Устройство для измерения энергии мощных нано- и пикосекундных лазерных импульсов проходного типа



Устройство для измерения энергии мощных нано- и пикосекундных лазерных импульсов проходного типа
Устройство для измерения энергии мощных нано- и пикосекундных лазерных импульсов проходного типа

 


Владельцы патента RU 2593918:

Федеральное Государственное Унитарное Предприятие "ВСЕРОССИЙСКИЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ ОПТИКО-ФИЗИЧЕСКИХ ИЗМЕРЕНИЙ" (ФГУП "ВНИИОФИ") (RU)

Изобретение относится к области измерительной техники и касается устройства для измерения энергии мощных импульсов лазерного излучения. Устройство включает в себя источник лазерного излучения, рассеивающую среду, световолоконный коллектор, ослабитель лазерного излучения, фотодиод, измерительно-вычислительный блок. В качестве рассеивающей среды используется диффузный рассеиватель, выполненный в виде цилиндрической шайбы из молочного стекла. Рассеиватель установлен во фланец, расположенный под небольшим углом к оптической оси лазерного пучка. На внешней поверхности шайбы равномерно по окружности закреплены с возможностью регулировки расстояния до поверхности рассеивателя разветвленные концы световолоконного коллектора. Коллектор обеспечивает передачу оптического сигнала через ослабитель на фотодиод. Выходной конец коллектора закреплен с возможностью регулировки расстояния до ослабителя. Технический результат заключается в повышении точности и увеличении диапазона плотности мощности измеряемого излучения. 2 з.п. ф-лы, 1 ил.

 

Изобретение относится к области измерительной техники и технической физики, в частности к созданию устройств для измерения энергии мощных импульсов лазерного излучения.

Из уровня техники известны устройства для измерения энергии мощных лазерных импульсов, использующие пироэлектрические первичные измерительные преобразователи, изготавливаемые фирмой «Ophir Optronics Solutions Ltd» [1]. Устройства типа PE50-DIF-ER-C и PE100BF-DIF-C позволяют производить измерение энергии импульсного лазерного пучка с энергией до 40 Дж с длительностью импульсов от 0,002 мс до 20 мс с частотой следования до от 25 Гц до 10 кГц. При этом плотность мощности измеряемого лазерного излучения в одном импульсе при диаметре пучка ≈33 мм составляет ≈2,5-106 Вт/см2, что характерно для импульсов микро- и миллисекундного диапазона длительностей.

Однако для решения задач измерения энергии мощных лазерных импульсов в нано- и пикосекундном диапазонах длительностей упомянутые устройства по своей конструкции не приспособлены к высоким плотностям мощности ≈(1-5)·109 Вт/см2 из-за низкого значения предельной плотности оптической мощности пироэлектрических приемников, превышение которой ведет к их повреждению или к необратимому изменению метрологических характеристик. Кроме того, данные устройства не являются устройствами проходного типа и тем самым не позволяют одновременно проводить измерения энергии и использовать лазерный пучок для дальнейшего применения.

Задача расширения диапазона длительностей мощных лазерных импульсов при измерении энергии и использовании лазерного пучка для дальнейшего применения может эффективно решаться посредством применения устройств проходного типа, основанных как на измерении лишь малой части рассеянного излучения, так и обеспечивающих прохождение основной части излучения через оптически прозрачный рассеиватель без существенного ослабления.

Наиболее близким аналогом предлагаемого устройства является устройство, работающее на основе бесконтактного способа измерения мощности лазерного излучения, основанного на измерении рассеяния вторичного свечения от частиц аэрозоля из тугоплавкого материала при воздействии лазерного излучения с интенсивностью более 103 Вт/см2 [2]. Погрешность измерения лазерных характеристик предлагаемым способом определяется точностью измерения концентрации светящихся частиц. Эта концентрация, в свою очередь, может быть измерена с высокой точностью, если поток аэрозоля сформирован в виде плоского слоя. Однако, создание широкого однородного высокоскоростного аэрозольного слоя является достаточно сложной технической задачей, о чем непосредственно в документе [2] упоминают авторы, причем в возможном решении этой задачи не рассматривается метрологический аспект, являющийся существенным при создании, как новых способов измерения, так и соответствующих этим способам устройств.

Техническая задача, решаемая заявляемым изобретением, состоит в создании высокоточного устройства для измерения энергии мощных нано- и пикосекундных лазерных импульсов проходного типа с плотностью мощности ≈(1-5)·109 Вт/см2, в котором результат измерения не зависит от вида пространственного распределения интенсивности лазерного пучка.

Технический результат, достигаемый при реализации заявляемого изобретения, заключается в увеличении диапазона плотности мощности при измерении энергии лазерных импульсов, повышении точности измерения энергии вне зависимости от вида пространственного распределения интенсивности лазерного пучка с возможностью использовать лазерный пучок для дальнейшего применения, а также в упрощении конструкции устройства для измерения энергии лазерных импульсов.

Указанный технический результат достигается за счет того, что устройство содержит оптический элемент, выполненный в виде цилиндрической шайбы из оптического стекла, расположенный под малым углом к оптической оси лазерного пучка для устранения влияния отраженного от шайбы обратного излучения. Таким образом, основная часть излучения проходит без существенного ослабления, а рассеянное излучение поступает на световолоконный коллектор, согласованный по уровню оптического сигнала с фотодиодом, на входе которого установлен нейтральный ослабитель с возможностью регулировки расстояния положения конца световолоконного коллектора, подводящего рассеянное излучение от цилиндрической шайбы к поверхности ослабителя, что позволяет изменять интенсивность излучения, поступающего на фотодиод, так как интенсивность изменяется обратно пропорционально квадрату упомянутого расстояния, а разветвленные концы световолоконного коллектора, на которые поступает рассеянное излучение от боковой поверхности шайбы, установлены с возможностью регулировки расстояния от них до внешней цилиндрической поверхности шайбы, что позволяет осуществлять выравнивание зонной характеристики устройства, т.е. добиться того, чтобы интенсивность излучения, попадающего на разветвленные концы световолоконного коллектора, будет слабо зависеть от положения входящего в устройство лазерного пучка относительно цилиндрической шайбы, что, в конечном счете, влечет за собой повышение точности измерения энергии. В состав заявляемого устройства для измерения энергии входит измерительно-вычислительный блок, содержащий интегрирующее устройство, выполняющее функцию преобразования импульса тока с выхода фотодиода в импульс напряжения, амплитуда которого пропорциональна энергии излучения на входе фотодиода, усилитель напряжения с переменным коэффициентом усиления, определяемым величиной значения энергии лазерного излучения для создания необходимого уровня электрического сигнала для работы пикового детектора, пиковый детектор для запоминания и хранения информации о значении пиковой амплитуды импульса, аналого-цифровой преобразователь для преобразования электрических сигналов пикового детектора в цифровую информацию, микропроцессор, в котором посредством специально разработанного программного обеспечения, путем программной аппроксимации характеристик преобразования фотодиода методом наименьших квадратов снижается нелинейность упомянутой характеристики до уровня 0,5-0,7% в диапазоне двух - трех десятичных порядков изменения энергии, индикатор для визуализации результатов измерений.

Независимо от вида пространственного распределения интенсивности лазерного пучка, поступающего на цилиндрическую шайбу, структура распределения на его выходе за счет рассеяния выравнивается и приближается к равномерной, что обеспечивает требуемую точность измерения энергии вне зависимости от вида исходного пространственного распределения интенсивности.

Световолоконный коллектор обеспечивает передачу оптического сигнала от цилиндрической шайбы за счет рассеяния на фотодиод, что уменьшает влияние электромагнитной помехи во время импульса за счет конструктивного вынесения фотодиода из тракта прямого лазерного излучения, что повышает точность измерения энергии.

Описанная конструкция оптической схемы устройства обеспечивает требуемое ослабление энергии лазерного пучка до уровня, необходимого для измерения его фотодиодом. Возможность регулировки с помощью винтов расстояния от внешней цилиндрической поверхности шайбы до разветвленных концов световолоконного коллектора позволяет уменьшать влияние зонной характеристики устройства на результат измерения энергии, что повышает точность измерения энергии.

Наличие нейтрального ослабителя на входе фотодиода и возможность регулировки с помощью винта расстояния от конца световолоконного коллектора, противоположного к разветвленным концам, до поверхности ослабителя, позволяет согласовать уровень отбираемого рассеянного излучения с диапазоном линейности фотодиода, что также повышает точность измерения энергии.

Схема заявляемого устройства для измерения энергии лазерных импульсов в предпочтительном варианте его осуществления представлена на Фиг. 1. Устройство представляет собой измерительный преобразователь 1, оптически прозрачный рассеиватель проходного типа 2, выполненный в виде цилиндрической шайбы из оптического стекла, например, марки К-8, установленной во фланец, расположенный под малым углом к оптической оси лазерного пучка для предотвращения обратного отражения на лазер, причем на внешней цилиндрической поверхности рассеивателя равномерно по окружности установлены и закреплены посредством винтов 3 разветвленные концы световолоконного коллектора, противоположный конец которого закреплен в оправу с помощью винта 5, где соосно с концом 4 размещен нейтральный ослабитель излучения 6 и фотодиод 7, измерительно-вычислительный блок 14, содержащий интегрирующее устройство 8, усилитель 9, пиковый детектор 10, аналого-цифровой преобразователь (АЦП) 11, микропроцессор 12 и индикатор 13. В микропроцессоре осуществляется программная аппроксимация характеристики фотодиода методом наименьших квадратов посредством использования специально разработанного программного обеспечения.

Устройство работает следующим образом. Излучение лазера поступает на рассеиватель 2. Основная часть потока излучения проходит через рассеиватель без существенного ослабления, а рассеянное излучение с боковой его поверхности поступает на разветвленные концы световолоконного коллектора 4, далее - на нейтральный ослабитель 6 и на фотодиод 7. Поступающее на фотодиод 7 импульсное лазерное излучение преобразуется в импульс тока. Импульс тока фотодиода поступает на интегрирующее устройство 8, преобразующее его в импульс напряжения, амплитуда которого пропорциональна энергии излучения на входе фотодиода. Импульс напряжения с выхода интегрирующего устройства через усилитель 9 поступает на вход пикового детектора 10, который «запоминает» и «хранит» информацию о значении пиковой амплитуды этого импульса в течение времени (~ 100 мкс), необходимого для его измерения и регистрации.

Благодаря этому устройство позволяет проводить измерение энергии, как одиночного импульса, так и последовательности лазерных импульсов с частотой следования до 103-104 Гц.

С выхода пикового детектора сигнал поступает на АЦП 11, где преобразуется в цифровую информацию, оцифрованный сигнал от которого поступает на микропроцессор 12. Микропроцессор считывает данные во внутреннюю память для последующей обработки и формирования сигналов для визуализации на индикаторе 13.

Литература

[1] Сайт www.ophiropt.com/laser-measurement. Каталог измерителей мощности и энергии «OPHIR».

[2] Н.Н. Белов, А.А. Негин. Авторское свидетельство SU №701221, кл. МПК: G01J 1/58, 1986.

1. Устройство для измерения энергии мощных нано- и пикосекундных лазерных импульсов проходного типа, содержащее источник лазерного излучения, ослабитель, рассеивающую среду, канал распространения рассеянного лазерного излучения, измерительно-вычислительный блок, отличающееся тем, что рассеивающая среда формируется оптически прозрачным рассеивателем проходного типа, выполненным в виде цилиндрической шайбы из оптического стекла, установленной во фланец, расположенный под небольшим углом к оптической оси лазерного пучка, а на внешней поверхности цилиндра равномерно по окружности установлены и закреплены посредством винтов с возможностью регулировки расстояния до поверхности цилиндра для выравнивания зонной характеристики устройства разветвленные концы световолоконного коллектора, обеспечивающего передачу рассеянной части оптического излучения через ослабитель на фотодиод, причем противоположный к разветвленным конец световолоконного коллектора закреплен в оправу с помощью винта, позволяющего путем регулировки расстояния от него до поверхности ослабителя создавать необходимый уровень сигнала, передаваемого световолоконным коллектором на ослабитель, используемый для согласования оптической схемы с характеристикой фотодиода, при этом рассеиватель проходного типа обеспечивает прохождение излучения через него без существенного ослабления.

2. Устройство по п. 1, отличающееся тем, что оптически прозрачный рассеиватель выполнен в виде цилиндрической шайбы из стекла марки К-8.

3. Устройство по п. 1, отличающееся тем, что измерительно-вычислительный блок содержит микропроцессор, в котором осуществляется программная аппроксимация характеристики преобразования фотодиода методом наименьших квадратов посредством специального программного обеспечения.



 

Похожие патенты:

Изобретение относится к области измерительной техники и касается устройства для измерения энергии мощных импульсов лазерного излучения. Устройство включает в себя источник лазерного излучения, рассеивающую среду, световолоконные коллекторы, ослабители лазерного излучения, фотодиоды, измерительно-вычислительный блок.

Изобретение относится к области измерительной техники и касается устройства для измерения энергии мощных импульсов лазерного излучения. Устройство включает в себя источник лазерного излучения, рассеивающую среду, световолоконный коллектор, ослабитель лазерного излучения, фотодиод, измерительно-вычислительный блок.

Изобретение относится к области оптических измерений и касается способа и устройства регистрации временного профиля фронта светового импульса. Способ заключается в том, что формируют импульсное излучение, направляют его на оптически прозрачную пластину.

Изобретение относится к оптике и касается способа определения времени отклика фотоприемника. Для определения времени отклика рабочая поверхность исследуемого фотоприемника освещается последовательностью отдельных световых импульсов.

Изобретение относится к области изучения оптического импульсного излучения, в частности к измерению временных параметров оптических импульсов. .

Изобретение относится к области измерительной техники и предназначено для измерения энергии солнечного излучения, падающего на стены и кровлю здания, имеющего форму прямоугольного параллелепипеда.

Изобретение относится к области физической оптики и квантовой электроники и может быть использовано в измерительной технике, в частности при измерении мощности излучения импульсных ОКГ, работающих в режимах с модулированной добротностью или синхронизации мод.

Изобретение относится к оптоэлектронике, в частности к устройствам для преобразования импульсного оптического излучения в импульсный электрический сигнал. .

Изобретение относится к области измерительной техники и касается устройства для измерения энергии мощных импульсов лазерного излучения. Устройство включает в себя источник лазерного излучения, рассеивающую среду, световолоконные коллекторы, ослабители лазерного излучения, фотодиоды, измерительно-вычислительный блок.

Изобретение относится к области измерительной техники и касается устройства для измерения энергии мощных импульсов лазерного излучения. Устройство включает в себя источник лазерного излучения, рассеивающую среду, световолоконный коллектор, ослабитель лазерного излучения, фотодиод, измерительно-вычислительный блок.

Изобретение относится к области оптических измерений и касается способа определения оптических свойств наночастиц. Измерения проводят с использованием фотометрического шара.

Изобретение относится к области оптических измерений и касается способа и устройства для оптического сравнения структурированных или неоднородно окрашенных образцов.

Изобретение относится к области прикладной оптики и касается устройства для приема изображений с переменной кривизной матрицы и внутренней трансфокацией. Устройство состоит из корпуса, подвижного тубуса, мембраны-подушки, на которой размещены подвижные двухслойные пиксели матрицы, и компрессора.
Изобретение относится к области фотометрических измерений и касается устройства для измерения чувствительности и пороговой энергии фотоприемных устройств. Устройство включает в себя источник непрерывного излучения, вращающееся зеркало или призму и щель, образующих импульсный источник излучения в виде ослабителя-преобразователя и ослабителя-формирователя пучка излучения в виде коллиматора, на оптической оси которого, ближе к фокальной плоскости, находится выходное отверстие фотометрического шара.

Изобретение относится к аппаратуре, применяемой для астрофизических исследований, и может быть использовано при наблюдении за звездным небом с помощью телескопа.

Изобретение относится к оптике, а именно к устройствам создания фоновой засветки без искажения спектра фонового излучения, в основном для проверки фоточувствительной поверхности фотоприемника.

Изобретение относится к области защиты от жесткого УФ-излучения во время загара под солнцем. .

Изобретение относится к ракетно-космической технике и предназначено для фиксации факта облучения космического аппарата (КА) внешним источником излучения при отсутствии необходимости определения точного направления на источник излучения.

Изобретение относится к области измерительной техники и касается устройства для измерения энергии мощных импульсов лазерного излучения. Устройство включает в себя источник лазерного излучения, рассеивающую среду, световолоконные коллекторы, ослабители лазерного излучения, фотодиоды, измерительно-вычислительный блок. В качестве рассеивающей среды используется диффузный рассеиватель, выполненный в виде цилиндрической шайбы из оптического стекла и установленный под острым углом оси симметрии шайбы к оптической оси. На внешней поверхности шайбы равномерно по окружности закреплены с возможностью регулировки расстояния до поверхности рассеивателя разветвленные концы, по меньшей мере, двух световолоконных коллекторов, обеспечивающих передачу рассеянного оптического сигнала на разных длинах волн через ослабители на фотодиоды. Выходные концы коллектора закреплены с возможностью регулировки расстояния до ослабителя. Технический результат заключается в повышении точности, расширении спектрального диапазона и мощности измеряемого излучения. 3 з.п. ф-лы, 1 ил.
Наверх