Способ эксплуатации бифункциональной электрохимической системы и устройство для его осуществления



Способ эксплуатации бифункциональной электрохимической системы и устройство для его осуществления
Способ эксплуатации бифункциональной электрохимической системы и устройство для его осуществления
Способ эксплуатации бифункциональной электрохимической системы и устройство для его осуществления
C25B1/10 - Электролитические способы; электрофорез; устройства для них (электродиализ, электроосмос, разделение жидкостей с помощью электричества B01D; обработка металла воздействием электрического тока высокой плотности B23H; обработка воды, промышленных и бытовых сточных вод или отстоя сточных вод электрохимическими способами C02F 1/46; поверхностная обработка металлического материала или покрытия, включающая по крайней мере один способ, охватываемый классом C23 и по крайней мере другой способ, охватываемый этим классом, C23C 28/00, C23F 17/00; анодная или катодная защита C23F; электролитические способы получения монокристаллов C30B; металлизация текстильных изделий D06M 11/83; декоративная обработка текстильных изделий местной

Владельцы патента RU 2603142:

федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский университет "МЭИ" (ФГБОУ ВО "НИУ "МЭИ") (RU)

Изобретение относится к способу эксплуатации бифункциональной электрохимической системы, содержащей анодную и катодную электродные камеры с четырехходовыми клапанами на входе и выходе из электродных камер, резервуар-сепаратор с водой, соединенный с анодной и катодной камерами и с контейнерами хранения водорода и кислорода, насосы, включающему очистку от газов анодной и катодной электродных камер при смене режимов работы, отличающемуся тем, что систему снабжают дополнительными насосами и дополнительным резервуаром-сепаратором с водой, сообщающимся с источником поступления воды и имеющим выходы для подсоединения трубопроводов к входам анодной и катодной камер бифункциональной электрохимической системы, осуществляют очистку электродных камер путем закачивания в них воды из дополнительного резервуара и вытеснения оставшихся газов из анодной и катодной камер в контейнеры для хранения водорода и кислорода. Также изобретение относится к бифункциональной электрохимической системе. Техническая задача, решаемая предлагаемым изобретением, состоит в улучшении массогабаритных характеристик БЭС, снижении ее стоимости, эксплуатационных расходов и повышении экономичности. 2 н.п. ф-лы, 2 ил.

 

Предлагаемое устройство относится к бифункциональным электрохимическим системам (БЭС), которые в различные периоды времени работают как электролизеры воды (производя водород и кислород) и как топливные элементы (генерируя электричество и тепло). Областями применения БЭС являются энергетика, транспорт, авиакосмические объекты, подводный флот и пр.

Известен бифункциональный электрохимический элемент (Цыпкин М.А., Лютикова Е.К., Фатеев В.Н., Русанов В.Д. Каталитические слои для обратимой ячейки электролизер-топливный элемент на основе ТПЭ // Электрохимия, 2000, Т. 36, №5, стр. 613-616), состоящий из анодной и катодной электродных камер, разделенных ионно-обменной электролитической мембраной. Бифункциональный элемент работает попеременно в режиме электролизера воды и в режиме топливного элемента.

Известна БЭС (патент США №5316643, опубл. 31.05.1994), состоящая из электрохимического элемента, имеющего анодную и катодную электродные камеры, разделенные ионно-обменной электролитической мембраной. В состав системы входят также контуры для подвода и отвода реагентов и продуктов электрохимической реакции (текучих сред), газожидкостные сепараторы, вентили, клапаны и пр. элементы. В процессе работы БЭС в режиме электролизера воды в анодной электродной камере генерируется кислород, а в катодной - водород. При работе БЭС в режиме топливного элемента в анодную камеру подается водород, а в катодную - кислород. При смене режимов работы для предотвращения образования взрывопожароопасных смесей водорода с кислородом проводится очистка электродных камер азотом. Недостатками указанного способа являются:

- потери азота (который из электродных камер вместе с оставшимися в них газами выбрасывается в атмосферу);

- потери электролизных газов, оставшихся в электродных камерах, в результате их продувки;

- необходимость периодического пополнения или замены баллона с азотом и связанные с этим эксплуатационные затраты;

- необходимость дополнительного объема, массы и капитальных затрат, связанных с хранением азота в составе системы.

Техническая задача, решаемая предлагаемым изобретением, состоит в улучшении массогабаритных характеристик БЭС, снижении ее стоимости, эксплуатационных расходов и повышении экономичности.

Поставленная техническая задача в части способа решается тем, что в известном способе эксплуатации бифункциональной электрохимической системы, содержащей электрохимический элемент, имеющий анодную и катодную электродные камеры, четырехходовые клапаны на входе и выходе из электродных камер, резервуар-сепаратор с водой, соединенный с анодной и катодной камерами и с контейнерами хранения водорода и кислорода, насосы, включающем очистку от газов анодной и катодной электродных камер при смене режимов работы, согласно изобретению систему снабжают дополнительными насосами и дополнительным резервуаром-сепаратором с водой, сообщенным с источником поступления воды и имеющим выходы для подсоединения трубопроводов ко входам анодной и катодной камер бифункциональной электрохимической системы, осуществляют очистку электродных камер путем закачивания в них воды из дополнительного резервуара и вытеснения оставшихся газов из анодной и катодной камер в контейнеры для хранения водорода и кислорода.

В части устройства технический эффект достигается тем, что бифункциональная электрохимическая система, включающая в себя электрохимический элемент, имеющий анодную и катодную электродные камеры с четырехходовыми клапанами на входе и выходе из электродных камер, резервуар-сепаратор с водой, соединенный с анодной камерой, контейнеры для хранения водорода и кислорода, трубопроводы, вентили, обратные клапаны, насосы, газовую сушилку, обратный и запорный клапаны, согласно изобретению снабжена дополнительным резервуаром-сепаратором с водой, который первым входом соединен с анодной электродной камерой через первый четырехходовой клапан, вторым входом через второй четырехходовой клапан и первый дополнительный насос соединен с катодной электродной камерой, третьим входом через второй дополнительный насос подключен к источнику питающей воды, первым выходом через газовую сушилку, обратный клапан и запорный клапан соединен с контейнером хранения кислорода, вторым выходом через третий дополнительный насос и третий четырехходовой клапан соединен с входом анодной электродной камеры, а первый резервуар-сепаратор дополнительным выходом соединен с анодной электродной камерой через первый четырехходовой клапан, дополнительным входом через четвертый дополнительный насос и третий четырехходовой клапан соединен с анодной электродной камерой.

На фиг. 1 представлена схема БЭС.

На фиг. 2 представлена схема бифункционального электрохимического элемента и приведены электродные реакции, протекающие в режиме электролизера воды и топливного элемента. Обозначения на фиг. 2 соответствуют обозначениям на фиг. 1.

БЭС, в состав которой входят электрохимический элемент 1, включающий ионно-обменную электролитическую мембрану 2, катод 3, анод 4, катодную 5 и анодную 6 электродные камеры, подача и отвод текучих сред в которые осуществляется через четырехходовые клапаны 7, 8, 9 и 10. Каждый из клапанов имеет 4 патрубка, обозначенных на схеме цифрами 0′, 1′, 2′, 3′. Клапаны предназначены для распределения потоков рабочих сред. Предлагаемое устройство содержит следующие элементы: третий дополнительный насос 11, предназначенный для подачи воды в анодную камеру, дополнительный резервуар-сепаратор с водой 12, вентиль на первом трубопроводе подачи подпиточной воды 13, второй дополнительный насос 14, установленный на том же трубопроводе, газовую сушилку 15, расположенную на трубопроводе отвода кислорода, на котором последовательно расположены обратный 16 и запорный 17 клапаны, сообщающемся с контейнером для хранения кислорода 18, резервуар-сепаратор с водой 19, сепаратор воды 20, вентиль на трубопроводе отвода избыточной воды 21, вентиль на втором трубопроводе подачи подпиточной воды 22, подающий насос 23, установленный на том же трубопроводе, газовую сушилку 24, расположенную на трубопроводе отвода водорода, на котором последовательно расположены обратный 25 и запорный 26 клапаны, сообщающемся с контейнером для хранения водорода 27, циркуляционный насос 28, запорный клапан 29, первый дополнительный насос 30, четвертый дополнительный насос 31, запорный клапан 32, регулятор давления кислорода 33, конденсатор 34, запорный клапан 35, регулятор давления водорода 36, увлажнитель водорода 37, газовый насос 38 и газовый насос 39.

Удаление кислорода из анодной камеры 6 осуществляется за счет имеющегося циркуляционного контура, состоящего из элементов 6, 10, 12, 7, 6, при этом работа БЭС в режиме электролизера предусматривает постоянную циркуляцию воды через анодную камеру 6. Для удаления водорода из катодной камеры 5 используется циркуляционный контур, включающий в себя элементы 19, 9, 5, 8, 19. Запорный клапан 29 предотвращает циркуляцию воды при работе в режиме электролизера, поскольку циркуляция воды в этом случае не требуется, а вода, переносимая через мембрану, удаляется с помощью сепаратора 20. Дополнительные трубопроводные контуры, а именно контуры, состоящие из элементов 5, 9, 12, 8, 5 и 6, 10, 19, 7, 6, служат для вытеснения кислорода из катодной камеры и водорода - из анодной, соответственно. При этом газы вытесняются в соответствующие емкости-сепараторы, что предотвращает смешивание водных потоков, насыщенных разноименными газами, и их реакцию, а также обеспечивает раздельный сбор газов в соответствующих хранилищах: кислорода в контейнере 18, а водорода в контейнере 27. Все дополнительные циркуляционные контуры снабжены циркуляционными насосами. Работа БЭС в различных переходных и основных режимах подробно описана ниже.

Работает устройство следующим образом.

Если все четырехходовые клапаны находятся в положении, при котором патрубки 0 и 1 соединены (здесь и далее будем обозначать как положение "0"-"1"), обеспечивается работа электрохимического элемента в режиме электролизера воды при подаче постоянного тока таким образом, чтобы положительный полюс приходился на анод 6, а отрицательный - на катод 5. В этом режиме работы БЭС в катодной камере выделяется водород, а в анодной - кислород (см. фиг. 2). Дистиллированная вода является реагентом и подается в электрохимический элемент 1 третьим дополнительным насосом 11, циркулируя через анодную электродную камеру 6. Дополнительный резервуар-сепаратор 12 функционирует в качестве емкости для воды и сепаратора. Подпитка осуществляется через клапан 13 с помощью второго дополнительного насоса 14. Сепарированный кислород хранится в контейнере 18 после прохождения через газовую сушилку 15, обратный 16 и запорный 17 клапаны. В процессе работы электрохимического элемента вода диффундирует через мембрану 2 в катодное отделение 5 и собирается в сепараторе воды 20 и может быть по мере необходимости отведена через клапан 21. Водород, который выделяется в катодной камере 5, направляется в контейнер 27 через газовую сушилку 24, обратный 25 и запорный 26 клапаны.

Для перехода БЭС из режима электролизера воды в режим топливного элемента электрохимический элемент 1 отключается от внешней электрической цепи, и его электродные камеры очищаются от оставшихся электролизных газов (водорода и кислорода в катодной 5 и анодной 6 камерах соответственно). Для продувки анодной камеры 6 вода продолжает циркулировать через нее, удаляя кислород, который в дальнейшем сепарируется в дополнительном резервуаре-сепараторе 12. Аналогичным образом в катодную камеру 5 циркуляционным насосом 28 через запорный клапан 29 подается вода из резервуара-сепаратора 19 и заполняет ее, вытесняя водород в емкость 27.

Затем вода удаляется из электродных камер 5 и 6. Для этого клапаны 7 и 8 переводятся в положение "0"-"3”, а клапаны 9 и 10 - в положение "0"-"2". Таким образом, поступающие под давлением газы вытесняют воду в направлении соответствующих контейнеров: водород вытесняет воду из анодной камеры 6 в резервуар-сепаратор 19, откуда собирается в емкости 27, а кислород вытесняет воду из катодной камеры 5 в дополнительный резервуар-сепаратор 12, откуда собирается в контейнер 18. Когда вся вода из электродных камер 5 и 6 полностью удаляется, клапаны 9 и 10 переводятся в положение "0"-"3" и электрохимический элемент 1 начинает функционировать в режиме топливного элемента (фиг. 2). Кислород при этом продолжает подаваться в катодную камеру 5, а водород - в анодную камеру 6; электрохимический элемент 1 генерирует электричество, тепло и воду. Указанные газы подаются из соответствующих контейнеров для хранения газов 18, 27 через запорные клапаны 32, 35 и регуляторы давления 33, 36. Газовые контуры имеют конденсатор 34 и увлажнитель 37, установленные до электрохимического элемента 1, и газовые насосы 38 и 39 соответственно после электрохимического элемента 1.

Обратное переключение режимов происходит следующим образом. Все четырехходовые клапаны 7, 8, 9 и 10 переключаются в положение "0"-"2". С помощью первого дополнительного насоса 30 и четвертого дополнительного насоса 31 вода из дополнительного резервуара-сепаратора 12 и резервуара-сепаратора 19 циркулирует соответственно через катодную 5 и анодную 6 камеры, вытесняя оставшиеся газы соответственно в контейнеры 18 и 27. Затем клапаны 7, 8, 9 и 10 переключаются в положение "0"-"1" и электрохимический элемент 1 начинает функционировать в режиме электролизера воды. Образующаяся в катодной камере 5 вода удаляется из нее и отделяется от электролизного водорода с помощью сепаратора 20.

Преимуществом предлагаемого технического решения является отсутствие необходимости в расходовании инертного газа для продувки электродных камер и больших потерь реагентов, уносимых вместе с инертным газом в переходных режимах работы БЭС.

Источники информации

1. Цыпкин М.А., Лютикова Е.К., Фатеев В.Н., Русанов В.Д. Каталитические слои для обратимой ячейки электролизер-топливный элемент на основе ТПЭ // Электрохимия, 2000, Т. 36, №5, стр. 613-616.

2. Патент США №5316643, опубл. 31.05.1994.

1. Способ эксплуатации бифункциональной электрохимической системы, содержащей анодную и катодную электродные камеры с четырехходовыми клапанами на входе и выходе из электродных камер, резервуар-сепаратор с водой, соединенный с анодной и катодной камерами и с контейнерами хранения водорода и кислорода, насосы, включающий очистку от газов анодной и катодной электродных камер при смене режимов работы, отличающийся тем, что систему снабжают дополнительными насосами и дополнительным резервуаром-сепаратором с водой, сообщающимся с источником поступления воды и имеющим выходы для подсоединения трубопроводов к входам анодной и катодной камер бифункциональной электрохимической системы, осуществляют очистку электродных камер путем закачивания в них воды из дополнительного резервуара и вытеснения оставшихся газов из анодной и катодной камер в контейнеры для хранения водорода и кислорода.

2. Бифункциональная электрохимическая система, включающая в себя электрохимический элемент, имеющий анодную и катодную электродные камеры с четырехходовыми клапанами на входе и выходе электродных камер, резервуар-сепаратор с водой, соединенный с анодной камерой, контейнеры для хранения водорода и кислорода, газожидкостные контуры для подвода и отвода реагентов и продуктов электрохимической реакции, образованные трубопроводами, вентилями, обратными клапанами, насосами, газовой сушилкой, обратным и запорным клапанами, отличающаяся тем, что она снабжена дополнительным резервуаром-сепаратором с водой, который первым входом соединен с анодной электродной камерой через первый четырехходовой клапан, вторым входом через второй четырехходовой клапан и первый дополнительный насос соединен с катодной электродной камерой, третьим входом через второй дополнительный насос подключен к источнику питающей воды, первым выходом через газовую сушилку, обратный клапан и запорный клапан соединен с емкостью хранения кислорода, вторым выходом через третий дополнительный насос и третий четырехходовой клапан соединен с входом анодной электродной камеры, а резервуар-сепаратор дополнительным выходом соединен с анодной электродной камерой через первый четырехходовой клапан, дополнительным входом через четвертый дополнительный насос и третий четырехходовой клапан соединен с анодной электродной камерой.



 

Похожие патенты:

Изобретение относится к проницаемому для ионов армированному сепаратору. При этом сепаратор содержит по меньшей мере один сепарационный элемент и по существу полый обходной канал, прилегающий к указанному по меньшей мере одному сепарационному элементу, причем указанный по меньшей мере один сепарационный элемент содержит связующее и оксид или гидроксид металла, диспергированный в нем, и указанный сепарационный элемент характеризуется давлением выдавливания первого пузырька по меньшей мере 1 бар и сопротивлением при обратной промывке по меньшей мере 1 бар, причем давление выдавливания первого пузырька определяется с помощью ASTM E128 и ISO 4003.

Изобретение относится к конструкциям топливных элементов электрических батарей, а более конкретно топливных элементов электрических батарей на жидких электролитах, имеющих зону конденсации электролита.

Изобретение относится к батареям топливных элементов (БТЭ). .
Изобретение относится к области катодных катализаторов с низким содержанием платины для спиртовых ТЭ. .

Изобретение относится к электрохимическим преобразователям, преимущественно к топливным элементам, преобразующим химическую энергию топлива в электрическую энергию.

Изобретение относится к области электрохимических генераторов (ЭХГ) на основе топливных элементов (ТЭ) с щелочным электролитом и может быть использовано при производстве указанных генераторов.

Изобретение относится к области ЭХГ на основе топливных элементов (ТЭ) с щелочным электролитом и может быть использовано при эксплуатации ЭХГ. .
Изобретение относится к источникам питания постоянного тока, точнее к энергоустановкам (ЭУ) на топливных элементах (ТЭ), работающим на кислороде, водороде и проточном щелочном электролите.
Изобретение относится к области катализаторов для спиртовых топливных элементов (ТЭ) и способам их изготовления. .

Изобретение относится к области источников питания постоянного тока, а именно к системам электропитания постоянного тока, работающих на водороде и кислороде. .
Изобретение относится к катализатору для разложения углеводородов, способу его получения и к батарее топливных элементов. Катализатор содержит соединение, содержащее по меньшей мере никель и алюминий, и металлический никель, имеющий диаметр частиц от 1 до 25 нм, в котором энергии связи между металлическим никелем и соединением, содержащим по меньшей мере никель и алюминий, в катализаторе составляют от 874,5 до 871,5 эВ (Ni 2p1/2), от 857 до 853 эВ (Ni 2p3/2) и от 73,5 до 70 эВ (Al 2p), и энергия активации катализатора составляет от 4×104 до 5×104 Дж/моль.

Изобретение относится к способу обогащения изотопа кислорода. Способ включает получение кислорода, содержащего первично обогащенный изотоп кислорода, с помощью дистилляции кислородного сырья при использовании первого дистилляционного устройства, получение воды с помощью гидрогенизации кислорода, содержащего первично обогащенный изотоп кислорода, получение оксида азота, отводимого при дистилляции сырья оксида азота, при использовании второго дистилляционного устройства, и получение оксида азота и воды с помощью осуществления реакции химического обмена между водой и отведенным оксидом азота, в результате чего получают оксид азота, имеющий повышенную концентрацию изотопа кислорода, и воду, имеющую пониженную концентрацию изотопа кислорода, причем оксид азота, имеющий повышенную концентрацию изотопа кислорода, подают во второе дистилляционное устройство, а кислород, полученный электролизом воды, имеющей пониженную концентрацию изотопа кислорода, возвращают в первое дистилляционное устройство.

Изобретение относится к батарее твердооксидных топливных элементов, состоящей из узла подачи воздуха, включающего фланец со штуцером с калиброванной шайбой, рассекатель потока воздуха, средний фланец с отверстиями для установки трубок с уплотнениями для подачи воздуха в топливные элементы; камеры теплообмена с теплообменником в виде цилиндра из пористого материала с аксиальными каналами и с установленными в них с зазором трубками для подачи воздуха в топливные элементы, экрана, из каталитического дожигателя остаточного топлива, содержащего пористый материал с нанесенным катализатором и выполненный в виде трубной решетки с закрепленными в ней открытыми концами топливных элементов и с проходящими сквозь нее трубками для подачи воздуха.

Изобретение относится к энергетическому оборудованию и может быть использовано в качестве электрохимического генератора на основе водородно-кислородных топливных элементов для резервного электропитания аварийных объектов, при этом в заявленном генераторе газообразный водород получают в проточном реакционном сосуде путем гидролиза водной суспензии алюминия.

Изобретение относится к электроду для топливного элемента, который содержит углеродные нанотрубки; катализатор для топливного элемента, нанесенный на углеродные нанотрубки; и иономер, обеспеченный так, чтобы покрывать углеродные нанотрубки и катализатор для топливного элемента, причем, если длина углеродных нанотрубок обозначена как La [мкм], а шаг между центрами углеродных нанотрубок обозначен как Ра [нм], то длина La и шаг Ра между центрами удовлетворяют двум выражениям, приведенным ниже: 30≤La≤240; и 0,351×La+75≤Ра≤250.

Изобретение относится к способу снижения проницаемости мембраны по отношению к ионам ванадия. Способ включает введение катионного поверхностно-активного вещества, по меньшей мере, в часть поверхности мембраны и внутреннюю часть мембраны инкубацией мембраны в водный или водно-солевой раствор, содержащий катионное поверхностно-активное вещество или смесь катионных поверхностно-активных веществ.

Изобретение относится к подводной лодке, содержащей устройство для производства электроэнергии. Технический результат - повышение компактности с одновременной оптимизацией КПД.

Настоящее изобретение относится к газогенератору для конверсии топлива в обедненный кислородом газ и/или обогащенный водородом газ, который может быть использован в любом процессе, требующем обедненного кислородом газа и/или обогащенного водородом газа, предпочтительно, используют его для генерирования защитного газа или восстановительного газа для запуска, выключения или аварийного отключения твердооксидного топливного элемента (SOFC) или твердооксидного элемента электролиза (SOEC).

Изобретение относится к источникам энергии, в частности к воздушно-алюминиевым топливным батареям. Техническим результатом изобретения является повышение удельной мощности топливной батареи за счет уменьшения ее габаритных размеров. Указанный технический результат достигается тем, что электроды выполнены в виде упруго связанного между собой набора пластин, образуя плоскую пружину сжатия, которая, разжимаясь от пускового механизма, сжимает и нарушает герметичность эластичной емкости с электролитом, который, вытекая из емкости, заполняет межэлектродное пространство, при этом эластичная емкость с электролитом прокалывается установленными внутри нее штырями, в процессе активизации входящими в отверстия, выполненные в электродах, а штыри выполнены в виде перфорированных трубок. Способ активизации топливной батареи позволяет повысить удельную мощность топливной батареи в результате уменьшения ее габаритных размеров за счет того, что до активизации батареи эластичная емкость с электролитом занимает рабочий объем батареи, который освобожден от электродов путем их сжатия.

Изобретение относится к области электротехники, в частности к энергоустановкам для совместной выработки электроэнергии и теплоты, использующим углеводородное топливо и предназначенным для локальных потребителей.

Изобретение относится к электролизной ванне для получения кислой воды. Ванна содержит: корпус 100, оснащенный двумя наполнительными камерами 110а и 110b, разделенными одной ионообменной мембраной 111, при этом каждая из наполнительных камер 110а и 110b снабжена впускными отверстиями 112а и 113а для воды и выпускными отверстиями 112b и 113b для воды, сформированными в камере; первую группу 200 электродов, установленную в наполнительной камере 110а; вторую группу 300 электродов, установленную рядом с ионообменной мембраной 111 в наполнительной камере 110b и имеющую полярность, противоположную первой группе 200 электродов; и третью группу 300' электродов с такой же полярностью, что и вторая группа 300 электродов, установленную в наполнительной камере 110b на заданном расстоянии от второй группы электродов 300.
Наверх