и требованиями по классификации объекта по бликовой структуре сигнала.

Известен активный гидролокатор (патент РФ №2346295), содержащий акустические излучающую и приемную антенны, устройство формирования тонального зондирующего сигнала, генераторное устройство, устройство управления, устройство формирования характеристик направленности, блок измерения времени задержки эхосигнала относительно момента излучения зондирующего сигнала, блок измерения угла прихода эхосигнала в вертикальной плоскости, блок измерения глубины цели.

Однако данный гидролокатор не позволяет производить классификацию обнаруженных объектов.

Известен способ классификации объектов по параметрам бликовой структуры эхосигнала и гидролокатор, реализующий этот способ (патент США №4084148). Гидролокатор содержит генератор, формирующий короткий тональный сигнал, излучатель и приемник звука, также содержит первый преобразователь Фурье, второй преобразователь Фурье, инвертор, умножитель, третий преобразователь Фурье, на выходе которого возникает последовательность импульсов, соответствующая бликовой структуре эхосигнала.

Недостатком этого гидролокатора является то, что при большой длительности тонального зондирующего сигнала, необходимой для обеспечения значительных дальностей обнаружения эхосигналов, отсутствует возможность выявления бликовой структуры принимаемого эхосигнала. Это связано с тем, что при большой длительности тонального зондирующего сигнала гидролокатор имеет высокую разрешающую способность по радиальной скорости, но имеет весьма низкую разрешающую способность по дистанции (по времени).

По количеству общих признаков наиболее близким аналогом предлагаемого изобретения является активный гидролокатор с классификацией объекта, содержащий последовательно соединенные устройство управления, устройство формирования тонального зондирующего сигнала, генераторное устройство и излучающую акустическую антенну, также содержащий последовательно соединенные приемную акустическую антенну, устройство обработки сигналов, устройство обнаружения эхосигнала, второй вход которого соединен со вторым выходом устройства управления, и устройство классификации объекта (Гидроакустические средства связи и наблюдения. В.Б. Митько, А.П. Евтютов, С.Е. Гущин. Л.: Судостроение, 1982. С. 133-141). Устройство классификации объекта реализуется на основе анализа спектральных характеристик эхосигналов, использования частотной зависимости интенсивности эхосигналов в широком диапазоне частот от резонансных свойств обнаруженных объектов, оценки размеров обнаруженных объектов.

Недостатком этого гидролокатора-прототипа является отсутствие возможности оценки параметров бликовой структуры эхосигнала, необходимой для классификации объекта по бликовой структуре эхосигнала. Бликовая структура эхосигнала также является одним из важных классификационных признаков (см. патент США №4084148), использование которого позволяющая повысить вероятность правильной классификации обнаруженных объектов.

Целью изобретения является обеспечение возможности классификации обнаруженных объектов по их бликовой структуре при применении тональных зондирующих сигналов большой длительности, которые обеспечивают реализацию значительных дальностей обнаружения объектов.

Техническим результатом изобретения является возможность определения параметров бликовой структуры эхосигнала для гидролокатора с тональными зондирующими сигналами большой длительности, существенно превышающей временную протяженность бликовой структуры эхосигнала.

Для достижения данного технического результата в активный гидролокатор с классификацией объекта, содержащий последовательно соединенные устройство управления, устройство формирования тонального зондирующего сигнала, генераторное устройство и излучающую акустическую антенну, также содержащий последовательно соединенные приемную акустическую антенну, устройство обработки сигналов, устройство обнаружения эхосигнала, второй вход которого соединен со вторым выходом устройства управления, и устройство классификации объекта, введены новые признаки, а именно: последовательно соединенные сигнальное запоминающее устройство, устройство выделения сигнального отклика тонального сигнала, модулятор, согласованный фильтр и устройство определения параметров бликовой структуры, также введены устройство выработки строба, последовательно соединенные устройство оценки времен прихода элементарных эхосигналов, устройство выбора моментов начала формирования модулирующих функций и устройство формирования модулирующих функций сложного сигнала, при этом вход устройства оценки времен прихода элементарных эхосигналов соединен со вторым выходом устройства выделения сигнального отклика тонального сигнала, а первый и второй выходы устройства формирования модулирующей функции сложного сигнала соединены со вторыми входами модулятора и согласованного фильтра соответственно, вход устройства выработки строба соединен с выходом устройства обнаружения эхосигнала, второй выход устройства обработки сигналов соединен с первым входом сигнального запоминающего устройства, первый, второй и третий выходы устройства выработки строба соединены со вторым входом сигнального запоминающего устройства, вторым входом устройства выделения сигнального отклика тонального сигнала и вторым входом устройства определения параметров бликовой структуры соответственно, а третий выход устройства выделения сигнального отклика тонального сигнала соединен со вторым входом устройства формирования модулирующей функции сложного сигнала.

Указанный технический результат достигается за счет того, что определение параметров бликовой структуры эхосигнала для гидролокатора с тональными зондирующими сигналами большой длительности производится на основе получения бликовой структуры на выходе согласованного фильтра для специально сформированных сложных сигналов. Причем полученные при этом длительности откликов, соответствующих отдельным бликам, существенно меньше (в десятки раз) длительности сигнального отклика тонального сигнала. Таким образом, отдельные блики эхосигнала могут быть разделены по времени. Такой результат получается в связи с тем, что разрешающая способность по времени сформированных сложных сигналов существенно выше, чем разрешающая способность тонального сигнала той же длительности. Таким образом, для гидролокатора с тональными зондирующими сигналами большой длительности, выполняющего обнаружение объекта на больших дистанциях появляется возможность оценки параметров бликовой структуры и, следовательно, классификации объекта по бликовой структуре. Данный технический результат получается при совместной работе вновь введенных блоков, связей между ними и связей этих блоков с другими блоками гидролокатора.

Сущность изобретения поясняется фиг. 1 и фиг. 2, где на фиг. 1 приведена блок-схема предложенного активного гидролокатора, а на фиг. 2 представлены огибающая принятого тонального эхосигнала (штриховая линия) и огибающая отклика специально сформированного сложного сигнала на выходе согласованного фильтра (сплошная линия). По горизонтальной оси на фиг. 2 - время в секундах, по вертикальной оси - уровень сигнала в вольтах.

Активный гидролокатор с классификацией объекта (фиг. 1) содержит последовательно соединенные устройство 3 управления, устройство 4 формирования тонального зондирующего сигнала, генераторное устройство 5 и излучающую акустическую антенну 1. Гидролокатор (фиг. 1) содержит также последовательно соединенные приемную акустическую антенну 2, устройство 6 обработки сигналов и устройство 7 обнаружения эхосигнала, второй вход которого соединен со вторым выходом устройства 3. Также заявленный активный гидролокатор содержит последовательно соединенные сигнальное запоминающее устройство 8, устройство 9 выделения сигнального отклика тонального сигнала, модулятор 10, согласованный фильтр 11, устройство 12 определения параметров бликовой структуры и устройство 13 классификации объекта, также содержит устройство 14 выработки строба, последовательно соединенные устройство 15 оценки времен прихода элементарных эхосигналов, устройство 16 выбора моментов начала формирования модулирующих функций и устройство 17 формирования модулирующей функции сложного сигнала, при этом вход устройства 15 соединен со вторым выходом устройства 9, а первый и второй выходы устройства 17 соединены со вторыми входами модулятора 10 и согласованного фильтра 11 соответственно. Вход устройства 14 соединен с выходом устройства 7, второй выход устройства 6 соединен с первым входом устройства 8, первый, второй и третий выходы устройства 14 соединены со вторым входом устройства 8, вторым входом устройства 9 и вторым входом устройства 12 соответственно, а третий выход устройства 9 соединен со вторым входом устройства 17.

Практическое исполнение блоков, входящих в изобретение, известно из практики гидроакустики и реализуется на основе применения цифровых устройств.

Блок 8 и согласованный фильтр 11 могут быть реализованы на основе технических решений, приведенных в книге Проектирование импульсных и цифровых устройств радиотехнических систем. / Гришин Ю.П., Казаринов Ю.М., Катиков В.М. и др.; Под ред. Ю.М. Казаринова. М.: Высш. шк., 1985. на С. 51 и С. 147-150.

Блоки 10, 17 выполняются с использованием технических решений, приведенных в книге Проектирование импульсных и цифровых устройств радиотехнических систем. /Цифровые радионавигационные устройства/ В.В. Барашенков, А.Е. Лутченко, Е.М.Скороходов и др.; под ред. В.Б. Смолова. М.: Сов. радио, 1980. С. 196-206.

Блоки 9, 14 реализуются с использованием технических средств, описанных в книге Проектирование импульсных и цифровых устройств радиотехнических систем. /Гришин Ю.П., Казаринов Ю.М., Катиков В.М. и др.; Под ред. Ю.М. Казаринова. М.: Высш. шк., 1985. С. 155-163.

Работа устройства осуществляется следующим образом. Устройство 4 формирования тонального зондирующего сигнала вырабатывает зондирующие сигналы. Гидролокатор производит излучение зондирующего сигнала с помощью генераторного устройства 5 и излучающей акустической антенны 1. Отраженный от объекта эхосигнал с выхода приемной акустической антенны 2 поступает на устройство 6, обеспечивающее обработку принятых сигналов, и далее на устройство 7 обнаружения эхосигнала. С выхода блока 6 сигнальный процесс поступает на вход сигнального запоминающего устройства 8, которое работает в режиме обновления запоминаемой информации. При обнаружении эхосигнала в устройстве 14 вырабатывается стробирующий импульс, середина которого по времени соответствует моменту обнаружения эхосигнала, а длительность которого дает возможность, с учетом приборных ошибок сформировать в блоке 8 необходимый массив сигнального процесса, включающий на некоторой протяженности по времени как отклик тонального сигнала, так и шумы. Этот массив передается в блок 9. В блоке 9 происходит выделение сигнального отклика тонального сигнала из поступившего в блок 9 массива. Из блока 9 сигнальный отклик тонального сигнала в виде радиоимпульса (то есть импульса с высокочастотным заполнением) поступает на вход блока 15, где выполняются приближенные оценки времен прихода элементарных эхосигналов, соответствующих эхосигналам от отдельных «бликов» объекта. Эти приближенные оценки выполняются, например, по моментам времени изменения уровня огибающей принятого сигнала, представляющего собой сумму элементарных тональных эхосигналов (см. фиг. 2). С выхода блока 15 данные о временах прихода элементарных эхосигналов поступают в блок 16, где производится определение моментов начала формирования модулирующих функций сложных сигналов, соответствующих приближенным оценкам времен прихода элементарных сигналов. С выхода блока 16 выбранные моменты формирования модулирующих функций поступают на вход блока 17, в котором выполняется формирование модулирующих функций специального сложного сигнала. С выхода блока 17 сформированные модулирующие функции поступают на входы блока 10 и блока 11. В блоке 10 выполняется модуляция сигнального отклика тонального сигнала, поступившего из блока 9, с помощью передаваемых из блока 17 модулирующих функций с учетом поступивших из блока 16 моментам начала формирования модулирующих функций. На вход блока 11 поступают сформированные с помощью модулятора 10 сложные сигналы, соответствующие временам прихода элементарных эхосигналов. Также из блока 9 в блок 17 поступает управляющий сигнал, задающий начало работы и параметры формирования модулирующих функций сложного сигнала. В результате на выходе блока 11 возникают сжатые по длительности отклики сложных эхосигналов, полученных с помощью модуляции сигнального отклика тонального сигнала и согласованной фильтрации специально сформированного сложного сигнала. Отклики сложного сигнала, полученные на выходе блока 11, соответствуют элементарным эхосигналам, то есть отдельным «бликам» эхосигнала. Таким образом, на выходе блока 11 получается сигнал, соответствующий бликовой структуре эхосигнала. Этот сигнал передается в блок 12. В этом сигнале отклики, соответствующие отдельным бликам разрешены, так как длительность откликов сформированных сложных сигналов существенно меньше сигнального отклика тонального сигнала. Вследствие этого определение параметров бликовой структуры становится возможным при использовании тональных зондирующих сигналов большой длительности. Этот эффект иллюстрируется на примере с помощью фиг. 2.

На фиг. 2 представлено:

- огибающая принятого тонального эхосигнала (штриховая линия), состоящая в данном примере из двух элементарных эхосигналов, соответствующих двум бликам отраженного сигнала. Длительность тонального зондирующего сигнала 0,5 с, элементарные эхосигналы разнесены на 0,2 с;

- огибающие откликов сложных эхосигналов на выходе согласованного фильтра (сплошная линия), соответствующих бликам отраженного сигнала. Ширина полосы сформированных в данном случае сложных сигналов равна 200 Гц, длительности основного лепестка огибающих сигнальных откликов сложных сигналов по уровню (минус 3 дБ) равны соответственно 5 мс.

Таким образом, в данном примере длительность отклика каждого сформированного сложного эхосигнала в 100 раз меньше длительности отклика тонального эхосигнала, за счет этого и происходит существенное повышение разрешающей способности по времени (дистанции), что дает возможность определения параметров бликовой структуры эхосигнала от объекта.

С выхода блока 11 огибающая отклика согласованного фильтра поступает на вход устройства 12 определения параметров бликовой структуры. В блоке 12 производится определение временного положения максимумов откликов, соответствующих отдельным бликам, и определение интервалов времени Δτi между положениями максимумов. Далее в блоке 12 определяются интервалы по дистанции Δdi между отдельными бликами от объекта с использованием соотношения

Δdi=c·Δτi/2,

где с - скорость звука в воде, Δτi - интервалы времени между положениями максимумов откликов на выходе блока 11.

Таким образом, в блоке 12 определены параметры бликовой структуры принятого эхосигнала, которые поступают в блок 13. В блоке 13 принимается решение о классе обнаруженного объекта по оценкам параметров его бликовой структуры (например, путем сравнения с базой данных по бликовым структурам объектов разных классов), а также по виду бликовой структуры, представляемой оператору гидролокатора на индикаторе блока 13. Оператор может принять решение о классе объекта по оценкам параметров бликовой структуры и по виду бликовой структуры эхосигнала на экране.

Устройство 3 управляет во времени формированием зондирующего сигнала (блок 4) и соответственно работой генераторного устройства 5, а также обеспечивает через блок 7 синхронизацию работы блоков 8, 9, 10, 12, 13, 14, 15, 16 и 17.

Использование сигнального запоминающего устройства, устройства выделения сигнального отклика тонального сигнала, устройства оценки времен прихода элементарных эхосигналов, устройства формирования модулирующей функции, модулятора, согласованного фильтра, устройства выработки строба, устройства определения параметров бликовой структуры, с соответствующими связями между этими блоками и связями этих блоков с другими блоками активного гидролокатора, обеспечивает возможность выявления бликовой структуры принимаемого эхосигнала при ольшой длительности тонального зондирующего сигнала на основе определения временного положения максимумов откликов, соответствующих отдельным бликам, определения интервалов времени Δτi между положениями максимумов и интервалов по дистанции Δdi между отдельными бликами от объекта. Возможность определения параметров бликовой структуры и тем самым выполнения классификации обнаруженного объекта в заявленном гидролокаторе связана с тем, что длительность откликов на выходе согласованного фильтра для специально сформированного сложного сигнала существенно меньше длительности сигнального отклика для тонального зондирующего сигнала большой длительности.

Таким образом, задача успешно решается.

Активный гидролокатор с классификацией объекта, содержащий последовательно соединенные устройство управления, устройство формирования тонального зондирующего сигнала, генераторное устройство и излучающую акустическую антенну, также содержащий последовательно соединенные приемную акустическую антенну, устройство обработки сигналов, устройство обнаружения эхосигнала, второй вход которого соединен со вторым выходом устройства управления, и устройство классификации объекта, отличающийся тем, что в него введены последовательно соединенные сигнальное запоминающее устройство, устройство выделения сигнального отклика тонального сигнала, модулятор, согласованный фильтр и устройство определения параметров бликовой структуры, также введены устройство выработки строба, последовательно соединенные устройство оценки времен прихода элементарных эхосигналов, устройство выбора моментов начала формирования модулирующих функций и устройство формирования модулирующих функций сложного сигнала, при этом вход устройства оценки времен прихода элементарных эхосигналов соединен со вторым выходом устройства выделения сигнального отклика тонального сигнала, а первый и второй выходы устройства формирования модулирующей функции сложного сигнала соединены со вторыми входами модулятора и согласованного фильтра соответственно, вход устройства выработки строба соединен с выходом устройства обнаружения эхосигнала, второй выход устройства обработки сигналов соединен с первым входом сигнального запоминающего устройства, первый, второй и третий выходы устройства выработки строба соединены со вторым входом сигнального запоминающего устройства, вторым входом устройства выделения сигнального отклика тонального сигнала и вторым входом устройства определения параметров бликовой структуры соответственно, а третий выход устройства выделения сигнального отклика тонального сигнала соединен со вторым входом устройства формирования модулирующей функции сложного сигнала.



 

Похожие патенты:

Изобретение относится к гидроакустике и может быть использовано для гидроакустического обеспечения противоторпедной защиты судов. Для гидроакустического обеспечения противоторпедной защиты корабля включают обнаружение и прием шумоизлучения торпеды гидроакустической станцией с буксируемой антенной переменной глубины, выработку прогноза движения торпеды, расчет данных стрельбы средствами самообороны и выработки маневра уклонения.

Изобретение относится к акустическим локационным системам, использующим параметрические излучающие системы, формирующие узконаправленные пучки низкочастотных акустических сигналов.

Изобретение относится к пассивному обнаружению движущихся в воде целей в условиях прибрежных морских областей и озер для осуществления охраны береговых сооружений и пляжей со стороны водной среды или охраны подводных сооружений, таких как проложенные под водой кабели, коллекторы, трубопроводы, а также охраны судов на якорной стоянке, морских нефтяных платформ, входов в порты, опор мостов, каналов, акваторий гидростанций от возможных нарушителей или террористов.

Использование: изобретение относится к акустике, конкретно к акустическим измерениям и цифровой обработке сигналов, и может быть использовано для измерений амплитудно-временных характеристик импульсных акустических сигналов, распространяющихся в неоднородных средах.

Использование: изобретение относится измерительной технике и гидроакустике и может быть использовано для проведения векторно-скалярных измерений параметров гидроакустических полей океана.

Использование: изобретение относится к области гидроакустики и предназначено для установки на надводных кораблях (НК), преимущественно на ледоколах, в составе эхолотов.

Изобретение относится к области гидроакустической техники и может быть использовано в составе оборудования, обеспечивающего получение изображения рельефа дна в реальном масштабе времени.

Использование: изобретение относится к гидроакустике и может быть использовано при разработке гидроакустической аппаратуры, предназначенной для обнаружения шумящих объектов.

Использование: изобретение относится к области гидроакустики и может быть использовано при разработке гидроакустической аппаратуры для повышения точности измерения дистанции, а также при проведении мониторинга морских районов.

Использование: изобретение относится к области гидроакустической техники и может быть использовано при поиске и распознавании подводных объектов в условиях ограниченной оптической видимости на основе формирования их акустического изображения.

Использование: настоящее изобретение относится к области гидролокации и предназначено для использования в станциях освещения ближней обстановки при измерении параметров обнаруженного объекта. Сущность: способ измерения глубины погружения, содержащий излучение двух последовательных во времени зондирующих сигналов с движущегося носителя, прием эхосигналов гидроакустической антенной, установленной на носителе, измерение дистанции D1 по первому зондирующему сигналу, измерение дистанции D2 по второму зондирующему сигналу, измерение собственной скорости движения носителя Vдв, заключается в том, что формируют на гидроакустической антенне в приеме статический веер характеристик направленности в горизонтальной плоскости, прием эхосигналов осуществляют статическим веером характеристик направленности в горизонтальной плоскости, измеряют радиальную скорость сближения с объектом Vр.изм, измеряют направление собственного движения носителя, определяют направление прихода эхосигнала, измеряют угол между направлением движения носителя и направлением прихода эхосигнала Q°, определяют скорость сближения с объектом с учетом разницы между направлением движения и положением объекта в горизонтальной плоскости Vсб.гор=Vр.изм/cos Q°, определяют косинус угла положения объекта относительно направления движения в вертикальной плоскости cosU°=Vсб.гор/Vдв, а глубину погружения объекта определяют по формуле . Технический результат: повышение точности измерения глубины погружения объекта гидролокатором. 1 ил.

Изобретение относится к гидроакустике, в частности к пассивно-активным акустическим устройствам для обнаружения утечек газа из газопроводов и технических систем добычи углеводородов, для локализации и исследований природных источников газов под водой, а также для количественной оценки объемов выходящих в области дна газов. Гидроакустическая станция (ГАС) включает систему создания узкополосного рабочего сигнала для формирования сигнала возбуждения, частота которого соответствует частоте эмиссионного излучения образующегося в процессе утечки пузырька, которая реализует пассивное обнаружение эмиссионного резонансного излучения пузырьков в момент их отрыва от твердых поверхностей и, в активной стадии, выполняет фокусировку акустического поля на пузырьке путем обращения во времени и излучения принятых эмиссионных сигналов. Идентификация и определение положения образующихся пузырьков (локализация утечки или природного выхода газа) производится в блоке управления и расчетов путем анализа резонансно рассеянных на пузырьке акустических сигналов. Обнаружение технических утечек и природных выходов газа основано на регистрации выходящих пузырьков газа, которые излучают эмиссионные сигналы при отделении от твердой поверхности и представляют собой импульсные сигналы с монохроматическим заполнением, экспоненциально затухающей во времени амплитудой и длительность от 5 до 30 периодов поля. Технический результат - оперативность обнаружения, снижение числа ложных тревог при нарушении герметичности или разрушении в области контроля, надежная идентификация объектов эмиссии, повышение точности определения мест выходов газожидкостных потоков, а также определение количественных параметров газовых потоков в широком диапазоне концентраций пузырьков с возможностью мониторинга исследуемых процессов во времени. 2 з.п. ф-лы, 10 ил.

Изобретение относится к области подводной навигации, а более точно к определению местоположения подводного объекта посредством гидроакустической навигационной системы. Техническое решение для поиска места положения подводного аппарата, снабженного пингером, и отслеживания места его положения относительно судна обеспечения, а также обнаружения его дайвером. Решение основано на отечественных комплектующих и не требует больших затрат. Способ записи местоположения аппарата с помощью пингера позволяет построить его траекторию относительно судна обеспечения. 2 ил.

Изобретение относится к области дорожного строительства, а именно к системам безопасности мостов. Технический результат - обеспечение защиты моста со стороны акватории и контроль ситуации на мостах большой протяженности. Устройство обеспечения безопасности моста, соединяющего два берега акватории с мостовыми подходами с двух сторон, огороженными заборами П-образной формы, содержит рабочее место оператора, состоящее из системного блока, монитора, клавиатуры и манипулятора типа «Мышь», а также модуль охранной сигнализации с пультом охранным, выход которого соединен с системным блоком, а входы соединены с датчиками контроля безопасности, а также модуль управления радиолокатором, содержащим по меньшей мере два радиолокатора, соединенных через контроллер радиолокатора с системным блоком и установленных на мостовых подходах, также содержит модуль гидролокации, содержащий контроллер гидролокации, соединенный с гидролокаторами, выполненными в выносной (подводной) части, состоящей из активных приемно-излучающих модулей, объединенных в секции длиной от 100 до 1000 м каждая и связанных магистральным кабелем с источниками энергоснабжения, обеспечивающей излучение и прием зондирующего сигнала, обработку сигнальной информации, передачу информации на стационарный надводный пункт наблюдения. 11 з.п. ф-лы, 7 ил.

Изобретения относятся к области акустических измерений и касаются акустооптического кабеля. Кабель включает в себя несколько секций волоконно-оптических акустооптических сенсоров. Сенсоры включают в себя оптико-электронный модуль, оптически соединенный с расположенным внутри полимерной основы чувствительным элементом, оптическую линию связи, модуль линии электропитания и модуль силовых элементов. Модули размещаются продольно во внутреннем пространстве волоконно-оптического кабеля, в котором удалено временное заполнение. Чувствительные элементы представляют собой оптическое волокно с решетками Брэгга и выполнены из двулучепреломляющих оптических волокон. Чувствительные элементы покрыты защитной оболочкой с коэффициентом Пуассона более 0.35. Технический результат заключается в повышении чувствительности и уменьшении диаметра кабеля. 2 н. и 1 з.п. ф-лы, 3 ил.

Изобретение относится к области гидроакустики и может быть использовано для построения систем автоматической и автоматизированной классификации морских объектов, применительно к гидролокационным станциям ближнего действия. Техническим результатом предлагаемого технического решения является обеспечение классификации приводняющегося объекта по нескольким посылкам. Способ автоматического обнаружения и классификации приводняющегося объекта, содержащий излучение зондирующего сигнала, прием эхосигнала веером статических характеристик направленности, измерение помехи и выбор порога обнаружения, определение эхосигналов, превысивших порог, автоматическое обнаружение превышения выбранного порога последовательно по всем пространственным каналам статического веера характеристик направленности, измерение и запоминание амплитуды и номера отсчетов, превысивших порог обнаружения, измерение и запоминание номеров пространственных каналов, в которых произошло превышение порога обнаружения, измеряют соотношения амплитуд и времен обнаруженных эхосигналов, на их основе вырабатывают классификационные признаки, которые позволяют принять решения в пользу приводняющегося объекта, если эхосигнал обнаружен в соседних пространственных каналах, и если наблюдаются несколько эхосигналов и при этом измеренная длительность первого эхосигнала больше длительности второго эхосигнала. 1 ил.

Способ обработки гидролокационной информации гидролокатора относится к гидроакустическим системам обнаружения и определения местоположения целей и может быть использован в гидролокаторе с диаграммоформирующим устройством статического веера ДН ЛФАР. Задачей изобретения является повышение помехоустойчивости приемного тракта гидролокатора для минимизации вероятности пропуска эхосигналов целей. Для обеспечения указанного технического результата осуществляется подавление мешающих эхосигналов, принятых по боковым лепесткам диаграммы направленности, путем пороговой обработки исходного массива амплитуд эхосигналов по всем пространственным каналам перед выводом на индикатор. 3 ил.

Имитатор эхосигналов эхолота относится к гидроакустической технике и может быть использован на этапе отладки программно-аппаратных средств при разработке эхолотов, проверки их работоспособности в процессе производства и эксплуатации на носителях. Задача изобретения заключается в повышении достоверности имитации эхосигналов эхолота. Решение поставленной задачи достигается за счет имитации пространственного затухания, за счет автоматической имитации эхосигналов от наклонного дна и изменения угла его наклона, за счет имитации переотраженных и ложных эхосигналов, за счет имитации шумовой помехи. 1 з.п. ф-лы, 3 ил.

Одноканальная гидроакустическая антенна с осесимметричной характеристикой направленности относится к гидроакустической технике и может быть использована в качестве приемоизлучающей антенны эхолота. Техническим результатом от использования изобретения является снижение уровня первых добавочных максимумов характеристики направленности заявленной антенны. Обеспечение технического результата достигается введением амплитудного распределения по поверхности общей круглой накладки, спадающего к ее краям, что и приводит к снижению уровня боковых лепестков ХН. Такое амплитудное распределение достигается за счет того, что в центральной части общей круглой накладки помещен полуволновой слой полимера, являющийся звукопрозрачным, а по ее краям на слой полимера адгезионно установлено металлическое кольцо, утолщенное по периферии, оказывающее совместно со слоем полимера демпфирующее влияние на колебания периферийной части накладки. 3 ил.

Изобретение относится к области гидроакустики. Антенна содержит пьезоэлектрические стержневые преобразователи, установленные в герметичный корпус, общую пластину, изготовленную из эластичного полимерного материала с глухими отверстиями глубиной 0,2-0,3 от наружного диаметра герметичного корпуса пьезоэлектрического стержневого преобразователя. Каждый пьезоэлектрический преобразователь устанавливают в глухое отверстие общей пластины, фиксируя в глухом отверстии внатяг, помещают общую пластину в заливочную форму, при этом придают общей пластине нужную форму, производят электрический монтаж многоэлементной секции, устанавливают и закрепляют в заливочной форме элементы монтажа и элементы крепления многоэлементной секции в гидроакустической антенне, производят заливку формы полимерным компаундом, имеющим адгезию с эластичным полимером общей пластины, и производят полимеризацию полимерного компаунда. Технический результат – снижение трудоемкости. 2 ил.
Наверх