Способ обработки сигнала шумоизлучения объекта


 


Владельцы патента RU 2572219:

Акционерное общество "Концерн "Океанприбор" (RU)

Использование: изобретение относится к гидроакустике и может быть использовано при разработке гидроакустической аппаратуры, предназначенной для обнаружения шумящих объектов. Сущность: способ обработки сигнала шумоизлучения объекта содержит прием временной последовательности сигнала шумоизлучения, дискретизацию принятой временной последовательности, набор первой временной последовательности отсчетов, спектральный анализ на основе быстрого преобразования Фурье, последовательное накопление спектров и представление на индикатор, производят запоминание первого спектра, определение коэффициента корреляции между первым принятым спектром и каждым следующим накопленным спектром, запоминают коэффициенты корреляции при каждом очередном накоплении, при уменьшении коэффициента корреляции выносят решение об изменении стационарности поступления спектров шумоизлучения объекта и выбирают то число накоплений, при котором обеспечивался бы максимальный коэффициент корреляции. Технический результат: автоматическое определение изменения стационарности шумового процесса на входе приёмного устройства при приёме сигнала шумоизлучения. 1 ил.

 

Настоящее изобретение относится к области гидроакустики и может быть использовано при решении задач обработки сигнала шумоизлучения объекта в гидроакустических системах.

Известны методы обработки сигналов шумоизлучения объектов для задач обнаружения, основанные на сравнении уровня принятого сигнала с уровнем помехи (Справочник по гидроакустике. Судостроение. Л.: 1988 г. стр. 26., Бурдик B.C. «Анализ гидроакустичсеских систем». Л.: Судостроение. 1988 г. Стр. 364). Рассматриваемые методы содержат прием временной реализации, набор временных отсчетов фиксированной длительностью, измерение спектров набранной временной реализации, накопление спектров, измерение энергии накопленного спектра и сравнение измеренной энергии с порогом, определенным по помехе, измеренной в отсутствие сигнала.

Аналогичный метод используется при цифровой обработке гидроакустических сигналов, которая включает прием сигнала антенной, усиление, полосовую фильтрацию, аналогово-цифровое преобразование сигнала, предварительную пространственную обработку, спектральную обработку на основе БПФ (быстрое преобразование Фурье), накопление энергетических спектров и представление на дисплей (Применение цифровой обработки сигналов. М.: Мир, 1980 г., Стр. 452). В существующих методах обработки отношение сигнал/помеха увеличивается за счет накопления спектров. Этот способ является наиболее близким аналогом и может быть взят за прототип.

При этом предполагается, что за время накопления спектров динамика собственного движения и динамика движения шумящего объекта не изменяется и входной процесс на входе приемного устройства является стационарным. Поэтому временная реализация на входе остается постоянной и спектральный состав набранных временных реализаций не изменяется, что позволяет накапливать спектры шумоизлучения сигнала и увеличивать отношение сигнал/помеха, поскольку спектральный состав помехи изменяется в каждом временном наборе. Как правило, время накопления спектров выбирается из условия обеспечения требуемого отношения сигнал/помеха и может достигать значительной величины при обнаружении слабых сигналов, поскольку при накоплении уровень принимаемого стационарного детерминированного сигнала увеличивается, а уровень случайной помехи нет.

В гидроакустике известен «эффект Доплера», который заключается в том, что при движении источника или приемника частота излученного сигнала отличается от частоты принятого сигнала (А.С. Колчеданцев «Гидроакустические станции». Л.: Судостроение, 1982 г., с. 21. Дж. Хортон. Основы гидролокации. Л.: Судпромгиз , 1961 г., стр 450). Можно записать: F2=F1+F1V/C, где F1 - частота излученного сигнала, F2 - частота принятого сигнала, V - скорость перемещения, С - скорость звука. Это справедливо в том случае, если перемещение источника происходит непосредственно в направлении приемника. Однако в большинстве случаев перемещение происходит под углом и тогда под скоростью перемещения понимается скорость сближения или радиальная составляющая исходной скорости, которая определяется углом между направлением движения и направлением между источником и приемником. При приеме сигнала шумоизлучения движущегося объекта аналогично происходит смещение спектра за счет взаимного перемещения. Величина смещения частотной составляющей спектра определяется (F2-F1)=F1 (V1cosQ1+V2cosQ2)/C, где V1 и V2 скорости перемещения приемника и излучающего шум объекта, а Q1 и Q2, соответствующие курсовые углы их движения. Если объект шумоизлучения движется с постоянной скоростью и приемное устройство движется с постоянной скоростью, то процесс на входе приемного устройства стационарный и отношение сигнал/помеха можно увеличить за счет накопления. Однако каждый последующий спектр при этом несколько отличается от предыдущего за счет эффекта Доплера, это смещение накапливается во времени и при некотором числе накоплений спектры могут отличаться друг от друга, что снизит отношение сигнал/помеха. Чем выше частота спектра шумоизлучения, тем эти отличия больше зависят от изменения радиальной скорости. Кроме того, изменение спектра входной временной реализации может произойти из-за появления в зоне наблюдения другого мешающего объекта, возникшего на том же пространственном направлении, или в результате совместного маневрирования.

Все это может привести к изменению исходного стационарного входного процесса, при этом методы автоматического определения изменения динамики входного процесса шумоизлучения не известны. В результате снижается достоверность измеряемых спектральных параметров и классификационных признаков, что и является недостатком рассмотренных методов обработки.

Задачей изобретения является повышение достоверности обработки принятого сигнала шумоизлучения.

Техническим результатом предлагаемого изобретения является автоматическое определение изменения стационарности шумового процесса на входе приемного устройства при приеме сигнала шумоизлучения объекта.

Для решения поставленной задачи в способ обработки сигнала шумоизлучения объекта, включающий прием временной последовательности сигнала шумоизлучения, дискретизацию принятой временной последовательности, набор временной последовательности отсчетов, спектральный анализ на основе быстрого преобразования Фурье, последовательное накопление энергетических спектров и представление результата, на индикатор введены новые признаки, а именно: запоминают первый энергетический спектр первого набора временной последовательности, определяют коэффициент корреляции между первым принятым спектром и каждым следующим накопленным спектром, запоминают коэффициенты корреляции при каждом очередном накоплении, сравнивают коэффициенты корреляции и при уменьшении коэффициента корреляции уменьшают число накоплений до значения, при котором коэффициент корреляции равен пороговому, при этом, если коэффициент корреляции не достиг порогового значения, выносят решение об изменении стационарности поступления спектров шумоизлучения объекта.

Сущность изобретения заключается в следующем. Помеха представляет собой случайный стохастический процесс, интервал корреляции по времени которого определяется полосой помехи. Таким образом, спектры временных реализаций, набранных за время, большее, чем интервал корреляции помехи, будут случайными и поэтому коэффициент корреляции между этими спектрами будет близким к нулю. Время набора временной реализации существенно больше интервала корреляции шумовой помехи. Процесс шумоизлучения объекта является стационарным случайным процессом, но его случайность во времени детерминирована. Спектр шумоизлучения объекта является случайным относительно спектров шумоизлучения других объектов, а для данного объекта процесс шумоизлучения закономерен и состоит на данном временном интервале из одних и тех спектральных составляющих, Спектр шумоизлучения для каждого объекта характеризуется своими спектральными особенностями, что позволяет их классифицировать по спектральному составу и по виду спектра создавать портрет объекта (Л.Л. Мясников, Е.Н. Мясникова. "Автоматическое распознавание звуковых образов". Л.: Энергия, 1970 г., стр. 153).

Конкретный спектр характеризует особенность данного объекта при фиксированных параметрах его движения и в этом смысле он является детерминированным. Таким образом, для данного объекта спектры временных последовательных реализаций будут похожими и при накоплении суммарный спектр будет похож на начальный спектр. Это означает, что если будет определен коэффициент корреляции между спектрами последовательных временных реализаций и начальным спектром и он окажется больше пороговой величины, то это означает, что на входе системы обработки в процессе накопления действует один и тот же временной сигнал. Однако, поскольку при взаимном перемещении изменяется радиальная составляющая скорости, то из-за «эффекта Доплера» будет иметь место некоторое смещение спектров в последовательных временных реализациях, что приведет к искажению суммарного спектра и уменьшению коэффициента корреляции. Это говорит о том, что при существующей радиальной скорости перемещения объектов существует оптимальное число накоплений, при котором изменения накопленного спектра меньше допустимых и которое можно определить и автоматически поддерживать. При работе в реальных условиях достаточно часто возникают ситуации, когда исходный временной сигнал на входе искажается за счет поступления сигнала шумоизлучения другого объекта, возникшего случайно на том же направлении, или за счет приема мешающего сигнала, приходящего по боковому полю характеристики направленности. Все это приводит к искажению стационарности исходного процесса наблюдения и снижению коэффициента корреляции. В этом случае измеряемые параметры не будут соответствовать параметрам объекта шумоизлучения. Таким образом, если можно сравнить коэффициент корреляции спектров между начальным спектром и последовательными накопленными спектрами и определить коэффициент корреляции между ними, то можно идентифицировать степень схожести спектров шумоизлучения на входе и обеспечить оптимальное время накопления. Если оптимальное время накопления не удается откорректировать, то это означает, что искажение спектра более глубокое и связано с изменением внешних условий наблюдения и измеряемые параметры объекта шумоизлучения не соответствуют исходным

Блок-схема устройства, реализующая предлагаемый способ обработки сигнала шумоизлучения объекта, представлена на фиг. 1.

Устройство (фиг. 1) содержит последовательно соединенные антенну 1 с приемным устройством, АЦП (аналогово-цифровой преобразователь) 2, блок 3 БПФ (блок спектрального анализа), коррелятор 5, блок 6 памяти и сравнения, блок 7 принятия решения, блок 8 корректировки и блок накопителя 4. Второй выход блока 3 БПФ соединен со вторым входом накопителя 4, а выход накопителя 4 соединен со вторым входом коррелятора 5.Второй выход блока 3 БПФ соединен с входом индикатора 9, второй выход блока 7 соединен со вторым входом индикатора 9.

Способ посредством устройства (фиг. 1) осуществляется следующим образом. Антенна 1 с приемным устройством принимает входной сигнала шумоизлучения объекта, передает на блок 2 АЦП, где аналоговый сигнал превращается в цифровой вид и последовательно во времени дискретизированные отсчеты наборами фиксированной длительностью передаются на блок 3 БПФ, который производит последовательное определение спектров принятого входного дискретизированного сигнала. С выхода блока 3 БПФ первый спектр поступает на коррелятор 5 и одновременно на накопитель 4, с выхода которого поступает на второй вход коррелятора, на выходе которого формируется коэффициент корреляции между первым сигналом и вторым сигналом с выхода накопителя. Полученная оценка коэффициента корреляции поступает в блок 6 памяти. Второй спектр с выхода блока 3 БПФ поступает на накопитель 4, где складывается с предыдущим спектром и накапливается. Число накоплений выбирается априорно при выборе порога обнаружения. Суммарный спектр подается на коррелятор и определяется коэффициент корреляции с первым запомненным спектром. Выработанная оценка коэффициента корреляции поступает на блок памяти 6 и сравнивается с первым запомненным коэффициентом корреляции, если он не отличается от исходного коэффициента корреляции, то в блоке выносится решение, что спектры идентичны. Таким образом, на один вход коррелятора будут поступать спектры временной реализации первого набора измерения, а на другой вход - суммарные спектры последующих временных реализаций. В корреляторе происходит измерение коэффициента корреляции между первым спектром и суммарными последовательными спектрами при известном числе накоплений, который выбирается априорно при выборе порога обнаружения. Если коэффициент корреляции больше порогового значения, то принимается решение о наличии стационарного сигнала. Предельные значения коэффициента корреляции заключены между 0,6 и 1, что обеспечит диапазон флюктуаций коэффициента корреляции за счет случайного воздействия входной помехи и условий распространения. При плавном уменьшении коэффициента корреляции, вызванном изменением входных спектров за счет влияния доплеровского смещения частоты спектра, производится корректировка числа накоплений. При этом формируется выходной сигнал, который передается в блок 8 корректировки, где происходит снижение числа накоплений для восстановления коэффициента корреляции. Если увеличение коэффициента корреляции после корректировки не произошло, то формируется сигнал о прекращении использования полученных спектральных оценок для выработки классификационных признаков и оценки параметров движения объекта до восстановления нового контакта с выбранным объектом шумоизлучения. Одновременно на индикатор 9 поступают спектры с выхода блока 3 БПФ для представления оператору и на второй вход индикатора 9 с выхода блока 7 поступает решение об изменении коэффициента корреляции.

Антенна и приемное устройство 1 и аналогово-цифровой преобразователь АЦП 2 являются известными устройствами, которые используются в прототипе. Алгоритмы определения спектров на основе быстрого преобразования Фурье достаточно подробно изложены на стр. 441-463 («Применение цифровой обработки сигналов». М.: Мир, 1980 г. Под. редакцией Э. Оппенгейма). В современной гидроакустической аппаратуре сигналы, преобразованные в цифровой вид, обрабатываются специальными цифровыми процессорами на основе разработанных алгоритмов (см. Ю.А. Корякин, С.А. Смирнов, Г.В. Яковлев. «Корабельная гидроакустическая техника». СПб.: Наука, 2004 г., стр. 164-176, стр. 278-295). В процессоре реализуются все блоки предлагаемого устройства, такие как спектральная обработка на основе БПФ, корреляционная обработка, блоки памяти, процедуры сравнения, накопления, принятия решения и корректировки. Практически все указанные процедуры могут быть реализованы на современных компьютерах и ноутбуках, в которых реализованы вычислительные программы Матлаб, Матсард и др. (А.Б. Сергиенко. Цифровая обработка сигналов. СПб. «БХВ - Петербург», 2011 г.).

Таким образом, используя последовательную корреляционную обработку спектров, можно автоматически оценить степень стационарности входного процесса и принять необходимые меры для обеспечения достоверности измерений по наблюдаемому объекту.

Способ обработки сигнала шумоизлучения объекта, содержащий прием временной последовательности сигнала шумоизлучения, дискретизацию принятой временной последовательности, набор временной последовательности отсчетов, спектральный анализ на основе быстрого преобразования Фурье, последовательное накопление спектров и представление на индикатор, отличающийся тем, что запоминают первый спектр первого набора временной последовательности, определяют коэффициент корреляции между первым принятым спектром и каждым следующим накопленным спектром, запоминают коэффициенты корреляции при каждом очередном накоплении, сравнивают коэффициенты корреляции и при уменьшении коэффициента корреляции уменьшают число накоплений до значения, при котором коэффициент корреляции больше или равен пороговому, при этом, если коэффициент корреляции не достиг порогового значения, выносят решение об изменении стационарности поступления спектров шумоизлучения объекта.



 

Похожие патенты:

Использование: изобретение относится к области гидроакустики и может быть использовано при разработке гидроакустической аппаратуры для повышения точности измерения дистанции, а также при проведении мониторинга морских районов.

Использование: изобретение относится к области гидроакустической техники и может быть использовано при поиске и распознавании подводных объектов в условиях ограниченной оптической видимости на основе формирования их акустического изображения.

Изобретение относится к акустическим измерениям и может быть использовано для измерения скорости звука в естественных водоемах. Предложен способ акустического мониторинга изменчивости параметров морских акваторий, заключающийся в формировании в морской среде акустической трассы распространения звука и обработке принятого приемным элементом трассы акустического сигнала, которой включает измерение скорости распространения звука, температуры и давления в образцовой зоне водоема на фиксированных горизонтах, свободной от загрязнений техногенного характера, при этом полученные значения измеренной скорости распространения звука являются эталонными значениями для данного водоема и заносятся в память вычислительного устройства средства акустического мониторинга, при формировании в морской среде акустической трассы распространения звука и обработке принятого приемным элементом трассы акустического сигнала, измерения скорости распространения звука выполняют при температуре и давлении, соответствующих температуре и давлению полученных эталонных значений скорости распространения звука на фиксированных горизонтах акватории исследуемого водоема.

Изобретение относится к гидроакустической технике, в частности к области активной гидролокации. Согласно изобретению активный гидролокатор, включает процессорный блок, приемо-передающий блок, соединительный кабель от процессорного к приемо-передающему блоку, антенный блок гидролокатора со встроенным сигнальным и управляющим кабелем, при этом приемо-передающий блок выполнен выносным и содержит две фазируемые антенные решетки, работающие в паре, одна из которых - излучающая с веерной диаграммой направленности, установлена внутри корпуса с возможностью вращения в горизонтальной плоскости вокруг оси, проходящей через ее геометрический центр, а другая - приемная антенная решетка, неподвижно закреплена на корпусе и выполнена в виде кольца, охватывающего герметичный корпус, заполненный жидкостью для компенсации гидростатического давления внешней среды.
Применение: Изобретение относится к области рыболовства и предназначено для диагностики гидробионтов (обнаружения, определения местоположения и перемещения, вида, возраста, пола и состояния).

Изобретение относится к гидролокации, конкретно к пассивным способам акустического обнаружения и локации подводных пловцов в толще воды, и может быть использовано при проведении подводных поисковых и спасательных работ, осуществлении охраны береговых сооружений и пляжей со стороны водной среды или охраны подводных сооружений, а также охраны судов на якорной стоянке, морских нефтяных платформ, входов в порты, опор мостов, каналов, акваторий гидростанций.

Изобретение относится к области подводной навигации и, в частности, может быть использовано для определения собственных координат АНПА при его перемещении подо льдом в высоких арктических широтах.

Настоящее изобретение относится к области гидроакустики и может быть использовано для разработки гидроакустической аппаратуры различного назначения. Способ позволяет автоматически обнаруживать гидроакустические сигналы шумоизлучения объектов.

Изобретение относится к области гидроакустики, а именно к конструированию многоэлементных антенн гидроакустических комплексов надводных кораблей и подводных лодок. Предложена многоэлементная гидроакустическая антенна, содержащая основание, на котором закреплены секции, в которых размещены стержневые пьезокерамические преобразователи, каждая секция заключена в герметичный корпус и содержит на лицевой стороне пластину, в отверстиях которой установлены передние накладки стержневых пьезокерамических преобразователей, герметично соединенные со стенками отверстий резиновыми развязками-уплотнениями, и каждая секция имеет электрический вывод.

Изобретение относится к гидроакустической технике, конкретнее к области активной гидролокации, в том числе к активным гидролокаторам, предназначенным для обнаружения объектов, измерения координат и параметров движения обнаруженных объектов.

Изобретение относится к области гидроакустической техники и может быть использовано в составе оборудования, обеспечивающего получение изображения рельефа дна в реальном масштабе времени. Техническим результатом изобретения является обеспечение упреждающего обнаружения навигационных препятствий и предотвращения столкновения с ними за счет увеличение сектора обзора по курсу движения подводного модуля системы. Технический результат достигается за счет того, что гидроакустическая система визуализации подводного пространства, содержащая блоки антенн левого и правого бортов, выходы которых соединены с соответствующими последовательно включенными приемными усилителями и аналого-цифровыми преобразователями, а входы соединены с выходами усилителей мощности, измеритель крена, модуль формирования, приема и упаковки сигналов, ко входам которого подключены аналого-цифровые преобразователи, усилители мощности и измеритель крена, блок интерфейса, навигационную систему и бортовой компьютер, причем ко входу бортового компьютера подключены выход навигационной системы и через блок интерфейса выход модуля формирования, приема и упаковки сигналов, антенну многолучевого эхолота, последовательно соединенные блок приемных усилителей и блок аналого-цифровых преобразователей, включенные между выходом антенны многолучевого эхолота и модулем формирования, приема и упаковки сигналов, блок усилителей мощности, включенный между входом антенны многолучевого эхолота и выходом модуля формирования, приема и упаковки сигналов, а также подключенный ко входу этого блока измеритель глубины, снабжена впередсмотрящим гидролокатором секторного обзора, включающим приемно-передающую антенну, усилитель мощности, вход которого подключен к блоку формирования, приема и упаковки сигналов, а выход к излучателю приемно-передающей антенны, последовательно подключенные к приемным элементам приемно-передающей антенны многоканальные усилители и многоканальный аналого-цифровой преобразователь, выход которого подключен к блоку формирования, приема и упаковки сигналов, и устройством звуковой и световой сигнализации, подключенным к выходу компьютера. Изобретение обеспечивает повышение надежности гидроакустической системы за счет упреждающего обнаружения навигационных опасностей по курсу буксировки подводного модуля гидроакустической системы и предотвращения столкновения с ними. 2 ил.

Использование: изобретение относится к области гидроакустики и предназначено для установки на надводных кораблях (НК), преимущественно на ледоколах, в составе эхолотов. Техническим результатом от использования изобретения является сохранение целостности стального корпуса (днища) НК и его эксплуатационной надежности. Сущность: в антенной системе эхолота, включающей гидроакустическую антенну, выполненную плоской осесимметричной, герметичной, размещенной в цилиндрическом корпусе, заполненном жидкостью, связанном с внутренней поверхностью стального днища НК посредством сварки, цилиндрический корпус закреплен на стальном днище НК без нарушения целостности днища так, что участок стального днища НК, охваченный цилиндрическим корпусом, образует его торцевую поверхность. Гидроакустическая антенна скреплена с торцевой крышкой цилиндрического корпуса со стороны, противоположной участку стального днища НК, охваченного цилиндрическим корпусом, герметично соединена с его боковой поверхностью и имеет акустический контакт с торцевой поверхностью цилиндрического корпуса, при этом рабочая частота f гидроакустической антенны f=bf0, где f0=mCст/2h, m - целое число, Cст - скорость звука в стальном днище НК, h - его толщина, b - коэффициент, учитывающий влияние акустического контакта, при этом 1≤b≤1,5. 3 з.п. ф-лы, 3 ил.

Использование: изобретение относится измерительной технике и гидроакустике и может быть использовано для проведения векторно-скалярных измерений параметров гидроакустических полей океана. Сущность: комбинированный гидроакустический приемник включает корпус приемника с расположенным в центре грузом, гидрофонный канал, три векторных канала, установленных центрально-симметрично между корпусом и грузом, электронный блок преобразования акустических колебаний, дистанционные системы электропитания и передачи информации, а также неконтактную магнитную систему стабилизации корпуса приемника, состоящую из жесткого каркаса, по периметру которого размещены датчики положения корпуса и соединенные с электронной системой регулирования тока электромагниты, напротив которых внутри корпуса установлены постоянные магниты. Технический результат: улучшение формы характеристики направленности, снижение порогового уровня, позволяющее расширить возможности приемника при обнаружении слабых сигналов, возможность оперативного регулирования резонансной частоты подвеса, расширение частотного диапазона приемника в область низких частот. 1 з.п. ф-лы, 1 ил.

Использование: изобретение относится к акустике, конкретно к акустическим измерениям и цифровой обработке сигналов, и может быть использовано для измерений амплитудно-временных характеристик импульсных акустических сигналов, распространяющихся в неоднородных средах. Сущность: способ заключается в том, что результаты измерений функций отклика акустического канала, поступающие в виде потока блоков данных, последовательно в режиме реального времени проверяются по заданному критерию взаимной корреляции, определяются и заменяются ошибочные блоки данных на ближайшие проверенные блоки, определяются времена приходов импульсов в блоках путем поиска локальных максимумов, причем для поиска максимумов используется алгоритм расчета с возможностью задания уровней амплитуд и количества локальных максимумов, одновременно производится сжатие информации путем замены всех цифровых отсчетов функции отклика на значения максимумов амплитуд и их положения (времен прихода) в блоках данных, производится расчет двумерного евклидового расстояния по временам приходов между всеми максимумами в следующих друг за другом блоках данных и выбор траекторий, соединяющих максимумы в соответствии с критерием минимальных значений двумерного евклидового расстояния между максимумами в соседних блоках данных с последующим измерением времен прихода импульсных сигналов во времени путем выбора, соответствующих этим траекториям, значений времен прихода импульсов. Технический результат: повышение точности измерений времен прихода импульсных сигналов за счет обнаружения и исправления ошибок в принимаемых данных и селективного измерения амплитудно-временных параметров импульсных сигналов во времени и автоматизация способа. 7 ил.

Изобретение относится к пассивному обнаружению движущихся в воде целей в условиях прибрежных морских областей и озер для осуществления охраны береговых сооружений и пляжей со стороны водной среды или охраны подводных сооружений, таких как проложенные под водой кабели, коллекторы, трубопроводы, а также охраны судов на якорной стоянке, морских нефтяных платформ, входов в порты, опор мостов, каналов, акваторий гидростанций от возможных нарушителей или террористов. Техническим результатом настоящего изобретения является снижение влияния помех, обусловленных волнением водной поверхности при регистрации низкочастотных локальных колебаний давления от движущихся в воде целей. Сущность: для компенсации влияния помех, обусловленных поверхностным волнением, на регистрацию полезных сигналов предложено проводить прием колебаний давления на попарно соединенные приемники в цепочке, разнесенные друг от друга на расстояние, превышающее размер зоны локальных давлений, образуемой движущейся в воде целью, при этом расстояние выбирается таким, при котором сохраняется высокая когерентность регистрируемых колебаний в поле помех от волнения, при этом приемники в паре включаются в противофазе по выходу для взаимного вычитания помех. В результате помеха на выходе попарно соединенных приемников оказывается в значительной степени скомпенсированной, а полезный сигнал остается нетронутым. Далее в электронном комплексе обработки данных осуществляется обнаружение полезных сигналов от движущихся подводных целей на фоне пониженного уровня помех и определение местоположения и параметров движения обнаруженных подводных целей. 3 ил.

Изобретение относится к акустическим локационным системам, использующим параметрические излучающие системы, формирующие узконаправленные пучки низкочастотных акустических сигналов. Преимущественная область использования - гидроакустика, а также ультразвуковая дефектоскопия, медицина, рыболокация, геолокация. Генераторный тракт параметрического локатора содержит импульсный генератор, два генератора высокочастотных сигналов, выход каждого из которых соединен с сигнальным входом соответствующего импульсного модулятора, выходы импульсных модуляторов через усилители мощности соединены с элементами акустической антенны. Дополнительно введены перемножитель, два входа которого соединены с выходами генераторов высокочастотных сигналов, выход перемножителя через последовательно соединенные фильтр низких частот и компаратор соединен с управляющим входом D-триггера, вход данных которого соединен с выходом импульсного генератора, а выход D-триггера соединен с управляющими входами импульсных модуляторов. 2 ил.

Изобретение относится к гидроакустике и может быть использовано для гидроакустического обеспечения противоторпедной защиты судов. Для гидроакустического обеспечения противоторпедной защиты корабля включают обнаружение и прием шумоизлучения торпеды гидроакустической станцией с буксируемой антенной переменной глубины, выработку прогноза движения торпеды, расчет данных стрельбы средствами самообороны и выработки маневра уклонения. Обнаруженный сигнал поступает в дисплейный пульт оператора, в котором вырабатывают сигнал торпедной опасности и осуществляют сброс дрейфующей акустической ловушки. Акустическая ловушка работает в режиме излучения имитированного шума судна. В качестве буксируемой антенны переменной глубины используют многоканальную антенну со статическим веером из N характеристик направленности. Фиксируют время приема сигналов системы самонаведения торпеды и время приема сигнала, излученного акустической ловушкой. Определяют временной интервал между моментом приема сигнала самонаведения торпеды и моментом приема имитирующего сигнала. Достигается упрощение системы противоторпедной защиты судов. 2 ил.

Использование: изобретение относится к гидроакустической технике, конкретнее к области активной гидролокации, в том числе к активным гидролокаторам, предназначенным для обнаружения объектов, измерения координат и параметров движения обнаруженных объектов и классификации обнаруженных объектов. Сущность: определение параметров бликовой структуры выполняется путем измерения временного положения максимумов откликов, соответствующих отдельным бликам, определения интервалов времени между положениями максимумов и интервалов по дистанции между отдельными бликами от объекта. Возможность определения параметров бликовой структуры и, следовательно, классификации обнаруженных объектов по бликовой структуре в заявленном гидролокаторе связана с тем, что длительность откликов на выходе согласованного фильтра для специально сформированного сложного сигнала существенно меньше длительности сигнального отклика для тонального зондирующего сигнала большой длительности. Технический результат: при большой длительности тонального зондирующего сигнала обеспечивается возможность выявления бликовой структуры принимаемого эхосигнала, которая необходима для выполнения классификации обнаруженного объекта по бликовой структуре. 2 ил.

Использование: настоящее изобретение относится к области гидролокации и предназначено для использования в станциях освещения ближней обстановки при измерении параметров обнаруженного объекта. Сущность: способ измерения глубины погружения, содержащий излучение двух последовательных во времени зондирующих сигналов с движущегося носителя, прием эхосигналов гидроакустической антенной, установленной на носителе, измерение дистанции D1 по первому зондирующему сигналу, измерение дистанции D2 по второму зондирующему сигналу, измерение собственной скорости движения носителя Vдв, заключается в том, что формируют на гидроакустической антенне в приеме статический веер характеристик направленности в горизонтальной плоскости, прием эхосигналов осуществляют статическим веером характеристик направленности в горизонтальной плоскости, измеряют радиальную скорость сближения с объектом Vр.изм, измеряют направление собственного движения носителя, определяют направление прихода эхосигнала, измеряют угол между направлением движения носителя и направлением прихода эхосигнала Q°, определяют скорость сближения с объектом с учетом разницы между направлением движения и положением объекта в горизонтальной плоскости Vсб.гор=Vр.изм/cos Q°, определяют косинус угла положения объекта относительно направления движения в вертикальной плоскости cosU°=Vсб.гор/Vдв, а глубину погружения объекта определяют по формуле . Технический результат: повышение точности измерения глубины погружения объекта гидролокатором. 1 ил.

Изобретение относится к гидроакустике, в частности к пассивно-активным акустическим устройствам для обнаружения утечек газа из газопроводов и технических систем добычи углеводородов, для локализации и исследований природных источников газов под водой, а также для количественной оценки объемов выходящих в области дна газов. Гидроакустическая станция (ГАС) включает систему создания узкополосного рабочего сигнала для формирования сигнала возбуждения, частота которого соответствует частоте эмиссионного излучения образующегося в процессе утечки пузырька, которая реализует пассивное обнаружение эмиссионного резонансного излучения пузырьков в момент их отрыва от твердых поверхностей и, в активной стадии, выполняет фокусировку акустического поля на пузырьке путем обращения во времени и излучения принятых эмиссионных сигналов. Идентификация и определение положения образующихся пузырьков (локализация утечки или природного выхода газа) производится в блоке управления и расчетов путем анализа резонансно рассеянных на пузырьке акустических сигналов. Обнаружение технических утечек и природных выходов газа основано на регистрации выходящих пузырьков газа, которые излучают эмиссионные сигналы при отделении от твердой поверхности и представляют собой импульсные сигналы с монохроматическим заполнением, экспоненциально затухающей во времени амплитудой и длительность от 5 до 30 периодов поля. Технический результат - оперативность обнаружения, снижение числа ложных тревог при нарушении герметичности или разрушении в области контроля, надежная идентификация объектов эмиссии, повышение точности определения мест выходов газожидкостных потоков, а также определение количественных параметров газовых потоков в широком диапазоне концентраций пузырьков с возможностью мониторинга исследуемых процессов во времени. 2 з.п. ф-лы, 10 ил.
Наверх