Устройство сгорания с импульсным разделением топлива

Дано описание управляющего блока устройства сгорания и устройства сгорания, например, газовой турбины, который на основе по меньшей мере одного рабочего параметра определяет, находится ли устройство сгорания в заданной рабочей фазе. В ответ на это генерируется управляющий сигнал, предназначенный для установки соотношения по меньшей мере двух различных входных потоков топлива на заданное значение (psc1, psc3) для заданного времени (dt) в случае, если устройство сгорания находится в заданной рабочей фазе. Технический результат - уменьшение опасности перегрева камеры сгорания и уменьшение выброса вредных веществ в широком рабочем диапазоне. 4 н. и 4 з.п. ф-лы, 3 ил.

 

Область техники, к которой относится изобретение

Данное изобретение относится к области устройств сгорания и, в частности, к устройствам сгорания в виде газовых турбин.

Уровень техники

WO 2007/082608 А1 относится к системе управления, которая считывает выходной сигнал датчика температуры и в зависимости от этого выходного сигнала изменяет подачу топлива в горелке так, чтобы удерживать температуру компонентов ниже максимальной величины, при одновременном сохранении по существу постоянным топлива во входящей линии подачи топлива.

С учетом указанной выше ситуации имеется потребность в улучшенной технологии, которая позволяет создать устройство сгорания, при одновременном предотвращении или по меньшей мере уменьшении одного или нескольких недостатков известных систем.

Сущность изобретения

Эта потребность может быть удовлетворена с помощью предмета независимых пунктов формулы изобретения. Предпочтительные варианты выполнения раскрытого предмета изобретения даны в зависимых пунктах формулы изобретения.

Согласно первому аспекту данного изобретения предлагается управляющий блок устройства сгорания, содержащий (i) управляющий вход для приема по меньшей мере одного рабочего параметра, характеризующего работу устройства сгорания; (ii) управляющий выход для выдачи управляющего сигнала для управления по меньшей мере двумя различными входными потоками топлива в устройство сгорания; (iii) при этом управляющий блок предназначен для определения на основе по меньшей мере одного рабочего параметра, находится ли устройство сгорания в заданной рабочей фазе; (iv) и при этом управляющий блок дополнительно предназначен для генерирования управляющего сигнала для установки соотношения по меньшей мере двух различных входных потоков топлива на заданное значение для заданного времени в случае, если устройство сгорания находится в заданной рабочей фазе.

Этот аспект изобретения основывается на открытии заявителей, что установка соотношения по меньшей мере двух различных входных потоков топлива на заданное значение для заданного времени неожиданным образом приводит к более «сглаженной» работе устройства сгорания по сравнению с известными алгоритмами управления и может уменьшать временное повышение или превышение выброса оксидов азота (NOx). NOx обозначает в целом оксиды азота в виде химических соединений NO и NO2.

Согласно одному варианту выполнения устройство сгорания является газовой турбиной или камерой сгорания, содержащейся в газотурбинном двигателе. Согласно другому варианту выполнения, управляющий блок устройства сгорания является управляющим блоком газовой турбины.

Согласно другому варианту выполнения заданное значение и заданное время первоначально задаются во время изготовления устройства сгорания. Согласно одному варианту выполнения определение заданной величины и заданного времени является неизменным во время работы устройства сгорания. Согласно другому варианту выполнения определение заданного значения и заданного времени является неизменным в режиме работы устройства сгорания, при этом определение заданного значения и заданного времени изменяется в зависимости от фактических рабочих условий, например в зависимости от топлива, используемого для устройства сгорания. Следует отметить, что понятие «заданное значение» не ограничивается специальным значением, а включает также относительные установки, например увеличение фактического значения в специальном заданном процентном отношении.

Согласно одному варианту выполнения установка соотношения по меньшей мере двух различных входных потоков топлива на заданное значение содержит изменение соотношения по меньшей мере двух различных входных потоков топлива с текущего значения на заданное значение ступенчатым образом. Однако следует понимать, что изменение по меньшей мере двух различных входных потоков топлива ступенчатым образом еще означает, что управляющий сигнал генерируется внутри рабочих пределов управляющего блока устройства сгорания и что соотношение по меньшей мере двух различных входных потоков топлива изменяется внутри рабочих пределов устройства сгорания, с которым соединен управляющий блок. Другими словами, согласно одному варианту выполнения «ступенчато» означает «как можно быстрее внутри рабочих пределов». В любом случае, «ступенчато» следует интерпретировать не в математическом смысле, а в техническом смысле.

Согласно одному варианту выполнения установка соотношения по меньшей мере двух различных входных потоков топлива на заданное значение и заданное время является частью импульсного временного изменения соотношения по меньшей мере двух различных входных потоков топлива, называемого в последующем импульсом соотношения топлива. Согласно одному варианту выполнения импульсное временное изменение соотношения по меньшей мере двух различных входных потоков топлива имеет заданную высоту импульса и заданную ширину импульса. При этом установка соотношения по меньшей мере двух различных входных потоков топлива на заданное значение соответствует нарастающему фронту импульса соотношения топлива. Согласно одному варианту выполнения спадающий фронт импульса соотношения топлива создается посредством установки соотношения по меньшей мере двух различных входных потоков топлива с заданного значения на целевое значение. В случае прямоугольного импульса ширина импульса соответствует заданному времени.

Согласно одному варианту выполнения после заданного времени соотношение по меньшей мере двух различных входных потоков топлива устанавливается на значение, которое соответствует режиму управления, применяемому перед установкой соотношения по меньшей мере двух различных входных потоков топлива на заданное значение. Например, в одном варианте выполнения управление устройством сгорания осуществляется в соответствии с режимом управления (т.е. способом управления). При неисправности, ведущей к заданной рабочей фазе, подают импульс соотношения топлива, при этом соотношение по меньшей мере двух различных входных потоков топлива устанавливается на заданное значение на заданное время, и при этом после импульса соотношения топлива, например после заданного времени, соотношение топлива снова определяется режимом управления. Согласно одному варианту выполнения целевое значение импульса соотношения топлива соответствует режиму управления, применяемому перед установкой соотношения по меньшей мере двух различных входных потоков топлива на заданное значение.

Согласно одному варианту выполнения выходной сигнал, выдаваемый управляющим блоком, изменяется количественно в той же мере, что и соотношение потоков топлива, например, ступенчато в виде импульса, или согласно любому другому варианту выполнения раскрываемого предмета изобретения, если определяется, что устройство сгорания находится в заданном режиме работы.

Согласно одному варианту выполнения раскрываемого предмета изобретения, по меньшей мере два различных входных потока топлива включают (а) основной поток топлива в основную зону сгорания камеры сгорания устройства сгорания; и (b) вспомогательный поток топлива во вспомогательную зону сгорания камеры сгорания устройства сгорания. В одном варианте выполнения основной поток топлива обычно задает фактическую мощность устройства сгорания, в то время как вспомогательный поток топлива используется для стабилизации пламени в камере сгорания, создаваемого с помощью основного потока топлива. Согласно одному варианту выполнения, устройство сгорания содержит одну единственную камеру сгорания. Согласно другому варианту выполнения устройство сгорания содержит две или больше камер сгорания.

Согласно одному варианту выполнения, по меньшей мере один рабочий параметр включает по меньшей мере температуру или давление. Для этого могут быть предусмотрены соответствующие датчики для измерения по меньшей мере одного рабочего параметра. Температура может быть температурой части камеры сгорания. Согласно другому варианту выполнения температура является температурой устройства сгорания. Например, в случае, когда устройство сгорания является газовой турбиной, температура может быть температурой отходящих газов газовой турбины. Согласно другому варианту выполнения давление является давлением в камере сгорания устройства сгорания.

Согласно второму аспекту раскрываемого предмета изобретения предлагается устройство сгорания, при этом устройство сгорания содержит (i) камеру сгорания; (ii) управляющий блок устройства сгорания, согласно первому аспекту или его варианту выполнения.

Согласно одному варианту выполнения, по меньшей мере один датчик для измерения по меньшей мере одного рабочего параметра является частью устройства сгорания, которое включает камеру сгорания и управляющий блок устройства сгорания.

Согласно другому варианту выполнения раскрываемого предмета изобретения устройство сгорания дополнительно содержит устройство разделения топлива для управляемого разделения подаваемого потока топлива по меньшей мере на два различных входных потока топлива в камеру сгорания, например, в одном варианте выполнения - на основной поток топлива и на вспомогательный поток топлива. Устройство разделения потока имеет то преимущество, что все подаваемое в устройство сгорания топливо определяется подаваемым потоком топлива и что соотношение по меньшей мере двух различных входных потоков топлива можно независимо регулировать с помощью устройства разделения потока. Согласно другому варианту выполнения, по меньшей мере два различных потока топлива обеспечиваются с помощью некоторой другой подходящей подающей системы.

Согласно третьему аспекту раскрываемого предмета изобретения предлагается способ работы управляющего блока устройства сгорания, предназначенного для управления по меньшей мере двумя различными входными потоками топлива в камеру сгорания, при этом способ содержит: (i) определение на основе по меньшей мере одного рабочего параметра, находится ли устройство сгорания в заданной рабочей фазе; (ii) генерирование управляющего сигнала, предназначенного для установки соотношения по меньшей мере двух различных входных потоков топлива на заданное значение для заданного времени в случае нахождения устройства сгорания в заданной рабочей фазе.

Согласно вариантам выполнения третьего аспекта управляющий сигнал имеет конфигурацию, раскрытую применительно к первому аспекту или его варианту выполнения. Согласно вариантам выполнения третьего аспекта управляющий сигнал имеет конфигурацию в соответствии со вторым аспектом или его вариантом выполнения.

Согласно вариантам выполнения третьего аспекта управляющий сигнал предназначен для установки соотношения по меньшей мере двух различных потоков топлива, как раскрыто относительно первого аспекта или его варианта выполнения. Согласно вариантам выполнения третьего аспекта управляющий сигнал предназначен для установки соотношения по меньшей мере двух различных потоков топлива в соответствии со вторым аспектом или его вариантом выполнения.

Согласно четвертому аспекту раскрываемого предмета изобретения предлагается компьютерная программа для генерирования управляющего сигнала, при этом компьютерная программа при исполнении процессором предназначена для управления способом согласно третьему аспекту или его варианту выполнения.

В рамках данного описания ссылка на «компьютерную программу» является эквивалентной ссылке на элемент программы и/или считываемый компьютером носитель, содержащий инструкции для управления компьютерной системой с целью координации выполнения указанного выше способа.

Компьютерная программа может быть выполнена в виде читаемого компьютером командного кода с использованием подходящего языка программирования, такого как, например, JAVA, C++, и может храниться на читаемом компьютером носителе (сменном диске, в энергозависимой или энергонезависимой памяти, встроенной памяти/процессоре и т.д.). Командный код предназначен для программирования компьютера или любого другого программируемого устройства для выполнения заданных функций. Компьютерная программа может быть доступной из сети, такой как World Wide Web, из которой ее можно загружать.

Согласно одному варианту выполнения компьютерная программа предусмотрена в виде полной версии. Согласно другому варианту выполнения компьютерная программа предусмотрена в виде обновления программного обеспечения, которое требует предварительной установки, которая обновляется для обеспечения функций согласно аспектам и вариантам выполнения раскрываемого предмета изобретения.

Изобретение может быть реализовано с помощью компьютерной программы, соответственно, программного обеспечения. Однако изобретение может быть также реализовано с помощью одного или нескольких специальных электронных схем, соответственно, аппаратного обеспечения. Кроме того, изобретение может быть реализовано также в гибридном виде, т.е. в комбинации модулей программного обеспечения и модулей аппаратного обеспечения.

Выше было приведено описание примеров выполнения раскрываемого предмета изобретения применительно к управляющему блоку устройства сгорания и способу работы управляющего блока устройства сгорания. Следует отметить, что, естественно, возможна также любая комбинация признаков, относящихся к различным аспектам раскрываемого предмета изобретения. В частности, описание некоторых вариантов выполнения было приведено со ссылками на устройство, в то время как описание других вариантов выполнения было приведено со ссылками на способ. Однако для специалистов в данной области техники из приведенного выше и последующего описания понятно, что, если не указано другое, в дополнение к любой комбинации признаков, относящихся к одному аспекту, любую комбинацию признаков, относящихся к различным аспектам или вариантам выполнения, например, даже между признаками устройства и признаками способа, следует рассматривать как раскрытую в данной заявке.

Указанные выше аспекты и варианты выполнения и другие аспекты и варианты выполнения данного изобретения следуют из приведенного ниже описания и пояснения со ссылками на прилагаемые, не имеющие ограничительного характера чертежи.

Краткое описание чертежей

На чертежах схематично изображено:

фиг.1 - разрез части устройства сгорания согласно вариантам выполнения раскрываемого предмета изобретения;

фиг.2 - наборы рабочих параметров, соответствующих заданным рабочим фазам, согласно вариантам выполнения раскрываемого предмета изобретения;

фиг.3 - установка соотношения двух различных входных потоков топлива на заданное значение для заданного времени согласно вариантам выполнения раскрываемого предмета изобретения.

Подробное описание

Изображения на чертежах выполнены схематично. Следует отметить, что на различных фигурах аналогичные или идентичные элементы обозначены одинаковыми позициями или позициями, которые отличаются от соответствующих позиций лишь первой цифрой.

Описание вариантов выполнения раскрываемого предмета изобретения приведено применительно к устройству сгорания в виде газовой турбины. Однако возможны также другие типы устройства сгорания.

На фиг.1 схематично показана часть камеры 10 сгорания устройства 1 сгорания согласно вариантам выполнения раскрываемого предмета изобретения. Согласно одному варианту выполнения камера 10 сгорания содержит передний конец 20, завихритель 21, предварительную камеру 22 горелки и объем 23 сгорания. Основной поток топлива вводится в завихритель 21 через канал 24 в переднем конце 20. Вспомогательный поток топлива входит в пространство сгорания через канал 25.

Основной и вспомогательный потоки топлива снабжены устройством 26 разделения топлива для управляемого разделения подаваемого через подающий канал 27 потока топлива на основной поток топлива и вспомогательный поток топлива. Устройство разделения топлива включает в одном варианте выполнения один или несколько клапанов. Подаваемый поток топлива представляет всю подачу топлива в камеру 10 сгорания. Управляющий блок 36 устройства сгорания (например, управляющий блок газовой турбины, называемый в последующем управляющим блоком) предназначен для управления устройством 26 разделения топлива.

Основной поток топлива входит в завихритель 21 через основной вход 28, откуда он направляется вдоль лопастей завихрителя (не изображены на фиг.1) и смешивается с приходящим сжатым воздухом, подаваемым в завихритель 21. Согласно одному варианту выполнения основной вход 28 включает набор форсунок основного топлива или форсунок впрыска. По потоку за завихрителем 21 смесь топлива и воздуха входит в предварительную камеру 22 горелки.

Вспомогательный поток топлива входит в предварительную камеру 22 горелки через вход 29 вспомогательного топлива, предусмотренный в конце канала 25. Вход 29 вспомогательного топлива может включать единственную форсунку впрыска или отверстие в одном варианте выполнения или в другом варианте выполнения несколько форсунок впрыска или отверстий.

Создаваемая смесь воздуха и топлива поддерживает пламя 30 горелки. Горячий воздух из этого пламени входит в объем 23 сгорания.

Согласно одному варианту выполнения предусмотрен один или несколько датчиков для измерения по меньшей мере одного рабочего параметра. Согласно показанному на фиг.1 варианту выполнения температура и давление являются рабочими параметрами в смысле раскрываемого предмета изобретения. Для этого предусмотрен температурный датчик 32 для измерения температуры камеры 10 сгорания и предусмотрен датчик 33 давления для измерения давления камеры 10 сгорания. Согласно одному варианту выполнения температурный датчик 32 расположен в критичной части камеры сгорания, например на окружной стенке 31, задающей объем 23 сгорания. Согласно другому варианту выполнения датчик 33 давления расположен внутри объема 23 сгорания.

Выходной сигнал температурного датчика 32, обеспечивающий информацию 34 о температуре, и выходной сигнал датчик 33 давления, обеспечивающий информацию 35 о давлении, подаются в управляющий блок 36. В качестве другого входного сигнала для управляющего блока 36 предусмотрена информация 38 о нагрузке. Информация 38 нагрузки может представлять в соответствующих вариантах выполнения скорость или выходную мощность приводимого в действие генератора, который может быть соединен с валом и приводиться в действие валом газовой турбины, генерируемую приводимым в действие генератором мощность, скорость вращения вала газовой турбины или обеспечиваемый валом крутящий момент. Согласно другому варианту выполнения информация нагрузки может представлять также массовый поток, выходящий из камеры сгорания. Его можно получать с помощью датчика (не изображен на фиг.1) или же он может быть выведен из другого рабочего параметра. Согласно другому варианту выполнения информация 38 нагрузки включает комбинацию информации нагрузки двух или больше указанных выше вариантов выполнения.

Согласно одному варианту выполнения управляющий блок 36 имеет управляющие входы 100а, 100b, 100с для приема по меньшей мере одного рабочего параметра, характеризующего работу газовой турбины. Для показанной на фиг.1 камеры 10 сгорания управляющий блок принимает в качестве рабочих параметров информацию 34 температуры, информацию 35 давления и информацию 38 нагрузки. Следует отметить, что эти используемые в качестве примера параметры служат лишь целям иллюстрации и что, согласно другим вариантам выполнения, можно использовать в управляющем блоке часть указанных в качестве примера параметров или дополнительные рабочие параметры.

Управляющий блок 36 дополнительно содержит управляющий выход 102 для выдачи управляющего сигнала 37 для управления по меньшей мере двумя различными входными потоками топлива в камеру сгорания, например основным потоком топлива и вспомогательным потоком топлива.

Согласно одному варианту выполнения управляющий блок 36 содержит определяющий блок 36а для определения, находится ли газовая турбина в заданной рабочей фазе. Согласно одному варианту выполнения определяющий блок 36а предназначен для обеспечения выходного сигнала, указывающего, находится ли газовая турбина в заданной рабочей фазе, на основании выходного сигнала по меньшей мере одного датчика. Согласно другому варианту выполнения управляющий блок газовой турбины содержит генерирующий управляющий сигнал блок 36b для генерирования управляющего сигнала 37. Согласно одному варианту выполнения генерирующий управляющий сигнал блок 36b предназначен для генерирования выходного сигнала в зависимости от выходного сигнала определяющего блока 36а.

Согласно другому варианту выполнения управляющий блок 36 предназначен для генерирования управляющего сигнала 37 для установки соотношения по меньшей мере двух различных входных потоков топлива на заданное значение в заданное время в случае нахождения газовой турбины в заданной рабочей фазе. Согласно одному варианту выполнения устройство 26 разделения топлива устанавливает в ответ на управляющий сигнал 37 соотношение основного потока топлива и вспомогательного потока топлива на заданное значение.

Согласно одному варианту выполнения раскрываемого предмета изобретения управляющий блок 36 предназначен для определения на основе по меньшей мере одного рабочего параметра, находится ли газовая турбина в заданной рабочей фазе. Например, заданная рабочая фаза может быть рабочей фазой с высокой температурой выше порогового значения температуры. Согласно другому варианту выполнения заданная рабочая фаза является рабочей фазой с большой амплитудой (выше порогового значения амплитуды) динамических колебаний давления в зоне сгорания камеры сгорания. Согласно другому варианту выполнения используется комбинация рабочих параметров для определения нахождения газовой турбины в заданной рабочей фазе.

На фиг.2 схематично показаны наборы рабочих параметров, соответствующих заданным фазам, согласно вариантам выполнения раскрываемого предмета изобретения. На фиг.2 показан график разделения основного и вспомогательного топлива в зависимости от нагрузки газовой турбины. Горизонтальная ось представляет низкие нагрузки газовой турбины на левой стороне и высокие нагрузки на правой стороне. Вертикальная ось представляет разделение топлива с большим количеством потока вспомогательного топлива в верхней части вертикальной оси и меньшим количеством потока вспомогательного топлива в нижней части вертикальной оси. Вертикальная ось не показывает абсолютные значения подаваемого топлива, а относительные значения подаваемого вспомогательного топлива по сравнению с подаваемым основным топливом.

Согласно одному варианту выполнения заштрихованная зона, обозначенная позицией А на фиг.2, представляет набор рабочих условий, в которой компонент камеры сгорания подвергается опасности повреждения вследствие перегрева. Например, это могут быть условия, при которых удельное разделение на поток основного топлива и поток вспомогательного топлива может приводить к перегреву поверхности камеры сгорания при данной нагрузке. Согласно одному варианту выполнения раскрываемого предмета изобретения управляющий блок 36 предназначен для обеспечения выходного сигнала 37 (см. фиг.1) для разделения при данной нагрузке на поток основного топлива и поток вспомогательного топлива так, что предотвращается заход в зону А.

Согласно другому варианту выполнения управляющий блок 36 предназначен для обеспечения выходного сигнала 37 с целью установки соотношения между потоком основного топлива и потоком вспомогательного топлива так, что предотвращается заход в зону В. Согласно одному варианту выполнения зона В представляет набор рабочих условий, в которых амплитуда динамических колебаний давления в зоне сгорания является нежелательно высокой. Когда такие динамические колебания давления превышают допустимый уровень, то может оказываться сильное отрицательное влияние на работу газовой турбины и/или срок службы механической системы сгорания. Поэтому желательно обеспечение возможности работы как вне зоны А, так и вне зоны В. Это реализовано с помощью раскрываемого предмета изобретения.

На фиг.3 показана установка соотношения двух различных входных потоков топлива (потока основного топлива и потока вспомогательного топлива) на заданное значение в заданное время согласно одному варианту выполнения раскрываемого предмета изобретения. На фиг.3 вертикальная ось представляет разделение топлива с большим количеством потока вспомогательного топлива в верхней части вертикальной оси и с меньшим количеством потока вспомогательного топлива в нижней части вертикальной оси. Базовое значение вспомогательного топлива на фиг.3 соответствует коррекции 0%. Согласно одному варианту выполнения базовое значение соотношения потока основного топлива к потоку вспомогательного топлива является исходным значением, которое было определено и установлено во время изготовления газовой турбины. Коррекцию этого исходного значения можно осуществлять в соответствии с любым подходящим методом или алгоритмом, например на основе рабочих условий, например, нагрузки газовой турбины. Такой метод называется в последующем режимом управления для нормальной работы и не относится к раскрываемому предмету изобретения. Например, режим управления для нормальной работы может включать изменение соотношения двух различных входных потоков топлива (потока основного топлива и потока вспомогательного топлива) в зависимости от нагрузки газовой турбины, например, в соответствии с заданной схемой разделения топлива. Однако, если определяется заданное рабочее условие, то режим управления для нормальной работы больше не применяется. Вместо этого, согласно одному варианту выполнения раскрываемого предмета изобретения соотношение потока основного топлива и потока вспомогательного топлива устанавливается на заданное значение для заданного времени.

Согласно одному варианту выполнения, за исключением заданного времени, внутри которого соотношение потока основного топлива и потока вспомогательного топлива устанавливается на заданное значение, соотношение этих двух различных входных потоков топлива устанавливается на значение, которое соответствует режиму управления, применяемого для нормальной работы газовой турбины. Однако в случае достижения заданной рабочей фазы соотношение устанавливается на заданное значение для заданного времени согласно вариантам выполнения раскрываемого предмета изобретения. После этого соотношение снова устанавливается на значение, которое соответствует режиму управления для нормальной работы.

Как показано в качестве примера на фиг.3, с t=t0 до t=t1 управляющий блок 36 (см. фиг.1) регулирует коррекцию разделения в соответствии с режимом управления для нормальной работы. При t=t1 управляющий блок 36 определяет нахождение газовой турбины в заданной рабочей фазе. Соотношение потока основного топлива и потока вспомогательного топлива в это время составляет psc0. Согласно вариантам выполнения раскрываемого предмета изобретения управляющий блок 36 выполняет коррекцию разделения так, что отношение потока основного топлива и потока вспомогательного топлива равно заданному значению. Согласно показанному на фиг.3 варианту выполнения установка соотношения на заданное значение соответствует увеличению фактического соотношения (т.е. соотношения перед его увеличением до заданного значения) в заданном процентном отношении. Например, согласно одному варианту выполнения заданное значение получается посредством увеличения потока вспомогательного топлива относительно потока основного топлива для достижения увеличения фактического соотношения в диапазоне от 0,1% до 1%. Согласно другому варианту выполнения заданное время находится в диапазоне между 0,5 сек и 15 сек. Следует понимать, что заданные значения отличаются для различных типов устройств сгорания. Согласно другому варианту выполнения заданное значение получается посредством увеличения текущего соотношения на фиксированную величину. Согласно одному варианту выполнения заданное процентное отношение или, соответственно, фиксированное значение определяются на основе измерений или рабочих условий, например, используемого топлива и т.д. Однако возможен также любой другой метод определения заданного значения отношения между потоком основного топлива и потоком вспомогательного топлива.

Как показано на фиг.3, заданное значение соотношения между потоком основного топлива и потоком вспомогательного топлива, соответствующее коррекции разделения psc1, сохраняется в течение заданного времени dt. Затем при t2=t1+dt используется режим управления для нормальной работы с целью определения величины коррекции psc2 разделения для фактических рабочих условий газовой турбины при t=t2. Как следует из фиг.3, установка соотношения потока основного топлива и потока вспомогательного топлива на заданное значение для заданного времени и установка соотношения потока основного топлива и потока вспомогательного топлива на значение, соответствующее режиму управления для нормальной работы, приводит при t=t2 к образованию импульса 200 соотношения потоков топлива, имеющего ширину импульса dt=t2-t1 и высоту импульса dh=psc1-psc0. В целом, высота импульса задается с помощью заданной величины, т.е. нарастающим фронтом импульса соотношения потоков топлива.

Между t=t2 и t=t3 коррекция разделения топлива определяется режимом управления для нормальной работы. При t=t3 возникает заданное рабочее условие. В результате, управляющий блок 36 снова устанавливает соотношение между потоком основного топлива и потоком вспомогательного топлива на заданное значение psc3 и удерживает это значение в течение заданного времени dt. Начиная с t=t4, соотношение между потоком основного топлива и потоком вспомогательного топлива снова определяется режимом управления для нормальной работы.

Согласно показанному на фиг.3 варианту выполнения заданное время dt является одинаковым при всех возникновениях заданного рабочего условия. Согласно другим вариантам выполнения, заданное время dt зависит от одного или нескольких рабочих параметров газовой турбины.

Обычно, газовая турбина содержит несколько таких камер сгорания, например, показанного на фиг.1 типа. В случае устройства сгорания, содержащего две или больше камеры сгорания, согласно одному варианту выполнения распределение потока основного топлива и потока вспомогательного топлива является одинаковым для подмножества или всех этих камер сгорания. Согласно другим вариантам выполнения осуществляется управление каждой камерой сгорания по отдельности относительно соотношения между потоком основного топлива и потоком вспомогательного топлива.

Общей проблемой является то, что за счет высоких температур внутри таких камер сгорания части различных компонентов камер сгорания подвергаются опасности перегрева, который может приводить к серьезному повреждению камеры сгорания или по меньшей мере отрицательно влиять на их работу. Также проблемой является выброс NOx. Целью вариантов выполнения раскрываемого предмета изобретения является создание устройства сгорания, которое уменьшает опасность такого перегрева и обеспечивает лишь небольшой выброс вредных веществ в широком рабочем диапазоне.

Согласно вариантам выполнения изобретения любой компонент управляющего блока газовой турбины, например определяющий блок или блок генерирования управляющего сигнала, предусмотрен в виде соответствующих компьютерных программ, которые позволяют процессору обеспечивать раскрытые функции соответствующих элементов. Согласно другим вариантам выполнения любой компонент управляющего блока газовой турбины, например, определяющий блок или блок генерирования управляющего сигнала, может быть предусмотрен в виде аппаратного обеспечения. Согласно другим, смешанным вариантам выполнения некоторые компоненты могут быть предусмотрены в виде программного обеспечения, в то время как другие компоненты предусмотрены в виде аппаратного обеспечения. Кроме того, следует отметить, что может быть предусмотрен отдельный компонент (например, модуль) для каждой раскрытой функции. Согласно другим вариантам выполнения по меньшей мере один компонент (например, модуль) предназначен для обеспечения двух или более раскрытых функций.

Следует отметить, что понятие «содержащий» не исключает другие элементы или фазы, а неопределенный артикль не исключает множественности. Кроме того, элементы, описание которых приведено в связи с различными вариантами выполнения, можно комбинировать друг с другом. Следует также отметить, что указание позиций в формуле изобретения не следует понимать как ограничение объема формулы изобретения.

В качестве заключения относительно указанных выше вариантов выполнения данного изобретения можно указать следующее:

дано описание управляющего блока устройства сгорания и устройства сгорания, например газовой турбины, который на основе по меньшей мере одного рабочего параметра определяет, находится ли устройство сгорания в заданной рабочей фазе. В ответ на это генерируется управляющий сигнал, предназначенный для установки соотношения по меньшей мере двух различных входных потоков топлива на заданное значение для заданного времени в случае, если устройство сгорания находится в заданной рабочей фазе.

1. Управляющий блок устройства сгорания, содержащий
- управляющий вход (100а, 100b, 100с) для приема по меньшей мере одного рабочего параметра (34, 35, 38), характеризующего работу устройства (1) сгорания;
- управляющий выход (102) для выдачи управляющего сигнала (37) для управления по меньшей мере двумя различными входными потоками топлива в устройство (1) сгорания;
- при этом управляющий блок (36) предназначен для определения на основе по меньшей мере одного рабочего параметра (34, 35, 38), находится ли устройство (1) сгорания в заданной рабочей фазе;
- при этом управляющий блок (36) дополнительно предназначен для генерирования управляющего сигнала (37) для установки соотношения по меньшей мере двух различных входных потоков топлива на заданное значение (psc1, psc3) для заданного времени (dt) в случае, если устройство сгорания (1) находится в заданной рабочей фазе,
- при этом установка соотношения по меньшей мере двух различных входных потоков топлива на заданное значение содержит изменение соотношения по меньшей мере двух различных входных потоков топлива с текущего значения (psc0) на заданное значение (psc1, psc3) ступенчатым образом, и
- при этом установка соотношения по меньшей мере двух различных входных потоков топлива на заданное значение для заданного времени (dt) является частью импульсного временного изменения (200) соотношения по меньшей мере двух различных входных потоков топлива.

2. Управляющий блок устройства сгорания по п. 1, в котором после заданного времени соотношение по меньшей мере двух различных входных потоков топлива устанавливается на значение (psc2), которое соответствует режиму управления, применяемому перед установкой соотношения по меньшей мере двух различных входных потоков топлива на заданное значение (psc1).

3. Управляющий блок устройства сгорания по любому из пп. 1 или 2, в котором по меньшей мере два различных входных потока топлива включают в себя
- основной поток топлива в основную зону (21) сгорания камеры (10) сгорания устройства (1) сгорания; и
- вспомогательный поток топлива во вспомогательную зону (29) сгорания камеры (10) сгорания устройства (1) сгорания.

4. Управляющий блок устройства сгорания по любому из пп. 1-2, в котором по меньшей мере один рабочий параметр включает в себя по меньшей мере температуру или давление.

5. Устройство сгорания, содержащее
- камеру сгорания (10);
- управляющий блок (36) устройства сгорания по любому из пп. 1-4.

6. Устройство сгорания по п. 5, дополнительно содержащее устройство (26) разделения топлива для управляемого разделения подаваемого потока топлива по меньшей мере на два различных входных потока топлива в камеру (10) сгорания.

7. Способ работы управляющего блока устройства сгорания, предназначенного для управления по меньшей мере двумя различными входными потоками топлива в устройство (1) сгорания, при этом способ содержит:
- определение на основе по меньшей мере одного рабочего параметра, находится ли устройство (1) сгорания в заданной рабочей фазе;
- генерирование управляющего сигнала (37), предназначенного для установки соотношения по меньшей мере двух различных входных потоков топлива на заданное значение (psc1, psc3) для заданного времени (dt) в случае нахождения устройства сгорания в заданной рабочей фазе,
- при этом установка соотношения по меньшей мере двух различных входных потоков топлива на заданное значение содержит изменение соотношения по меньшей мере двух различных входных потоков топлива с текущего значения (psc0) на заданное значение (psc1, psc3) ступенчатым образом, и
- при этом установка соотношения по меньшей мере двух различных входных потоков топлива на заданное значение для заданного времени (dt) является частью импульсного временного изменения (200) соотношения по меньшей мере двух различных входных потоков топлива.

8. Читаемый компьютером носитель, содержащий компьютерную программу для генерирования управляющего сигнала, при этом компьютерная программа при исполнении процессором предназначена для управления способом по п. 7.



 

Похожие патенты:

Инжектор камеры сгорания газовой турбины содержит двойную цепь впрыска топлива и воздушный контур. Цепи впрыска топлива состоят из топливной системы запуска и главной цепи питания топливом, предназначенной для работы во всех режимах полета после воспламенения.

Устройство впрыска топлива для кольцевой камеры сгорания турбомашины содержит управляющую цепь, постоянно питающую инжектор, выходящий в первую трубку Вентури, и многоточечную цепь.

Способ зажигания для камеры сгорания газотурбинного двигателя, питаемой топливом через форсунки и имеющей свечу зажигания, содержит первоначальную фазу, во время которой в камеру впрыскивают топливо с постоянным расходом одновременно с активизацией свечи зажигания, и, - при отсутствии воспламенения в камере в конце первоначальной фазы, - вторую фазу.

Система сгорания содержит корпус, камеру сгорания, расположенную внутри корпуса, разделительную стенку и клапан, расположенный на корпусе, для обеспечения прохождения выходного потока текучей среды из внутреннего объема корпуса наружу корпуса, в зависимости от рабочего положения клапана.

Камера сгорания, в частности для газотурбинного двигателя, имеет кольцевую форму вокруг оси и содержит внутреннюю кольцевую стенку, наружную кольцевую стенку и кольцевую торцевую стенку камеры, продолжающиеся вокруг указанной оси.

Способ сжигания предварительно подготовленной “бедной” топливовоздушной смеси в двухконтурной малоэмиссионной горелке с регулировкой расхода пилотного топлива заключается в регулировании расхода пилотного топлива независимо от расхода основного топлива из условия получения минимальной эмиссии оксидов азота при сохранении устойчивости горения топливовоздушной смеси в дополнительной циркуляционной зоне, в уменьшении относительного расхода пилотного топлива с увеличением температуры воздуха и температуры “бедной” топливовоздушной смеси при сохранении устойчивости горения топливовоздушной смеси в дополнительной циркуляционной зоне.

Способ сжигания предварительно подготовленной “бедной” топливовоздушной смеси в малоэмиссионной горелке заключается в регулировании относительного расхода пилотного топлива на всех возможных режимах работы малоэмиссионной горелки независимо от расхода основного топлива с учетом температуры воздуха и температуры “бедной” топливовоздушной смеси из условия получения минимальной концентрации оксидов азота при сохранении устойчивости горения топливовоздушной смеси в дополнительной циркуляционной зоне.

Горелка // 2562900
Горелка выполнена с топливораспределительным кольцом, некоторым количеством топливных форсунок, смонтированных в направлении потока на топливораспределительном кольце, имеющем в направлении потока кольцеобразную поверхность.

Горелка предварительного смешивания многоконусного типа для газовой турбины содержит множество кожухов, расположенных вокруг центральной оси горелки и являющихся частями виртуального аксиально продолжающегося общего конуса , открытого в направлении вниз по потоку.

Кольцевая камера сгорания газотурбинного двигателя содержит группу горелок, расположенных в одной плоскости на передней стенке камеры сгорания, по меньшей мере, двумя соосными кольцами.

Способ впрыска топлива осуществляют посредством системы воздушно-топливного смешения, имеющей геометрическую ось центральной симметрии (X′X), в камеру сгорания газотурбинного двигателя. Впрыск топлива осуществляют в системе смешения по оси (C′C), параллельной оси симметрии (X′X) этой системы и отличной от этой оси (X′X). Камера сгорания, размещенная в корпусе, имеет угловое смещение относительно корпуса. Впрыск топлива осуществляют посредством форсунки, жестко соединенной с корпусом, и системы смешения, жестко соединенной с камерой сгорания. Изобретение направлено на уменьшение и даже устранение явлений неустойчивости процесса сгорания в газотурбинном двигателе за счет впрыска топлива по оси, децентрированной относительно системы воздушно-топливного смешения, приводящего к течению топлива, которое более не является идеально осесимметричным. 2 н. и 5 з.п. ф-лы, 4 ил.

Камера сгорания содержит пучок трубок, который проходит в радиальном направлении по меньшей мере через часть камеры сгорания. Указанный пучок трубок имеет верхнюю по потоку поверхность, отделенную в осевом направлении от нижней по потоку поверхности. Трубки проходят от верхней по потоку поверхности через нижнюю по потоку поверхность, при этом каждая трубка обеспечивает проточное сообщение через пучок трубок. Между смежными трубками внутри пучка трубок в осевом направлении проходит отражатель. Способ распределения топлива в камере сгорания включает обеспечение прохождения топлива в камеру избыточного давления, ограниченную по меньшей мере частично верхней по потоку поверхностью, нижней по потоку поверхностью, кожухом и трубками, проходящими от верхней по потоку поверхности к нижней по потоку поверхности. Указанный способ дополнительно включает обеспечение соударения топлива с отражателем, который проходит в осевом направлении внутри топливной камеры повышенного давления между смежными трубками. 3 н. и 17 з.п. ф-лы, 7 ил.

Блок топливных форсунок, применяемый в турбинном двигателе, содержит группу топливных форсунок. Группа топливных форсунок расположена внутри воздушной напорной камеры, ограниченной корпусом. Каждая из указанных топливных форсунок соединена с жаровой трубой, ограничивающей камеру сгорания, и содержит корпус, смесительные трубки и по меньшей мере один теплоотводящий трубопровод. Корпус имеет внутреннюю поверхность, ограничивающую напорную камеру для охлаждающей текучей среды и топливную напорную камеру. Смесительные трубки проходят через корпус, и каждая имеет внутреннюю поверхность, ограничивающую поточный канал, проходящий между воздушной напорной камерой и камерой сгорания. По меньшей мере одна из смесительных трубок имеет по меньшей мере одно отверстие для охлаждающей текучей среды, предназначенное для отвода потока охлаждающей текучей среды из камеры для охлаждающей текучей среды в указанный поточный канал. По меньшей мере один теплоотводящий трубопровод проточно сообщается с напорной камерой для охлаждающей текучей среды для подачи в нее потока охлаждающей текучей среды. Изобретение направлено на стабилизацию пламени, улучшение характеристик выброса выхлопных газов, увеличение срока эксплуатации блока форсунок камеры сгорания. 2 н. и 8 з.п. ф-лы, 15 ил.

Система для подачи рабочей текучей среды в камеру сгорания содержит камеру горения и проточный патрубок, который в окружном направлении окружает по меньшей мере часть камеры горения. Трубка обеспечивает проточное сообщение для протекания рабочей текучей среды через проточный патрубок и в камеру горения, причем трубка имеет осевую центральную линию. Первый набор инжекторов расположен по окружности вокруг трубки и проходит под углом в радиальном направлении по отношению к осевой центральной линии трубки, причем первый набор инжекторов обеспечивает проточное сообщение для протекания рабочей текучей среды через стенку трубки. Изобретение позволяет увеличить термодинамический коэффициент полезного действия камеры сгорания. 3 н. и 17 з.п. ф-лы, 4 ил.

Изобретение относится к авиационному двигателестроению, а именно к устройствам форсажных камер турбореактивных двухконтурных двигателей, в частности к узлам подачи топлива в форсажную камеру. Узел подачи топлива в форсажную камеру турбореактивного двухконтурного двигателя содержит топливные коллекторы со штуцерами подвода топлива. Топливные коллекторы выполнены за одно целое с корпусом, который посредством элементов крепления соединен с верхней обечайкой диффузора и с креплением верхнего кольцевого стабилизатора пламени. При этом указанный корпус в плоскости поперечного сечения имеет прямоугольную форму, а топливные коллекторы выполнены кольцевыми. Достигается уменьшение потери полного давления в проточной части форсажной камеры, увеличение тяги и уменьшение коксообразования в топливных коллекторах. 2 з.п. ф-лы, 3 ил.

Изобретение относится к энергетике. Система сжигания содержит камеру (100) сгорания, имеющую концевую секцию (101) и предсекцию (102) сгорания, продолжающуюся от концевой секции (101) вдоль центральной оси (103) камеры (100) сгорания, турбулизирующее устройство (110), необязательное запальное горелочное устройство (120) и светоизлучающее устройство (130), которое испускает во внутренний объем (104) предсекции (102) сгорания электромагнитное излучение (131), характеризующееся тем, что оно может генерировать подачу энергии в запальный факел (122) или основной факел (108) для стабилизации запального факела (122) или основного факела (108). Также представлен способ управления системой сжигания для газовой турбины. Изобретение позволяет уменьшить количество топлива, необходимого для запального факела, уменьшить выбросы, а также позволяет достичь стабильного процесса сжигания. 2 н. и 11 з.п. ф-лы, 4 ил.

Группа изобретений относится к способам изготовления узла топливной форсунки и кольца топливной форсунки и к кольцу топливной форсунки. Способ изготовления узла 100 топливной форсунки включает использование торцевой заглушки 104 топливной форсунки, расположение кольца топливной форсунки в полости торцевой заглушки 104 и прикрепление кольца топливной форсунки к торцевой заглушке 104 для формирования элементов, проходящих в указанную полость и соответствующих или торцевой заглушке 104 топливной форсунки, или вкладышу 102 топливной форсунки, или им обоим с обеспечением закрепления вкладыша 102 топливной форсунки внутри торцевой заглушки 104 в ее полости. Группа изобретений направлена на упрощение закрепления вкладыша в полости торцевой заглушки с возможностью съема и обеспечение возможности многократной установки вкладыша в торцевую заглушку и его многократного извлечения с небольшим повреждением или без повреждения узла по меньшей мере заданное число раз, что, в свою очередь, сводит к минимуму нежелательные эксплуатационные проблемы, обусловленные отсутствием герметичности соединения и возникновением протечек. 3 н. и 16 з.п. ф-лы, 4 ил.

Система для подачи топлива в камеру сгорания содержит камеру горения и топливную форсунку, которая находится в проточном сообщении с камерой горения. Несколько каналов расположены в окружном направлении вокруг камеры горения для обеспечения с ней проточного сообщения. Камера для жидкого топлива находится в проточном сообщении с указанными каналами. Перегородка в окружном направлении окружает по меньшей мере часть камеры для жидкого топлива внутри указанных каналов и образует впадины вокруг камеры для жидкого топлива. Изобретение направлено на повышение кпд камеры сграния без увеличения выбросов NОx. 3 н. и 17 з.п. ф-лы, 6 ил.

Группа изобретений относится к топливным форсункам. Топливная форсунка с осевым потоком для газовой турбины содержит кольцевые каналы, предназначенные для доставки продуктов для сжигания. Кольцевой воздушный канал 62 предназначен для приема нагнетаемого компрессором воздуха. Смежно с осевым концом кольцевого воздушного канала 62 расположены завихрительные лопаточные каналы 64. Следующий первый кольцевой канал 66 расположен радиально внутри кольцевого воздушного канала 62 и имеет первые отверстия 68, расположенные смежно с осевым концом первого кольцевого канала 66 и ниже по потоку от завихрительных лопаточных каналов 64. Следующий второй кольцевой канал 70 расположен радиально внутри первого кольцевого канала 66 и имеет вторые отверстия 72, расположенные смежно с осевым концом второго кольцевого канала 70 и ниже по потоку от первых отверстий 68. Группа изобретений направлена на обеспечение простой конструкции с более эффективным распылением жидкого топлива в канале предварительного смешивания для снижения выбросов наряду с оптимальным использованием воздушной завесы. 3 н. и 15 з.п. ф-лы, 3 ил.

Изобретение относится к энергетике. Топливная форсунка для камеры сгорания содержит топочную трубу и кольцевой центральный элемент, расположенный концентрически в указанной топочной трубе. Указанный кольцевой центральный элемент проходит вдоль продольной оси топливной форсунки и по меньшей мере частично ограничивает проточный канал для охлаждающего воздуха, проходящий через кольцевой центральный элемент. При этом концевой рассеивающий узел, расположенный на нижнем по потоку конце кольцевого центрального элемента, содержит отражающую пластину и крышку, причем указанные отражающая пластина и крышка по меньшей мере частично ограничивают охлаждающую полость между ними. Через отражающую пластину проходят охлаждающие отверстия для обеспечения проточного сообщения между каналом для охлаждающего воздуха и охлаждающей полостью. Также представлены концевой рассеивающий узел для топливной форсунки и газовая турбина. Изобретение позволяет улучшить устройство кольцевого центрального элемента, а также позволяет улучшить способ охлаждения концевой части центрального элемента. 3 н. и 17 з.п. ф-лы, 10 ил.

Дано описание управляющего блока устройства сгорания и устройства сгорания, например, газовой турбины, который на основе по меньшей мере одного рабочего параметра определяет, находится ли устройство сгорания в заданной рабочей фазе. В ответ на это генерируется управляющий сигнал, предназначенный для установки соотношения по меньшей мере двух различных входных потоков топлива на заданное значение для заданного времени в случае, если устройство сгорания находится в заданной рабочей фазе. Технический результат - уменьшение опасности перегрева камеры сгорания и уменьшение выброса вредных веществ в широком рабочем диапазоне. 4 н. и 4 з.п. ф-лы, 3 ил.

Наверх