Устройство для испытания пласта

Изобретение относится к устройствам для испытания продуктивных горизонтов в нефтяных и газовых скважинах. Техническим результатом является упрощение конструкции и уменьшение габаритов устройства. Устройство содержит сборный корпус, выполненный из соединенных между собой резьбой верхней и нижней частей. В верхней части в монолитной корпусной детали выполнены пробоотборные камеры непроточного типа, впускные каналы которых перекрыты запорными гильзами, взаимодействующими с кулачками. Монолитная корпусная деталь посредством резьбы соединена с втулкой, которая соосно соединена с патрубком с образованием центрального осевого канала для подачи флюида в зону расположения запорных гильз. Нижний конец патрубка выполнен в виде раструба с установленной в нем воронкой из эластичного материала, диаметр которой больше диаметра раструба. Края воронки расположены ниже отверстий запорного клапана. Механизм управления впуском флюида установлен с возможностью продольного перемещения относительно втулки. Запорные гильзы, втулка, патрубок и механизм управления впуском размещены в защитном кожухе. Между кожухом и корпусной деталью имеется зазор для перетекания флюида в трубное пространство. В нижней части устройства расположены полый шток, связанный с механизмом управления впуском флюида, запорный и уравнительный клапаны. 4 ил.

 

Изобретение относится к устройствам для испытания продуктивных горизонтов в нефтяных и газовых скважинах.

Известно устройство для испытания пласта, содержащее цилиндрический корпус, концентрично установленный в корпусе и связанный с ним шток со шлицевым соединением, жестко связанный с переводником для соединения с колонной труб, упорный подшипник, установленный между корпусом и переводником, дополнительный шток, на наружной поверхности которого выполнена бесконечная винтовая канавка, размещенную в винтовой канавке скобу, золотниковую втулку с впускным каналом, телескопически связанную с дополнительным штоком и установленную с возможностью осевого перемещения при вращении колонны труб, согласно изобретению устройство снабжено дифференциальной втулкой и охватывающим корпус уплотнительным цилиндром, палец размещен непосредственно в корпусе с возможностью сопряжения наружной поверхности пальца с внутренней поверхностью уплотнительного цилиндра, дополнительный шток установлен подвижно относительно штока со шлицевым соединением и корпуса, шток со шлицевым соединением в средней части снабжен буртом с уплотнительными кольцами, ниже которых выполнены радиальные отверстия, при этом площадь сечения бурта уплотнительной части в два раза превышает площадь сечения основной части штока, а дифференциальная втулка размещена в корпусе с возможностью сопряжения ее внутренней поверхности с наружной поверхностью бурта штока, при этом бурт выполнен разъемным (патент №2186967, опубл. 10.08.2002 г.).

Недостатком известного устройства является отсутствие возможности отбора герметизированных проб флюида из скважин.

Наиболее близким предлагаемому изобретению по технической сущности и достигаемому результату является устройство для испытания пласта, содержащее корпус, запорный и уравнительный клапаны, полый шток, на наружной поверхности которого нарезана бесконечная винтовая канавка, скобу, установленную в канавке штока, втулку запорного клапана, соединенную со скобой, и пробоотборные камеры, впускные каналы которых перекрыты запорными гильзами, при этом пробоотборные камеры размещены на наружной поверхности штока между запорным и уравнительным клапанами, причем на конце втулки запорного клапана установлен кулачок с возможностью взаимодействия с запорными гильзами пробоотборных камер (ав. св-во СССР №670723, опубл. 30.06.1979 г.).

Известное устройство позволяет осуществлять отбор герметизированных проб флюида из каждого пласта в отдельности и обеспечить последовательное заполнение камер. Однако недостатком известного устройства является сложность его конструкции из-за сложного устройства пробоотборных камер, большого количества взаимодействующих частей и сложность в эксплуатации, т.к. после подъема проб на поверхность их перевод в контейнер для последующего исследования требует почти полной разборки устройства, а также большие габариты по диаметрам, определяемые внешним расположением камер на штоке.

Задачей заявляемого изобретения является упрощение конструкции и эксплуатации устройства, а также уменьшение его габаритов.

Поставленная задача решается тем, что в устройстве для испытания пласта, содержащем корпус, запорный и уравнительный клапаны, полый шток, на наружной поверхности которого нарезана бесконечная винтовая канавка, в которой установлена скоба, пробоотборные камеры непроточного типа, впускные каналы которых перекрыты запорными гильзами, механизм управления впуском флюида в пробоотборные камеры с кулачками, установленными с возможностью взаимодействия с запорными гильзами, корпус выполнен сборным, состоящим из верхней и нижней частей, при этом в верхней части корпуса размещены пробоотборные камеры с впускными каналами, выполненные в монолитной корпусной детали, и механизм управления впуском флюида, расположенный под запорными гильзами, а в нижней части - запорный клапан, полый шток, связанный с механизмом управления впуском флюида, и уравнительный клапан; верхняя часть корпуса снабжена втулкой, соединенной с монолитной корпусной деталью и с патрубком с образованием центрального осевого канала для подачи флюида в зону расположения запорных гильз; нижний конец патрубка выполнен в виде раструба с установленной в нем воронкой из эластичного материала, диаметр которой больше диаметра раструба, а края воронки расположены ниже отверстий запорного клапана; механизм управления впуском флюида установлен с возможностью продольного перемещения относительно втулки; втулка и патрубок для подачи флюида, механизм управления впуском флюида и запорные гильзы размещены в защитном кожухе, установленном с образованием зазора между ним и корпусом верхней части для перетекания флюида в трубное пространство.

Выполнение корпуса сборным, состоящим из верхней и нижней частей, и размещение в верхней части корпуса пробоотборных камер с впускными каналами, перекрытыми запорными гильзами, и механизма управления впуском флюида, расположенного под запорными гильзами, позволяет упростить эксплуатацию устройства, так как упрощается его разборка на поверхности - для обеспечения доступа к впускным каналам пробоотборных камер необходимы только две операции - отсоединение нижней части корпуса и кожуха. Кроме того, за счет размещения пробоотборных камер в верхней части корпуса, выполненных в монолитной корпусной детали, уменьшаются габариты устройства по диаметру, а также упрощается конструкция устройства за счет уменьшения количества деталей.

Установка в верхней части корпуса втулки, соединенной с монолитной корпусной деталью и с патрубком с образованием центрального осевого канала для подачи флюида в зону расположения запорных гильз, и выполнение нижнего конца патрубка в виде раструба с установленной в нем воронкой из эластичного материала, диаметр которой больше диаметра раструба, а края воронки расположены ниже отверстий запорного клапана, а также размещение втулки, патрубка, механизма управления впуском флюида и запорных гильз в защитном кожухе, который установлен с образованием зазора между ним и верхней частью корпуса для перетекания флюида в трубное пространство, позволяет упростить эксплуатацию устройства за счет подачи пластового флюида в пробоотборные камеры вне зависимости от давления поступающего флюида - при низком давлении флюида давление трубного пространства в зазоре давит на эластичную воронку и обеспечивает поступление флюида в зону расположения запорных гильз, а при высоких дебитах края эластичной воронки отгибаются и излишки флюида поступают напрямую в трубное пространство.

Общий вид устройства для испытания пласта показан на фиг. 1-4.

Устройство для испытания пласта содержит сборный корпус, выполненный из соединенных между собой резьбой верхней части, состоящей из корпусных деталей 1, 2, 3 (фиг. 1), и нижней части, состоящей из корпусных деталей 4, 5 (фиг. 3), 6 (фиг. 4). В верхней монолитной корпусной детали 1 (фиг. 1) выполнены пробоотборные камеры 7 непроточного типа, впускные каналы 8 которых перекрыты запорными гильзами 9. Корпусная деталь 1 посредством резьбы соединена с втулкой 10, которая соосно соединена с патрубком 11 (фиг. 2) с образованием центрального осевого канала 12 для подачи флюида в зону расположения запорных гильз 9. Нижний конец патрубка 11 выполнен в виде раструба с установленной в нем воронкой 13 из эластичного материала, диаметр которой больше диаметра раструба. Края воронки 13 расположены ниже отверстий 14 запорного клапана.

На втулке 10 под запорными гильзами 9 установлена втулка 15 (фиг. 2) механизма управления впуском флюида, в которой размещены кулачки 16. Количество кулачков 16 должно соответствовать количеству запорных гильз 9 (фиг. 1) и, соответственно, количеству пробоотборных камер 7. Втулка механизма управления впуском флюида 15 установлена на втулку 10 посредством корпуса 17 (фиг. 2), двух разрезных колец 18, 19 и штифта 20. Кроме того, во втулке 15 механизма управления впуском флюида и втулке 10 выполнены продольные каналы 21, 22, а в корпусе 17 - радиальные отверстия 23 для протока флюида.

Запорные гильзы 9, втулка 10, патрубок 11 и механизм управления впуском флюида 24, представляющий собой группу деталей 15, 16, 17, 18, 19, 20, размещены в защитном кожухе 25 (фиг. 2). Между кожухом 25 и корпусной деталью 2 имеется зазор 26 для перетекания флюида в трубное пространство по каналу 27, выполненному в корпусной детали 1 (фиг. 1).

В нижней части устройства расположены полый шток 28 (фиг. 3), по наружной поверхности которого нарезано, например, пятнадцать витков правой и левой трапецеидальных резьб. Концы резьб сопряжены между собой и образуют бесконечную винтовую канавку, по которой скользит скоба 29, жестко связанная с вкладышем 30. Полый шток 28 связан с механизмом управления впуском флюида 24 через систему деталей 31 (фиг. 3), 32, 33, 34, 35 (фиг. 2), 36.

Между механизмом управления впуском флюида 24 и полым штоком 28 находится запорный клапан, состоящий из переходника 37 и гильзы 34 с отверстиями 14 для впуска флюида из скважины. Гильзы 38, 39 (фиг. 4) и корпусная деталь 6 имеют пропускные отверстия и образуют уравнительный клапан, управляемый натяжением колонны труб.

Устройство для испытания пласта работает следующим образом.

После спуска испытательного инструмента с устройством в скважину до нужного пласта, производится пакеровка. После создания необходимой нагрузки на пакер вращением бурильной колонны вправо на необходимое число оборотов, например 15, полый шток 28 (фиг. 3) перемещается в самое крайнее нижнее положение и через телескопическое соединение деталей 31, 32, 33 тянет за собой гильзу 34, в результате открывается запорный клапан путем совмещения отверстий переходника 37 с отверстиями 14 гильзы 34. Поскольку края эластичной воронки 13 (фиг. 2) расположены ниже отверстий 14 запорного клапана и перекрывают их, после открытия запорного клапана сначала скважинная жидкость, а затем после очищения - пластовый флюид начинает поступать в центральный осевой канал 12, образованный патрубком 11 и втулкой 10 (фиг. 1), в зону расположения запорных гильз 9 (показано стрелками) и обтекать их. Затем флюид проходит по продольному каналу 21 (фиг. 2) во втулке 15 механизма управления впуском флюида и через продольный канал 22 и радиальные отверстия 23 поступает в зону, расположенную под корпусом 17, и далее через щели (на чертеже не обозначены) в детали 35 поступает через зазор 26 в трубное пространство по каналу 27 (фиг. 1). При большом дебите скважины под напором потока края эластичной воронки 13 (фиг. 2) отгибаются и часть потока проходит через зазор 26 в трубное пространство 27.

Когда скважинная жидкость в полости под пакерами полностью заместится пластовым флюидом (определяется технологией) и пластовый флюид начнет поступать в трубное пространство по каналу 27 в зону расположения запорных гильз после прохода скважинной жидкости через зону расположения запорных гильз, производят вращение бурильных труб вправо по той же технологии, как описано выше. Вращательный момент через корпусные детали 4, 5 (фиг. 3), 6 (фиг. 4) передается скобе 29 (фиг. 3) и вкладышу 30. Скоба 29, передвигаясь по бесконечной винтовой канавке, приводит к поступательному движению штока 28. Движение штока передается механизму управления впуском флюида 24 (фиг. 2) через детали 31 (фиг. 3), 32, 33, 34, 35 (фиг. 2), 36. При этом гильза 34 перемещается вверх и в результате отверстия 14 запорного клапана полностью перекрываются. Полное перекрытие происходит в крайнем верхнем положении полого штока 28, которое достигается при вращении бурильных труб на число оборотов, соответствующих положению скобы 29 в крайнем нижнем витке трапецеидальных резьб на полом штоке 28 (фиг. 3). Штифт 20 (фиг. 2), перемещаясь по фигурным пазам разрезных колец 18, 19, заставляет двигаться втулку 15 и кулачки 16. При совпадении кулачков 16 с запорными гильзами 9 происходит их срабатывание и флюид по впускным каналам 8 поступает в пробоотборные камеры 7.

При селективном отборе герметизированных проб флюида из каждого пласта в отдельности необходимо производить работу с одним кулачком 16. При этом каждые четыре возвратно-поступательных движения штока 28 (через каждые 15 оборотов вправо) приводят к открытию одного из запорных клапанов 9 кулачком 16.

После окончания испытаний производится натяжка инструмента, в результате чего гильзы 38 (фиг. 4) и 39 и корпусная деталь 6 дополнительно перекрывают пропускные отверстия для прохода флюида из скважины.

После подъема инструмента на поверхность верхнюю часть корпуса, состоящую из корпусных деталей 1, 2, 3, отвинчивают от нижней части, затем извлекают пробоотборные камеры, заполненные герметизированной пробой, и отправляют на лабораторный анализ.

Применение заявляемого изобретения позволит упростить конструкцию и эксплуатацию устройства, а также уменьшить его габариты.

Устройство для испытания пласта, содержащее корпус, запорный и уравнительный клапаны, полый шток, на наружной поверхности которого нарезана бесконечная винтовая канавка, в которой установлена скоба, пробоотборные камеры непроточного типа, впускные каналы которых перекрыты запорными гильзами, механизм управления впуском флюида в пробоотборные камеры с кулачками, установленными с возможностью взаимодействия с запорными гильзами, отличающееся тем, что корпус выполнен сборным, состоящим из верхней и нижней частей, при этом в верхней части корпуса размещены пробоотборные камеры с впускными каналами, выполненные в монолитной корпусной детали, и механизм управления впуском флюида, расположенный под запорными гильзами, а в нижней части - запорный клапан, полый шток, связанный с механизмом управления впуском флюида, и уравнительный клапан; верхняя часть корпуса снабжена втулкой, соединенной с монолитной корпусной деталью и с патрубком с образованием центрального осевого канала для подачи флюида в зону расположения запорных гильз; нижний конец патрубка выполнен в виде раструба с установленной в нем воронкой из эластичного материала, диаметр которой больше диаметра раструба, а края воронки расположены ниже отверстий запорного клапана; механизм управления впуском флюида установлен с возможностью продольного перемещения относительно втулки; втулка и патрубок для подачи флюида, механизм управления впуском флюида и запорные гильзы размещены в защитном кожухе, установленном с образованием зазора между ним и корпусом верхней части для перетекания флюида в трубное пространство.



 

Похожие патенты:

Изобретение относится к способам, которые могут информировать оператора пробоотборника о заполнении пробоотборной камеры. Техническим результатом является повышение эффективности принятия решения об отборе проб и регулировке.

Изобретение относится к нефтяной промышленности и предназначено для отбора проб из манифольда арматуры устья нефтедобывающей скважины, а также при отборе проб жидкости из трубопровода.

Изобретение относится к способу, устройству и системе распознавания ископаемых. Техническим результатом является определение происхождения шлама/ископаемых, особенно в вертикальных разведочных скважинах.

Группа изобретений относится к технологии и технике отбора проб из сред, подверженных расслоению, и может найти применение в нефтяной и других отраслях промышленности народного хозяйства.

Изобретение относится к нефтегазовой промышленности и может быть использовано при проведении промысловых гидродинамических, газоконденсатных исследований скважин в процессе разведки и разработки газовых и газоконденсатных месторождений.

Изобретение относится к газонефтедобыче и может быть использовано на стадии эксплуатации скважин газовых и газоконденсатных месторождений для определения природы воды, поступающей в продукцию скважин.

Изобретение относится к нефтяной промышленности и может быть использовано при проведении исследований для определения состава продукции отдельных пластов и в целом скважины.

Изобретение относится к области экологии и может быть использовано для отбора проб воздуха из грунта в местах подземных переходов магистральных газопроводов под водными и иными преградами, в местах расположения подземных газовых хранилищ, емкостей и т.д.

Изобретение относится к отбору образцов пластовых флюидов. Техническим результатом является снижение загрязненности флюидов при вводе в скважинный инструмент и/или прохождении через скважинный инструмент.

Изобретение относится к гидрогеохимическим исследованиям скважин и предназначено для отбора спонтанного и растворенного в воде газа, выделяемого в различных генетически разнородных слоях торфа с различных фиксированных по глубине горизонтов торфяной залежи.

Изобретение относится к технической области разработки подземных недр, разработки газоносного пласта-коллектора, к области мониторинга геологического объекта хранилища газа. Техническим результатом является повышение эффективности отбора образца флюида под давлением, обеспечение полного наполнения камеры пробоотборника и передача флюида за пределы камеры при контроле давления. Устройство отбора проб флюидов под давлением из скважины содержит камеру пробоотборника, определяющую внутренний объем для приема флюида, корпус, расположенный сверху на камере пробоотборника, средства циркуляции флюида в указанной камере, средства удержания флюида в указанной камере и средства перекачки флюида за пределы указанной камеры. Указанный корпус содержит упругий элемент и средства для снятия натяжения или для сжатия упругого элемента, которые содержат кольцо с прорезью, которое взаимодействует с ручкой для сжатия и снятия натяжения упругого элемента. Средства удержания содержат первый поршень, выполненный с возможностью открывать или преграждать вход флюида в нижнюю часть указанной камеры. Также указанный первый поршень перемещается посредством упругого элемента, расположенного в камере, наполненной маслом. Указанные средства перекачки содержат средства контроля опускания второго поршня с верхней части в направлении нижней части указанной камеры, так что указанный флюид остается под постоянным давлением в камере. Способ мониторинга разработки подземного геологического объекта реализуется с использованием указанного устройства и содержит отбор проб флюида под давлением посредством контролируемой скважины, а также включает этап активирования ручки, так что сжимается упругий элемент. Затем опускают устройство в положении "открыто" в контролируемую скважину посредством кабеля, закрепленного на верхней части устройства. Далее на определенной глубине устройство оставляют в положении "открыто" в течение определенного промежутка времени. Далее активируют ручку, так что снимается натяжение упругого элемента и устройство переходит в положении "закрыто" и поднимают устройство на поверхность. Указанный флюид перекачивают за переделы камеры устройства давлением на верхний поршень, сохраняя при этом давление под контролем посредством датчика давления, так что давление в камере остается постоянным и осуществляют анализы отобранного флюида. 2 н. и 14 з.п. ф-лы, 10 ил.

Группа изобретений относится к области техники, связанной с использованием раствора(ов) на основе полимеров в подземных пластах месторождений, в частности в методах повышения нефтеотдачи пласта. Отбирают пробу водного раствора водорастворимого полимера, протекающего в основном контуре циркуляции, обеспечивая возможность проведения в условиях воздуха окружающей среды, по меньшей мере, одного анализа взятой пробы. Анализ позволяет определить, по меньшей мере, одно свойство водорастворимого полимера. В водный раствор водорастворимого полимера периодически добавляют стабилизирующий раствор до или после отбора пробы из основного контура циркуляции так, чтобы получить пробу, содержащую смесь водного раствора водорастворимого полимера и стабилизирующего раствора, в которой водорастворимый полимер защищен от разрушающих воздействий, которым он может быть подвержен, в отсутствии стабилизирующего раствора, в атмосфере, содержащей, по меньшей мере, 10 об.% кислорода. Второй способ включает стадию отбора пробы из объема водного раствора водорастворимого полимера в емкость для проб с помощью трубопровода для отбора проб, снабженного запорным элементом, не создающим сдвиговых напряжений, и стадию добавления в емкость для проб стабилизирующего раствора. Причем указанные стадии отбора пробы и добавления осуществляют в герметичных условиях. Устройство (1) для отбора проб (100) из водного раствора полимера, предназначенное для соединения с основным контуром (II), в котором циркулирует водный раствор (200) полимера, содержит первую емкость (1) и вторую емкость (2). Первая емкость (1) для проб предназначена для хранения пробы (100), из которой отбирают пробы, и содержит вход (5) для водного раствора полимера, из которого отбирают пробы, и трубопровод (3) для отбора проб, соединенный с этим входом (5), выход (8) и выходной трубопровод (7), снабженный выходным запорным элементом (9) и соединенный с выходом (8). При этом трубопровод (3) снабжен запорным элементом (6), не создающим сдвиговых напряжений и предназначенным для соединения с основным контуром. Вторая емкость (2) - питающая - предназначена для хранения стабилизирующего раствора (300) и содержит выход (10) для стабилизирующего раствора (300) и соединительный трубопровод (4), соединенный с выходом (10), снабженный питающим запорным элементом (11) и обеспечивающий, по меньшей мере, частично соединение между питающей емкостью (2) и емкостью (1) для проб. При этом емкость (1) для проб герметично изолирована при закрытии запорного элемента (6) для отбора проб, выходного запорного элемента (9) и питающего запорного элемента (11). 3 н. и 39 з.п. ф-лы, 5 ил.

Изобретение относится к газовой промышленности и может быть использовано для выявления скважин-обводнительниц и водоприточных интервалов. Способ включает проведение без остановки скважин фоновых и мониторинговых влагометрических исследований всего действующего фонда, на основании которых выявляют группу скважин, возможных обводнительниц. Путем изменения депрессии регистрируют приращение значений паровой фазы, скорости и дебита газового потока в ту или иную сторону или отсутствие приращений. На основании полученных результатов выявляют скважину–обводнительницу. В ней проводят ядерные исследования для выявления интервала обводнения или нескольких интервалов. В указанных интервалах осуществляют геолого-технические мероприятия по водоизоляционным работам с целью повышения коэффициента извлекаемости газа. Технический результат заключается в повышении достоверности определения скважин-обводнительниц и водоприточных интервалов. 1 табл., 1 ил.

Изобретение относится к нефтяной промышленности и может быть использовано для измерения параметров пластовых флюидов по глубинным пробам непосредственно на скважине без применения стационарных PVT установок. Техническим результатом является повышение качества отбираемой глубинной пробы. Глубинный пикнометр «Пентометр» состоит из гидравлического реле времени, включающего сообщающиеся между собой через гидравлическое сопротивление масляную камеру с расположенным в ней подвижным разделительным поршнем и балластную камеру. К масляной камере подсоединен полый корпус со вставленной внутрь него пикнометрической камерой, имеющей входные отверстия для поступления в нее глубинной пробы. Внутри пикнометрической камеры расположены верхний и нижний подвижные поршни с плоскими торцами, причем нижний подвижный поршень имеет канал с запорным элементом для вывода отобранной глубинной пробы и шток, проходящий сквозь уплотненное отверстие в верхнем подвижном поршне и имеющий на конце упор. Верхний и нижний подвижные поршни в исходном положении плоскими торцами плотно с усилием прижаты друг к другу. Линия смыкания указанных поршней находится напротив входных отверстий для поступления глубинной пробы в пикнометрическую камеру. Пространство над верхним подвижным поршнем сообщено со скважинным пространством, а поршень гидравлического реле времени связан с верхним подвижным поршнем с возможностью их совместного перемещения в крайние положения после холостого хода поршня гидравлического реле времени с заданной гидравлическим реле времени скоростью, предотвращающей выделение газа в отбираемой глубинной пробе. 2 з.п. ф-лы, 3 ил.

Методология для выполнения отбора образцов флюидов в скважине, проходящей пласт-коллектор, и флюидного анализа образов флюидов для определения их свойств (включая содержание асфальтенов). Используется по меньшей мере одна модель для прогнозирования содержания асфальтенов как функции участка в пласт-коллекторе. Спрогнозированное содержание асфальтенов сравнивается с соответствующим содержанием, измеренным с помощью флюидного анализа, для определения, соотносятся ли асфальтены в образцах флюидов с конкретными асфальтеновыми типами (к примеру, асфальтеновыми кластерами в целом в тяжелой нефти). Если это так, используется вязкостная модель для определения вязкости пластовых флюидов как функции участка в пласт-коллекторе. Вязкостная модель допускает градиенты вязкости пластовых флюидов как функции глубины. Результаты вязкостной модели (и/или ее части) могут быть использованы для понимания распределения потоков в пласт-коллекторе и в симуляции пласт-коллектора. 2 н. и 25 з.п. ф-лы, 2 ил.

Группа изобретений относится к исследованиям параметров пластов на трубах. Техническим результатом является ускорение работ по отбору проб флюида или закачки технологической жидкости в подпакерную и межпакерную зоны скважины при одной спуско-подъемной операции. Способ включает спуск в скважину до заданной глубины погружного оборудования, состоящего из колонны насосно-компрессорных труб (НКТ), верхнего и нижнего надувных пакеров, имеющих радиальные отверстия в камерах надува, наружный и внутренний эластичные рукава с размещенным между ними металлическим пластинчатым каркасом, перевод нижнего и верхнего надувных пакеров из транспортного положения в рабочее. Сборку и спуск погружного оборудования осуществляют в следующей последовательности: заглушка, клапан циркуляционный полнопроходной трубный со срезными штифтами, нижний центратор, клапан закачки и перепуска компоновки надувных пакеров (КЗПКНП) подпакерный, нижние надувной пакер и клапан надува, разъединитель межпакерный, КЗПКНП межпакерный, верхние надувной пакер и клапан надува, верхний центратор, разъединитель надпакерный, циркуляционный клапан. В начале процесса спуска погружного оборудования клапаны надува надувных пакеров, КЗПКНП подпакерный и межпакерный находятся в закрытом положении. При превышении давления в затрубном пространстве над давлением в колонне НКТ происходит открытие отверстий перепуска КЗПКНП подпакерного и межпакерного и заполнение колонны НКТ скважинной жидкостью. Отверстия перепуска КЗПКНП подпакерного и межпакерного автоматически закрываются, производят первую подачу жидкости. При этом у КЗПКНП межпакерного и подпакерного закрыты отверстия закачки и перепуска, и создают давление, при котором у нижнего и верхнего надувных пакеров открываются нижний и верхний клапаны надува соответственно, приводящие в рабочее положение надувные камеры. Выдерживают погружное оборудование под давлением, затем медленно осуществляют первый сброс давления: при достижении значения надувные клапаны закрываются полностью. Надувные пакеры переведены в рабочее положение и поинтервально перекрывают ствол скважины. При первом сбросе давления в КЗПКНП подпакерном имеют возможность открыться отверстия перепуска, далее осуществляют отбор флюида из подпакерной зоны, при этом закрыты отверстия закачки и перепуска КЗПКНП межпакерного. Производят вторую подачу жидкости и создают постоянное давление, при котором в КЗПКНП подпакерном открываются отверстия закачки. При необходимости производят закачку технологической жидкости в подпакерную зону, во время проведения которой закрыты отверстия закачки и перепуска КЗПКНП межпакерного. Производят второй сброс давления, при котором в КЗПКНП межпакерном имеют возможность открыться отверстия перепуска. Осуществляют отбор флюида из межпакерной зоны, во время проведения которого закрыты отверстия закачки и перепуска КЗПКНП подпакерного. Проводят третью подачу жидкости и создают давление, при котором в КЗПКНП межпакерном открываются отверстия закачки, а в КЗПКНП подпакерном закрыты отверстия закачки и перепуска. Осуществляют третий сброс давления, при котором отверстия закачки и перепуска обоих КЗПКНП приходят в исходное положение. 2 н.п. ф-лы, 6 ил.

Изобретение относится к способам определения состава водонефтяной смеси в скважине и, в частности, к способам, использующим измерение параметров потока добываемого флюида в трубке Вентури, через которую в основной ствол скважины обеспечивают поступление нефтеводяной смеси, добываемой из выделенного сегмента скважины. Технический результат - повышение точности и надежности определения обводненности добываемой нефтеводяной смеси во всем диапазоне значений этой величины. По способу в скважине размещают по меньшей мере одну трубку Вентури, через которую в основной ствол скважины обеспечивают поступление нефтеводяной смеси, добываемой из выделенного сегмента скважины. При этом количество размещаемых трубок Вентури определяют количеством сегментов скважины, для которых нужно определить обводненность добываемой нефтеводяной смеси. В процессе добычи осуществляют измерения давления на входе в трубку Вентури и в горловине трубки Вентури. Посредством датчиков температуры осуществляют измерения температуры потока добываемой нефтеводяной смеси на входе в трубку Вентури и температуры стенки трубки Вентури в горловине трубки. По результатам измерений давления и температуры определяют обводненность нефтеводяной смеси, добываемой из выделенного сегмента скважины. 4 з.п. ф-лы, 7 ил.

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано для испытания и освоения глубоких скважин с близкорасположенными продуктивными пластами, а также в многопластовом разрезе, преимущественно на ачимовские или юрские отложения. Технический результат – повышение эффективности способа. По способу бурят перспективный интервал ствола скважины. По совокупности геологической, технической и геофизической информации определяют расположение перспективных пластов. Спускают хвостовик-фильтр на транспортировочной колонне для сохранения устойчивости стенок ствола скважины. Хвостовик-фильтр образуют из ряда секций, каждая из которых состоит из последовательно соединенных между собой обсадных труб, скважинных фильтров и заколонных пакеров. Низ хвостовика-фильтра оборудуют башмаком с обратным клапаном. Хвостовик-фильтр образуют с возможностью использования компоновки испытательного инструмента с одним или двумя пакерами для проведения испытаний всех пластов в направлениях снизу вверх или сверху вниз соответственно. Крепят хвостовик-фильтр в эксплуатационной колонне при помощи подвесного устройства. Промывают скважину через башмак с обратным клапаном. Закачивают забойную жидкость в интервал перспективных пластов. Разобщают пласты при помощи заколонных пакеров. Спускают комплект испытательных инструментов на трубах. Создают депрессию на пласт и вызывают приток пластового флюида. Отрабатывают скважину с целью очистки призабойной зоны пласта. Проводят газогидродинамические исследования на установившихся режимах фильтрации. Отбирают глубинные и устьевые пробы пластового флюида. Извлекают комплект испытательных инструментов. Задавливают водой исследованный пласт. После этого воду заменяют на технологический раствор. Следующие пласты испытывают аналогичным образом. После испытания всех пластов, интерпретации записей глубинных приборов и анализа проб пластового флюида определяют продуктивные пласты, дающие промышленный приток. Скважину готовят к опытно-промышленной эксплуатации. 3 ил.

Изобретение относится к нефтедобывающей промышленности, в частности к способу оперативного раздельного учета продукции двухпластового эксплуатационного объекта. Технической результат заключается в повышении точности определения относительного дебита по пластам и сокращении сроков исследования. Способ включает отбор устьевых проб продукции, то есть природной углеводородной смеси из каждого эксплуатационного однопластового объекта. Последующий отбор устьевых проб продукции из двухпластового эксплуатационного объекта и статистическую обработку полученных данных. Проводятся исследования динамической вязкости природных углеводородных смесей (нефти) скважин, в которых ведется раздельный учет продукции по пластам, например первого пласта в первой скважине и второго пласта во второй скважине. Затем осуществляют подготовку проб природных углеводородных смесей путем их обезвоживания, перемешивание проб однопластовых объектов в заданных пропорциях и далее проводят исследования динамической вязкости полученных модельных смесей. Проводят исследования динамической вязкости полученных модельных смесей, производят построения зависимостей между содержанием в модельных смесях доли нефти каждого из пластов и динамической вязкости модельных смесей в виде полиноминальных зависимостей и в дальнейшем определение доли каждого из пластов в нефти двухпластового объекта. 6 ил.

Изобретение относится к области радиоэкологического мониторинга районов мирных подземных ядерных взрывов в пределах нефтегазоносных бассейнов, в частности к малогабаритным устройствам пробоподготовки горючих природных газовых проб в полевых условиях и перевода опасных для транспортировки горючих природных газовых проб в безопасные водные образцы для дальнейшего определения в них содержания трития в лабораторных условиях методом жидкостно-сцинтилляционной спектрометрии. Устройство включает последовательно установленные в едином корпусе и взаимосвязанные компрессор подачи горючего природного газа или попутного нефтяного газа в инжекционную горелку, водоохлаждаемый конденсатор и контейнер для сбора конденсата водяного пара - конденсированных продуктов горения, при этом инжекционная горелка установлена таким образом, что сопло ее направлено вертикально вниз для подачи продуктов горения во входное отверстие установленного ниже по ее оси водоохлаждаемого конденсатора, а держатель горелки прикреплен к конденсатору с возможностью изменения расстояния между выходом горелки и входом продуктов горения в конденсатор от 4,7 до 5,0 см в зависимости от состава горючего газа. Водоохлаждаемый конденсатор выполнен в виде дугообразно изогнутой под прямым углом трубки с внутренним диаметром не более 15 мм, переходящей в вертикальную трубку, высотой не более 20 см и внутренним диаметром не более 40 мм, закрытую воронкообразным днищем с отверстиями для слива конденсированных продуктов горения в нижеустановленный контейнер. Внутри вертикальной трубки конденсатора соосно установлена охлаждаемая трубка, на которой также соосно установлены по крайней мере три конуса с коаксиальным зазором не менее 2 мм между внутренней поверхностью конденсатора и внешними краями конусов. Техническим результатом является получение конденсата водяного пара в полевых условиях, безопасного для перевозки любым видом транспорта, в стационарную лабораторию, исключая необходимость транспортировки газовой пробы в стальных баллонах. 3 ил.

Изобретение относится к устройствам для испытания продуктивных горизонтов в нефтяных и газовых скважинах. Техническим результатом является упрощение конструкции и уменьшение габаритов устройства. Устройство содержит сборный корпус, выполненный из соединенных между собой резьбой верхней и нижней частей. В верхней части в монолитной корпусной детали выполнены пробоотборные камеры непроточного типа, впускные каналы которых перекрыты запорными гильзами, взаимодействующими с кулачками. Монолитная корпусная деталь посредством резьбы соединена с втулкой, которая соосно соединена с патрубком с образованием центрального осевого канала для подачи флюида в зону расположения запорных гильз. Нижний конец патрубка выполнен в виде раструба с установленной в нем воронкой из эластичного материала, диаметр которой больше диаметра раструба. Края воронки расположены ниже отверстий запорного клапана. Механизм управления впуском флюида установлен с возможностью продольного перемещения относительно втулки. Запорные гильзы, втулка, патрубок и механизм управления впуском размещены в защитном кожухе. Между кожухом и корпусной деталью имеется зазор для перетекания флюида в трубное пространство. В нижней части устройства расположены полый шток, связанный с механизмом управления впуском флюида, запорный и уравнительный клапаны. 4 ил.

Наверх