Электрод для ручной дуговой сварки высоколегированных и разнородных сталей



Электрод для ручной дуговой сварки высоколегированных и разнородных сталей
Электрод для ручной дуговой сварки высоколегированных и разнородных сталей
Электрод для ручной дуговой сварки высоколегированных и разнородных сталей

 

B23K103/18 - Пайка или распаивание; сварка; плакирование или нанесение покрытий пайкой или сваркой; резка путем местного нагрева, например газопламенная резка; обработка металла лазерным лучом (изготовление изделий с металлическими покрытиями экструдированием металла B21C 23/22; нанесение облицовки или покрытий литьем B22D 19/08; литье погружением B22D 23/04; изготовление составных слоистых материалов путем спекания металлического порошка B22F 7/00; устройства для копирования и регулирования на металлообрабатывающих станках B23Q; покрытие металлов или материалов металлами, не отнесенными к другим классам C23C; горелки F23D)

Владельцы патента RU 2595083:

Акционерное общество "Научно-производственное объединение "Центральный научно-исследовательский институт технологии машиностроения" АО "НПО "ЦНИИТМАШ" (RU)

Изобретение может быть использовано при сварке высоколегированных с содержанием хрома до 25 мас. % и никеля до 30 мас.30% и разнородных сталей. Нанесенное на металлический стержень покрытие содержит компоненты в следующем соотношении, мас. %: доломит 26-40, плавиковый шпат 11,2-12,0, двуокись титана 25,0-29,0, полевой шпат 0,5-1,0, кварцевый песок 0,5-1,0, периклаз 0,5-0,8, хром 7,0-9,0, ферросилиций 5,0-6,0, марганец азотированный 4,0-5,0, молибден 2,0-3,0, никель 2,0-2,5, лигатура железо-алюминий-циркониевая 0,5-1,0, лигатура никель-магний-цериевая 0,5-1,0, натрий карбоксилметилцеллюлоза 0,3-0,5. Покрытие обладает высокой технологичностью при опрессовке и прокалке, электрод обеспечивает снижение склонности сварного шва к образованию горячих кристаллизационных трещин. 3 з.п. ф-лы, 3 табл.

 

Изобретение относится к области ручной дуговой сварки и может быть использовано при сварке высоколегированных с содержанием хрома до 25 мас. % и никеля до 30 мас. 30% и разнородных сталей.

Известен электрод для сварки высоколегированных и разнородных сталей, включающий стержень из стали и нанесенное на него покрытие, содержащее, мас. %: мрамор 10-28; ферромарганец или марганец 6-15; ферросилиций 1-9; феррохром или хром 5-20; магнезит 3-12; железный порошок 2-10; по меньшей мере, один компонент, выбранный из группы, включающей, мас. %: феррониобий до 10, молибден до 10, ферромолибден до 10, никель до 10, феррованадий до 10, ферротитан до 10, доломит до 10, слюда до 5, полевой шпат до 7, бентонит до 5, гематит до 5, поташ до 3, сода до 3 и воластонит до 15; диоксид титана (рутил) остальное.

Стержень электрода выполнен из проволоки марки Св-04Х19Н9, Св-04Х18Н8Г2Б, Св-04Х19Н9С2, Св-07Х18Н9Б, Св-07Х25Н13, Св-10Х16Н25АМ6, Св-01Х23Н28М3Д3Т.

(RU 2248869, B23K 35/365, опубликовано 27.03.2005)

Наиболее близким по составу и назначению является электрод для ручной дуговой сварки дуплексных и разнородных сталей, включающий стержень из стали и нанесенное на него покрытие, содержащее, мас. %: доломит 5-20, плавиковый шпат 3-15, рутил 10-25, двуокись титана 5-20, полевой шпат 2-10, кварцевый песок 2-10, периклаз 1-8, слюда мусковит 1-5, гематит 1-5, углерод 0,1-0,3, оксид хрома 1-4, хром металлический 6-20, ферросилиций 2-8, марганец 1-8, молибден 1-8, железный порошок 3-10, пластификатор (поташ и/или альгинат-гель) 0,5-3,0.

(RU 2428290, B23K 35/365, опубликовано 10.09.2011)

Недостатками известных электродов являются:

- низкая технологичность при опрессовке и низкая технологичность электродного покрытия при прокалке;

- низкая сопротивляемость сварных швов образованию горячих трещин, особенно при сварке разнородных сталей,

- высокое содержание кислорода в металле сварного шва и, как следствие, склонность к образованию горячих кристаллизационных трещин.

Задачей и техническим результатом изобретения являются улучшение технологичности покрытия электрода при опрессовке и прокалке, повышение сопротивляемости сварных швов образованию горячих трещин и уменьшение склонности сварного шва к образованию горячих кристаллизационных трещин.

Технический результат достигается тем, что электрод для ручной дуговой сварки высоколегированных и разнородных сталей включает металлический стержень и нанесенное на него покрытие, содержащее доломит, плавиковый шпат, двуокись титана, полевой шпат, кварцевый песок, периклаз, хром, ферросилиций, марганец, молибден, никель, лигатуру железо-алюминий-циркониевую, лигатуру никель-магний-цериевую, натрий карбоксилметилцеллюлозу и марганец в виде марганца азотированного, при следующем соотношении компонентов, мас. %:

Доломит 26-40
Плавиковый шпат 11,2-12,0
Двуокись титана 25,0-29,0
Полевой шпат 0,5-1,0
Кварцевый песок 0,5-1,0
Периклаз 0,5-0,8
Хром 7,0-9,0
Ферросилиций 5,0-6,0
Марганец азотированный 4,0-5,0
Молибден 2,0-3,0
Никель 2,0-2,5
Лигатура железо-алюминий- 0,5-1,0
циркониевая
Лигатура никель-магний-цериевая 0,5-1,0
Натрий карбоксилметилцеллюлоза 0,3-0,5

Технический результат также достигается тем, что в покрытии отношение содержания доломита к содержанию плавикового шпата составляет 2,5-2,6; сумма содержаний никеля и марганца азотированного не более 6,6-6,8 мас. %, а стержень изготовлен из сварочной проволоки марок Св-03Х24Н13Г2М, Св-07Х25Н13, Св-07Х25Н12Г2Т.

Введение в покрытие пластификаторов: кварцевого песка и натрий карбоксилметилцеллюлозы (ТУ 2231-001-687-30626-2011) повышает его технологичность при опрессовке, а периклаз в виде порошка спеченного огнеупорного (ГОСТ 10360-65) улучшает пластичность электродного покрытия при прокалке в конвейерных печах (таблица 1).

Легирующая часть покрытия электрода разработана так, чтобы при сварке с использованием сварочных материалов из хромоникелевых сталей, в частности из сварочной проволоки марок Св-03Х24Н13Г2М, Св-07Х25Н13, Св-07Х25Н12Г2Т, реализовать расчетную аустенитноферритную структуру (5-8% δ-феррита) с высокой сопротивляемостью образованию горячих трещин при сварке.

Этому способствуют оптимальное соотношение аустенизаторов и ферритизаторов в металле сварного шва. Важную роль играет введение в состав покрытия 4,0-5,0 мас. % марганца азотированного марки Мн 92,0 (ГОСТ 6008-90). Легирование азотом устойчиво поддерживает требуемый баланс структурных: α и - составляющих в сварном шве.

Суммарное содержание никеля и марганца азотированного не должно превышать 6,6-6,8 мас. %. Увеличение или уменьшение этой суммы компонентов электродного покрытия нарушает соотношение аустенита и феррита в сварном шве, что снижает его технологическую прочность (таблица 2).

Железо-алюминий-циркониевая (ТУ 14-5-40-84) и никель-алюминий-цериевая лигатуры, легируя сварной шов церием и цирконием (расчетное содержание каждого 0,05-0,08 мас. %), способствуют образованию высокотемпературных цериевых и циркониевых сернистых соединений, повышающих сопротивляемость сварного шва образованию и развитию кристаллизационных трещин.

Повышение содержания каждой из лигатур выше заявленного значения снижает отделимость шлаковой корки, снижение ниже нижнего предела уменьшает эффект их влияния на технологическую прочность сварного шва.

Оптимальное содержание доломита (26-40 мас. %), плавикового (11,2-12,0 мас. %) и полевого (0,5-1,0 мас. %) шпата обеспечивает хорошее формирование шва и легкую отделимость шлаковой корки при сварке во всех пространственных положениях.

При этом важно соблюдать соотношение содержания доломита к содержанию плавикового шпата, равное 2,5-2,6, что в первую очередь определяет вязкость шлаковой ванны и ее окислительную способность.

Рост кислорода увеличивает градиент температуры сварочной ванны, что способствует образованию горячих кристаллизационных трещин.

При отношении кислотности шлаков ниже 2,5 снижается окислительная способность покрытия электродов, повышается окислительная способность покрытия и, как следствие, интенсивность кремне-марганцовистых восстановительных процессов, ухудшаются сварочно-технологические свойства электрода (таблица 3).

В качестве электродного стержня может быть использована сварочная проволока марок Св-03Х24Н13Г2М, Св-07Х25Н13, Св-07Х25Н12Г2Т, предпочтительно Св-03Х24Н13Г2М.

Из представленных в таблицах данных следует, что электрод по изобретению для ручной дуговой сварки высоколегированных и разнородных сталей обеспечивает достижение поставленного технического результата.

1. Электрод для ручной дуговой сварки высоколегированных и разнородных сталей, включающий металлический стержень и нанесенное на него покрытие, содержащее доломит, плавиковый шпат, двуокись титана, полевой шпат, кварцевый песок, периклаз, хром, ферросилиций, марганец, молибден, отличающийся тем, что покрытие дополнительно содержит никель, лигатуру железо-алюминий-циркониевую, лигатуру никель-магний-цериевую, натрий карбоксилметилцеллюлозу и марганец в виде марганца азотированного, при следующем соотношении компонентов, мас.%:

Доломит 26-40
Плавиковый шпат 11,2-12,0
Двуокись титана 25,0-29,0
Полевой шпат 0,5-1,0
Кварцевый песок 0,5-1,0
Периклаз 0,5-0,8
Хром 7,0-9,0
Ферросилиций 5,0-6,0
Марганец азотированный 4,0-5,0
Молибден 2,0-3,0
Никель 2,0-2,5
Лигатура железо-алюминий- 0,5-1,0
циркониевая
Лигатура никель-магний-цериевая 0,5-1,0
Натрий карбоксилметилцеллюлоза 0,3-0,5

2. Электрод по п. 1, отличающийся тем, что отношение содержания доломита к содержанию плавикового шпата составляет 2,5-2,6.

3. Электрод по п. 1, отличающийся тем, что сумма содержаний никеля и марганца азотированного составляет не более 6,6-6,8 мас. %.

4. Электрод по п. 1, отличающийся тем, что стержень изготовлен из сварочной проволоки марок Св-03Х24Н13Г2М, Св-07Х25Н13, Св-07Х25Н12Г2Т.



 

Похожие патенты:

Изобретение относится к области металлургии, а именно к смесям для высокотемпературной пайки. Смесь для соединения металлических изделий высокотемпературной пайкой содержит источник бора и источник кремния в виде порошков при соотношении бора к кремнию в смеси от 3:100 до 100:3 и по меньшей мере одно связующее, выбранное из группы, состоящей из растворителей, воды, масел, гелей, лаков, олифы, связующих на основе мономеров и/или полимеров, причем основной металл изделий имеет температуру солидуса выше 1040°С.

Изобретение относится к области металлургии, а именно к высокотемпературной пайке. Механическая смесь частиц порошков для высокотемпературной пайки изделия содержит по меньшей мере один источник бора и по меньшей мере один источник кремния.

Изобретение относится к области металлургии, в частности к изделиям с нанесенным покрытием с использованием диффузионной пайки. Композиционная смесь для нанесения покрытия на изделие содержит частицы, выбранные из частиц, обладающих свойством износостойкости, частиц цеолита, частиц, обладающих каталитическими свойствам, или их комбинаций и механическую смесь, содержащую по меньшей мере один порошок частиц источника бора и по меньшей мере один порошок частиц источника кремния, каждая частица в порошках представляет собой источник кремния или источник бора со средним размером частиц менее 250 мкм.

Изобретение относится к области металлургии, а именно к способу получения покрытой слоем тугоплавкого припоя детали. Способ включает нанесение механической смеси, представляющей собой порошок по меньшей мере одного источника кремния, в котором каждая частица является источником кремния, и порошок по меньшей мере одного источника бора, в котором каждая частица является источником бора, на по меньшей мере часть поверхности подложки, содержащей основной материал с температурой солидуса выше 1100°С.

Изобретение может быть использовано при изготовлении электродов для дуговой сварки ответственных конструкций из низкоуглеродистых сталей. Шихта электродного покрытия содержит следующие компоненты, мас.%: мрамор 19,0-21,0, ильменит 19,0-21,0, ферромарганец 13,0-15,0, рутил 28,5-29,5, каолин 4,0-6,0, тальк 9,0-11,0, целлюлоза 1,0-2,0, поташ 0,5-1,5 и механоактивированный порошок шихты электродов МР3 0,25-0,45 с размером частиц до 20 мкм.

Изобретение может быть использовано для наплавки деталей металлургического оборудования, работающих в условиях абразивного износа. Электродное покрытие содержит следующие компоненты, мас.%: феррохром - 58,0-60,0, ферробор - 14,0-16,0, мрамор - 5,0-7,0, ферросилиций - 3,5-4,5, плавиковый шпат - 3,5-4,5, ферромарганец - 1,5-3,5, графит - 5,5-6,5, поташ - 0,5-1,5 и нанопорошок карбонитрида титана - 1,5-3,0.
Изобретение может быть использовано для изготовления электродов, применяемых при сварке, резке и, во многих случаях, износостойкой наплавке. Состав покрытия электрода содержит двуокись титана, ферромарганец, мрамор, целлюлозу, каолин, тальк, железный порошок, модифицирующую смесь и руду, в качестве которой используют промпродукт Туганского месторождения.

Изобретение может быть использовано для сварки и наплавки металлических деталей. Сварочный материал содержит металлический сердечник, покрытый полимерной оболочкой с распределенными в ней наноразмерными частицами активирующего флюса.

Изобретение может быть использовано при сварке и наплавке металлических деталей в среде защитного газа. На металлический стержень электрода электролитически нанесено нанокомпозиционное покрытие, включающее металлическую матрицу с распределенными в ней наноразмерными частицами фторида металла и редкоземельных металлов.

Изобретение может быть использовано при наплавке металлических деталей в среде защитного газа. На металлический стержень нанесено покрытие в виде электролитически полученного нанокомпозита, включающего металлическую матрицу с равномерно распределенными в ней наноразмерными частицами активирующего флюса, содержащего фтористые соединения, и наноразмерные частицы карбида или смеси карбидов.

Изобретение относится к способу лазерной сварки соединений труба - трубная доска. Предварительно перед сваркой осуществляют сборку соединений труба - трубная доска с зазором меньше 0,2 мм.

Изобретение может быть использовано при изготовлении трехслойных металлических полых панелей для соединения их с корпусом судна при создании, например, переборок, выгородок, палуб, стенок рубок и надстроек судов.

Изобретение относится к способам формирования подводного трубопровода при его прокладке. При этом многослойные металлические трубные секции (2a, 2b), например с внутренним покрытием (6) коррозионностойким сплавом и с фасками на концах, стыкуют с концом трубопровода с формированием свариваемого кольцевого соединения (8).

Изобретение может быть использовано при ремонте изношенных или поврежденных бандажных полок лопаток турбомашин, выполненных из титановых сплавов. С поврежденных участков удаляют покрытие и поверхностный слой металла, например, алмазным шлифованием.

Изобретение может быть использовано для соединения секций железнодорожных рельсов стыковой сваркой оплавлением с использованием виброоборудования. Предварительно осуществляют настройку и прикрепление виброоборудования на железнодорожный рельс.
Изобретение может быть использовано при высокотемпературной пайке изделий из алюминия и его сплавов, например плоских термоплат. Сборку деталей под пайку производят через металлическую проставку, имеющую предел прочности, больший или равный пределу прочности материала паяемых деталей.
Изобретение относится к способу диффузионной сварки. Очищают детали из нержавеющей стали и мембраны из фольги палладия или палладиевого сплава электрополировкой.

Изобретение относится к способу сварки роторов для генерации энергии (газовых турбин, паровых турбин, генераторов), которые содержат множество роторных дисков, размещенных вдоль оси ротора.

Изобретение относится к области сварки и может быть использовано для сварки длинномерных профильных металлоконструкций, например боковых стен грузовых вагонов. Сварка боковых стен осуществляется на опорной поверхности горизонтальной рамы сборочного стенда с закрепленными на ней фиксирующими элементами.

Изобретение может быть использовано при изготовлении трехслойных композиционных изделий с плоскими наружными поверхностями и со сквозными внутренними полостями прямоугольного сечения, например деталей термического и химического оборудования, пуансонов для горячего прессования пластмасс и т.п.

Изобретение может быть использовано при изготовлении сваркой давлением с подогревом многослойных панелей из титановых сплавов, в частности, для аэрокосмического машиностроения. Предварительно листы заполнителя соединяют лазерной сваркой. Затем электроконтактной сваркой по пересекающимся зонам локально соединяют листы заполнителя. Далее поочередно производят сверхпластическую формовку и диффузионную сварку при температуре 900°С аргоном под давлением 0,12 МПа внутренних и внешних слоев наполнителей и обшивок. Для предотвращения сварки листов осуществляют продувку аргоном под давлением 0,4 МПа. Способ обеспечивает повышение прочностных характеристик многослойных сотовых изделий из титанового сплава ОТ4-1. 2 ил.
Наверх