Способ измерения спектра переданного импульса нейтронов



Способ измерения спектра переданного импульса нейтронов
Способ измерения спектра переданного импульса нейтронов
Способ измерения спектра переданного импульса нейтронов

 

G01N23/00 - Исследование или анализ материалов радиационными методами, не отнесенными к группе G01N 21/00 или G01N 22/00, например с помощью рентгеновского излучения, нейтронного излучения (G01N 3/00-G01N 17/00 имеют преимущество; измерение силы вообще G01L 1/00; измерение ядерного или рентгеновского излучения G01T; введение объектов или материалов в ядерные реакторы, извлечение их из ядерных реакторов или хранение их после обработки в ядерных реакторах G21C; конструкция или принцип действия рентгеновских аппаратов или схемы для них H05G)

Владельцы патента RU 2593431:

Объединенный Институт Ядерных Исследований (RU)

Изобретение относится к области исследований конденсированных сред нейтронами, в частности методики диагностики неоднородного состояния или низкочастотной динамики среды. Способ измерения спектра переданного импульса нейтронов включает прецессию магнитного момента нейтронов в двух областях магнитного поля до исследуемого образца и после с антипараллельным взаимным направлением магнитных полей в них и измерение разности фаз прецессии, образованных в этих областях, при этом нейтроны отражают от границ областей магнитного поля, фазу прецессии создают перпендикулярной к границам магнитных областей компонентой импульса нейтрона, при этом границы областей создают магнитными зеркалами с векторами намагниченности в них параллельными друг другу и направленными по отношению к направлению вектора напряженности магнитного поля под углом, близким или равным 90 градусам. Технический результат - повышение чувствительности к измерению переданного импульса нейтрона. 2 ил.

 

Настоящее изобретение относится к области исследований конденсированных сред нейтронами, в частности методики диагностики неоднородного состояния или низкочастотной динамики среды, что важно для установления соответствия физических свойств среды ее микроструктурным и динамическим характеристикам.

Известен способ измерения спектра колебаний конденсированной среды с помощью спектрометров неупругого рассеяния нейтронов в прямой и обратной геометриях [1]. Сущность способа измерений заключается в измерении энергии и импульса нейтрона до его рассеяния на исследуемом объекте и после рассеяния. При этом нижняя граница измеряемого частотного спектра колебаний вещества составляет 100 ГГц.

Известен способ нейтронной спин-эхо спектрометрии измерения спектра колебаний конденсированной сред или спектра корреляционной длины неоднородного состояния среды, являющийся прототипом [2]. Сущность способа измерений заключается в измерении спектра переданного нейтрону импульса, являющегося разностью импульсов нейтронов после и до их рассеяния. Для измерений спектра переданного нейтрону импульса измеряют для каждого нейтрона фазу прецессии его магнитного момента в магнитном поле до исследуемого образца и фазу прецессии нейтрона в магнитном поле после его рассеяния на исследуемом образце. В спин-эхо спектрометре, реализующем способ-прототип, границы магнитного поля ориентируют перпендикулярно направлению начального вектора импульса нейтрона. Из разности фаз прецессии нейтронов, образуемых в областях магнитного поля до и после образца, определяют спектр переданного импульса нейтрона, из которого определяют спектр колебаний среды или спектр длины корреляции неоднородного состояния. Недостатком прототипа являются низкая чувствительность измерений спектра колебаний, что не позволяет регистрировать низкочастотные килогерцовой частоты колебания в среде. В настоящее время чувствительность спектрометров такова, что измеряемый диапазон частот имеет нижнюю границу 10-100 МГц. Недостатком прототипа является недостаточная чувствительность измерений спектра корреляционной длины неоднородного состояния. В настоящее время измеряемый диапазон измерения корреляционной длины имеет максимальную границу 10 мкм. Недостатком прототипа является невозможность исследований поверхностного слоя вещества.

В предлагаемом способе измерения спектра переданного импульса нейтронов, включающем прецессию магнитного момента нейтронов в двух областях магнитного поля до исследуемого образца и после с антипараллельным взаимным направлением магнитных полей в них и измерение разности фаз прецессии, образованных в этих областях, нейтроны отражают от границ областей магнитного поля, фазу прецессии создают перпендикулярной к границам магнитных областей компонентой импульса нейтрона, при этом, границы областей создают магнитными зеркалами с векторами намагниченности в них параллельными друг другу и направленными по отношению к направлению вектора напряженности магнитного поля под углом, близким или равным 90 градусам.

Работа спин-эхо спектрометра нейтронов состоит в следующем. Фаза прецессии φ пропорциональна напряженности магнитного поля H, протяженности магнитного поля d и обратно пропорциональна волновому вектору (импульсу) нейтрона k

где p=(2mµ/ħ2), m и µ есть масса и магнитный момент нейтрона, соответственно, ħ - постоянная Планка.

Чувствительность спин-эхо спектрометра к изменению волнового вектора δk в результате рассеяния нейтронов на исследуемом объекте-образце определяется величиной спин-эхо длины Lэхо

где δΔφ=-ρ(Hd)(δk/k2)=-Дэхоδk.

Как следует из (2), с уменьшением k квадратично увеличивается Lэхо, определяющая чувствительность. В случае, когда плоскость магнитного зеркала ориентирована под малым углом θ≈0.003 к направлению волнового вектора нейтронов для перпендикулярной компоненты, имеем k=k×sin(θ) и Lэхо=ρ(Hd)/k2. В этом случае, из-за малого значения k≈0.003k чувствительность определения δk возрастает по сравнению с чувствительностью в определении δk в порядка 104-105 раз.

В случае, если передача δk связана с передачей энергии E=ħω, где ω - циклическая частота колебаний, в направлении "⊥", чувствительность к измерению переданной энергии определяется спин-эхо временем tэхо⊥=δΔφ/ω.

Спин-эхо время, как следует из (3), с уменьшением k возрастает еще в большей, а именно третьей степени k.

Таким образом, использование k вместо k позволяет увеличить чувствительность измерений импульса в направлении перпендикулярно границам магнитных областей. Нижняя граница измеряемого частотного диапазона в этом случае составляет единицы килогерц, а верхняя граница измеряемой корреляционной длины 100 мкм.

В спин-эхо спектрометре, реализующем данный способ измерений, в качестве границ магнитных областей используются магнитные зеркала. Нейтрон отражается от первого зеркала, в результате чего для плюс и минус спиновых состояний нейтрона появляются соответственно две компоненты волнового вектора k+ и k-. Это приводит к прецессии магнитного момента. При отражении нейтронов от второго зеркала происходит проецирование вектора поляризации нейтронов на направление вектора индукции магнитного поля во втором зеркале, что соответствует периодической зависимости интенсивности отраженных нейтронов от волнового вектора. На Рис. 1. показаны две схемы устройств, реализующих данный способ измерений. В первой области Рис. 1 - магнитное поле H1, во второй Н2=-Н1 - намагниченность зеркал М1 и М2=-М1. Пучок нейтронов "n" с волновым вектором k направлен под углом скольжения к зеркалам θi, после рассеяния нейтрона на образце угол скольжения σf.

Схема а) используется для измерений частотного спектра колебаний и спектра корреляционной длины в объеме исследуемого объекта. В первом случае переданный импульс направлен в направлении пучка нейтронов, во втором случае - перпендикулярно направлению пучка. Схема б) используется для исследований поверхностного слоя. В этом случае глубина исследований поверхностного слоя благодаря малому значению перпендикулярной компоненты импульса нейтронов находится в диапазоне 1-100 нм. Возможность исследований поверхности или слоистой структуры на глубину до 100 нм в устройстве по схеме Рис. 1б является третьим положительным эффектом предложенного способа.

На Рис. 2 показаны зависимости интенсивностей нейтронов, прошедших через систему двух зеркал нейтронов (кривая 1 - для направления "первое зеркало-второе зеркало", кривая 2 - для направления "второе зеркало-первое зеркало") при магнитном поле H=18 Э, d=0.5 мм и θ=7 мрад. Периодические зависимости демонстрируют прецессию нейтронов в области между зеркалами.

Таким образом, в данном способе измерений и в спин-эхо спектрометре, реализующем данный способ, достигается увеличение чувствительности измерений переданного импульса нейтрона, что позволяет соответственно исследовать неоднородности в конденсированной среде вплоть до крупномасштабных с корреляционной длиной до 100 мкм и низкочастотные колебания конденсированной среды с нижней частотной границей 1 кГц. Для достижения таких значений параметров магнитное поле в устройстве должно быть величиной порядка 1 кЭ, а зазор между зеркалами составлять d=10 мм. В данном способе доступны исследования как объемных, так и поверхностных свойств конденсированной среды.

Литература

1. Уиндзор К.// Рассеяние нейтронов от импульсных источников. М.: Энергоатомиздат, Москва, 1985, 353 с.

2. Mezei F.// Z. Phys. 1972. V. 255. P. 146.

Способ измерения спектра переданного импульса нейтронов, включающий прецессию магнитного момента нейтронов в двух областях магнитного поля до исследуемого образца и после с антипараллельным взаимным направлением магнитных полей в них и измерение разности фаз прецессии, образованных в этих областях, отличающийся тем, что нейтроны отражают от границ областей магнитного поля, фазу прецессии создают перпендикулярной к границам магнитных областей компонентой импульса нейтрона, при этом границы областей создают магнитными зеркалами с векторами намагниченности в них параллельными друг другу и направленными по отношению к направлению вектора напряженности магнитного поля под углом, близким или равным 90 градусам.



 

Похожие патенты:

Изобретение относится к способу рентгенофазового определения криолитового отношения при электролитическом получении алюминия и может быть использовано при определении состава электролита.

Изобретение относится к рентгено-абсорбционным анализаторам содержания серы в нефти и нефтепродуктах и может быть использовано для измерения концентрации серы в технологических трубопроводах в потоке анализируемой среды.

Использование: для формирования изображения быстропротекающего процесса с помощью протонного излучения. Сущность изобретения заключается в том, что способ включает ввод протонного пучка, по крайней мере, в один магнитооптический канал, изменение ширины протонного пучка на разные величины, которое осуществляют последовательно в одном и том же магнитооптическом канале, для этого либо после прохождения части протонных сгустков через рассеиватель его удаляют или изменяют толщину, а затем пропускают оставшуюся часть протонных сгустков, либо следующие друг за другом протонные сгустки смещают относительно друг друга с помощью магнитных линз и, используя разнотолщинный рассеиватель, смещенные протонные сгустки пропускают через области рассеивателя с разной толщиной, после прохождения рассеивателя с помощью системы согласующих магнитных линз формируют протонный пучок с параметрами, соответствующими параметрам области исследования и последующей магнитооптической системы формирования протонного изображения, и просвечивают область исследования, пропуская поочередно протонные сгустки различной ширины, при использовании нескольких магнитооптических каналов просвечивание области исследования осуществляют под разными углами, после чего прошедший протонный пучок направляют в магнитооптическую систему формирования протонного изображения, состоящую, по крайней мере, из двух различных по апертуре линзовых систем, апертура каждого набора соответствует протонному пучку определенной ширины, оба набора линз системы формирования теневого протонного изображения размещают последовательно в одном магнитооптическом канале.

Группа изобретений относится к области аналитических исследований и может быть использована в нефтехимической промышленности для качественного и количественного обнаружения полиароматических гетероциклических серосодержащих соединений в нефтепродуктах.
Изобретение относится к области радиационной дефектоскопии изделий, основанной на просвечивании изделий гамма-излучением и регистрации излучения, прошедшего через изделие.

Использование: для оценки фактического состояния и остаточного ресурса эксплуатации трубных изделий энергетического оборудования. Сущность заключается в том, что из трубы, проработавшей в энергетическом оборудовании, подготавливают один образец, а также два эталона из трубы, не бывшей в эксплуатации.
Использование: для контроля технологического процесса кучного выщелачивания урановых руд. Сущность изобретения заключается в том, что определяют количество руды и среднюю массовую долю урана, заложенной в штабель руды для выщелачивания, и сравнивают с количеством урана, извлекаемым в процессе выщелачивания на выходе из штабеля, а в лабораторных условиях моделируют технологический процесс выщелачивания с оценкой ожидаемой скорости фильтрации растворов и степени извлечения урана, при этом в штабель рудной массы укладывают горизонтально трубы-скважины диаметром, обеспечивающим перемещение по ним скважинного каротажного прибора для одновременной регистрации потока мгновенных нейтронов деления, потока рассеянных тепловых нейтронов от импульсного нейтронного источника и интенсивность естественного гамма-излучения, а для получения информации по вертикали штабеля устанавливают вертикальные трубы-скважины такого же диаметра и при этом во всех скважинах не должен скапливаться выщелачивающий раствор, что будет упрощать интерпретацию результатов каротажа.

Использование: для сепарации алмазосодержащих материалов. Сущность изобретения заключается в том, что последовательно пропускают зерна материала перед источником первичного рентгеновского излучения, возбуждают в зерне материала вторичное рентгеновское излучение, регистрируют вторичное рентгеновское излучение и разделяют зерна материала относительно заданного порогового значения критерия разделения, при этом зерна материала облучают в узкоколлимированном пучке рентгеновского излучения, позволяющем снизить уровень фона, детектором рентгеновского излучения проводят одновременную регистрацию флуоресцентного характеристического рентгеновского излучения нескольких элементов и рассеянного от зерна материала рентгеновского излучения, одновременно усиливая возбуждение линий анализируемых ХРИ выбором материала анода рентгеновской трубки и материала коллиматора и специальных фильтров первичного излучения, выделяя полезный минерал по критерию разделения с использованием двухполярной логики И, ИЛИ, где в качестве критерия разделения используют отношение интенсивности флуоресцентного характеристического рентгеновского излучения элементов к интенсивности рассеянного зерном рентгеновского излучения источника и к интенсивности флуоресцентного характеристического рентгеновского излучения материала анода рентгеновской трубки.

Использование: для определения канцерогенности вещества. Сущность изобретения заключается в том, что исследуемое вещество в твердом или жидком состоянии помещают в позитронно аннигиляционный временной спектрометр быстро-быстрых задержанных совпадений, измеряют его аннигиляционный спектр, обрабатывая который с помощью компьютера, находят значение долгоживущей временной компоненты (τ3) Ps, и если оно менее 1,005±0,005 нс, то делают вывод о наличии канцерогенных свойств у вещества, а если оно более 1,005±0,005 нс, то делают вывод об отсутствии канцерогенных свойств у вещества.

Использование: для формирования фазово-контрастных изображений. Сущность изобретения заключается в том, что при формировании фазово-контрастных изображений объекта выполняют следующие этапы: формируют основанное на поглощении изображение объекта, расположенного между источником (S) пучка рентгеновских лучей и детектором (D), указывают интересующую область (ROI) в основанном на поглощении изображении, причем интересующая область имеет ширину и положение, перемещают систему решеток между источником (S) и детектором (D), покрывая интересующую область, адаптируют поле зрения пучка рентгеновских лучей к интересующей области, генерируют сигналы посредством детектора (D) для обнаружения пучка рентгеновских лучей, при этом часть объекта (O) находится вместе с системой решеток в пределах пучка рентгеновских лучей между источником (S) пучка рентгеновских лучей и детектором, получают передаваемые данные с различных углов проекции, выполняют локальную обработку сигналов из детектора (D), и формируют изображение на основе обработанных сигналов.

Изобретение относится к области измерительной техники. Способ определения массы кислорода в кислородосодержащем потоке включает облучение кислородосодержащего потока и регистрацию гамма-квантов. Облучают быстрыми нейтронами в импульсном режиме Кислородосодержащий поток, регистрируют гамма-кванты, проводят анализ полученных спектров зарегистрированных гамма-квантов, определяют количество гамма-квантов с энергией 6,13±0,62 МэВ от облученного объема. Определяют время переноса облученного объема как разницу моментов начала регистрации гамма-квантов и момента начала облучения кислородосодержащего потока. Массу кислорода рассчитывают по соотношению с учетом числа зарегистрированных гамма-квантов с энергией 6,13±0,62 МэВ, постоянной распада для азота-16, времени переноса облученного объема от источника к детектору, эффективности регистрации детектора, плотности потока быстрых нейтронов, частоты следования импульсов, длительности импульса облучения, времени облучения, сечения реакции 16O(n,p)16N, числа Авогадро и молярной массы кислорода. Технический результат - повышение точности и оперативности измерений. 1 ил.

Изобретение относится к области измерительной техники. Способ определения границ раздела сред в сепараторах сырой нефти включает облучение сепаратора с отстоявшимся скважинным флюидом, регистрацию гамма-квантов и анализ полученных спектров гамма-квантов. Производят пошаговое перемещение сверху вниз вдоль сепаратора лежащей в горизонтальной плоскости сканирующей системы. Система состоит из источника быстрых нейтронов, блока детектирования гамма-квантов и блока детектирования тепловых нейтронов. При фиксированном положении системы облучают сепаратор быстрыми нейтронами. Регистрируют гамма-кванты и тепловые нейтроны. Анализируют спектр гамма-квантов на наличие двух энергетических пиков 6,13±0,62 МэВ от кислорода и 1,78±0,18 МэВ от кремния. Повторяют процедуру в следующем положении сканирующей системы. Делают заключение о наличии границы газ-нефть по факту регистрации тепловых нейтронов. Заключение о наличии границы нефть-вода делают по факту дополнительного обнаружения гамма-квантов от кислорода. Заключение о наличии границы вода-битумы с песком делают по факту обнаружения гамма-квантов от кремния дополнительно к уже перечисленным. Технический результат - расширение диапазона концентраций газа при определении границ раздела сред в сепараторах сырой нефти. 2 н.п. ф-лы, 2 ил., 1 табл.
Наверх