Патенты автора Григорьев Сергей Александрович (RU)

Изобретение относится к ядерному реактору с тяжелым жидкометаллическим теплоносителем. Во внутрикорпусном пространстве ядерного реактора, не занятом необходимым оборудованием, размещены с зазорами, обеспечивающими проток теплоносителя, контейнеры, заполненные материалом, отражающим или поглощающим нейтроны, с теплоемкостью большей, чем теплоемкость теплоносителя. Причем контейнеры размещены таким образом, что образовавшиеся зазоры формируют каналы с турбулентным режимом течения теплоносителя для охлаждения указанных контейнеров при его расходе, соответствующем номинальному уровню мощности ядерного реактора. Техническим результатом является повышение эффективности радиационной защиты внутрикорпусного оборудования ядерного реактора, увеличение теплоаккумулирующей способности первого контура, снижение веса ядерного реактора и улучшение его прочностных характеристик. 13 з.п. ф-лы, 5 ил.

Заявлен ядерный реактор интегрального типа (варианты). Теплообменник размещен коаксиально с активной зоной в кольцевом пространстве, образованном между внутренней обечайкой, внутри которой размещены активная зона, входной и выходной коллекторы и защитная пробка, и разделительной обечайкой внутри корпуса реактора, формирующей опускной кольцевой канал и отделяющей нисходящий холодный поток от горячего восходящего потока теплоносителя. Причем теплообменник выполнен витым и секционированным по теплоносителю второго контура так, что трубки секций теплообменника сгруппированы во входных и выходных камерах теплоносителя второго контура, размещенных на патрубках на крышке реактора. Нижняя часть теплообменника размещена выше окон, выполненных во внутренней обечайке, через которые горячий теплоноситель поступает из выходного коллектора активной зоны на вход теплообменника, а холодный теплоноситель из верхней части теплообменника поступает непосредственно в кольцевую буферную емкость с уровнем теплоносителя под крышкой реактора, из которого свободным переливом поступает в опускной кольцевой канал и далее во входной коллектор активной зоны. Техническим результатом является уменьшение металлоемкости реактора, повышение эффективности использования внутреннего объема реактора, повышение безопасности при течах трубок теплообменника, а также обеспечение возможности отвода остаточного тепловыделения в период времени после извлечения защитной пробки до выгрузки топлива. 2 н. и 5 з.п. ф-лы, 4 ил.

Изобретение относится к области электротехники, в частности к системам зарядки гибридного и/или электрического транспорта. Техническим результатом является возможность зарядить несколько электрических легковых и грузовых автомобилей, а также автобусов/электробусов, без подключения к воздушным проводным или кабельным электросетям большой мощности. Для этого предложена зарядная станция электрического транспорта, содержащая по меньшей мере три зарядных блока, каждый из которых соединен с отдельным модулем накопления энергии, которые последовательно соединены через контроллер заряда и распределения электроэнергии, соединенный через средство контроля и учета электроэнергии с внешней электросетью, с отдельными модулями генерации, выполненными соответственно на солнечных батареях, на по меньшей мере одном ветрогенераторе, на водородных топливных элементах и модуле на привозных топливных элементах, контроллер заряда и распределения соединен с электролизером, который отдельными трубопроводами соединен с резервуаром с водой, и через резервуар с водородом с модулем генерации на водородных топливных элементах, соединенным трубопроводом с резервуаром с водой, модуль генерации на привозном топливе через трубопровод соединен с топливным резервуаром. 2 з.п. ф-лы, 1 ил.

Изобретение относится энергетике, а именно к автономным системам энергоснабжения объектов, удаленных от центрального энергоснабжения. Автономная энергетическая установка содержит аппаратный и топливный отсек, расположенные внутри корпуса, первичный источник энергии в виде источника возобновляемой энергии, вторичный источник энергии в виде топливного генератора с воздушным охлаждением, расположенного на теплопроводящей подложке с нагревательным элементом в термоизолированном шкафу топливного отсека, накопители энергии в виде аккумуляторных батарей и блок управления установкой, расположенные в климатическом шкафу аппаратного отсека. При этом топливный генератор снабжен патрубком отвода пара в дренажную емкость через термоизолированный канал и патрубком отвода горячего воздуха, соединенным с распределительным клапаном с двумя выходами, один выход которого соединен с воздуховыводящей трубой топливного отсека, а второй выход соединен с каналом, проходящим через радиатор, установленный под климатическим шкафом и соединенный с воздуховыводящей трубой аппаратного отсека. Технический результат – повышение надежности функционирования энергоустановки в условиях экстремально низких температур. 2 з.п. ф-лы, 3 ил.

Изобретение относится к области создания и эксплуатации энергетических систем. Система энергоснабжения локальных потребителей состоит из генераторов на основе возобновляемых источников электроэнергии и генератора на основе невозобновляемого источника энергии, топливного элемента, управляющего устройства, соединенного с генераторами, накопителями энергии и потребителями энергии. При этом система дополнительно содержит криобак со сжатым природным газом, соединенный через клапанную систему, эжектор и трубопровод с топливным элементом, датчики измерения температуры, акустической эмиссии, давления и механических напряжений, установленные на криобаке и трубопроводе и соединенные с управляющим устройством, выполненным в виде информационно-измерительной и управляющей системы. Информационно-измерительная и управляющая система содержит устройство преобразования и интеллектуального анализа измерительной информации, устройство управления функционированием топливного элемента, устройство управления безопасным функционированием криобака и устройство управления передачи энергии. Устройство преобразования и интеллектуального анализа измерительной информации соединено с датчиками измерения, через устройство управления безопасным функционированием криобака соединено с клапанной системой и через устройство управления функционированием топливного элемента соединено с топливным элементом. Генераторы энергии, накопители энергии и потребители энергии соединены с информационно-измерительной и управляющей системой через устройство управления передачи энергии. Изобретение позволяет обеспечить оптимальное соотношение топливно-энергетического баланса для функционирования в течение длительного времени системы в необслуживаемом режиме и в периоды отсутствия возможности пополнения топливных запасов. 3 з.п. ф-лы, 1 ил.

Группа изобретений относятся к ядерной энергетике. Способ длительного хранения отработавшего ядерного топлива заключается в выгрузке топлива целиком без разборки активной зоны в составе блока выемного и его размещение в баке расхолаживания и хранения, размещенном в шахте с системой охлаждения и заполненном жидким сплавом свинец-висмут эвтектического состава, в котором обеспечены условия поддержания жидкого состояния сплава свинец-висмут и контроля его температуры для отвода остаточного тепловыделения. Извлекают и размещают бак во внутристанционном упаковочном контейнере без превышения допустимой температуры сплава свинец-висмут при отводе остаточного тепловыделения до затвердевания в нем сплава свинец-висмут. Перегружают бак в транспортно-упаковочный контейнер без принятия дополнительных мер по организации теплоотвода. Имеется также бак расхолаживания и хранения. Группа изобретений позволяет обеспечить упрощение процесса и сокращение срока перегрузки ядерного топлива с высоким уровнем остаточного тепловыделения. 2 н. и 10 з.п. ф-лы, 1 ил.

Изобретение относится к системам контроля и управления доступом и охранной сигнализации, предназначено для защиты охраняемых объектов от несанкционированного доступа транспортных средств, организации пропуска транспорта через автотранспортные контрольно-пропускные пункты (АКПП). Техническим результатом является повышение эффективности и надежности осуществления контроля и управления проездом автотранспорта через АКПП. Для этого система автоматизированного управления пропуском транспорта содержит от одного до двух оборудованных автотранспортных контрольно-пропускных пункта с периферийными устройствами, каждый автотранспортный контрольно-пропускной пункт включает не менее одного шлюзового устройства с автоматизированным контролем доступа на охраняемый объект по индивидуальным идентификационным признакам с управляемыми преградами, установленными на входе и выходе из шлюзового устройства. В качестве преград могут быть использованы шлагбаумы, распашные ворота, откатные ворота, противотаранные устройства. Система также содержит пульт управления автотранспортным контрольно-пропускным пунктом и по меньшей мере одно управляющее устройство, выполненное в виде контроллера управления автотранспортным контрольно-пропускным пунктом и включающее по крайней мере не менее одного контроллера управления приводами для управления периферийными устройствами и блок связи данного управляющего устройства с пультом управления автотранспортным контрольно-пропускным пунктом. 4 з.п. ф-лы, 1 ил.

Изобретение относится к способу эксплуатации бифункциональной электрохимической системы, содержащей анодную и катодную электродные камеры с четырехходовыми клапанами на входе и выходе из электродных камер, резервуар-сепаратор с водой, соединенный с анодной и катодной камерами и с контейнерами хранения водорода и кислорода, насосы, включающему очистку от газов анодной и катодной электродных камер при смене режимов работы, отличающемуся тем, что систему снабжают дополнительными насосами и дополнительным резервуаром-сепаратором с водой, сообщающимся с источником поступления воды и имеющим выходы для подсоединения трубопроводов к входам анодной и катодной камер бифункциональной электрохимической системы, осуществляют очистку электродных камер путем закачивания в них воды из дополнительного резервуара и вытеснения оставшихся газов из анодной и катодной камер в контейнеры для хранения водорода и кислорода. Также изобретение относится к бифункциональной электрохимической системе. Техническая задача, решаемая предлагаемым изобретением, состоит в улучшении массогабаритных характеристик БЭС, снижении ее стоимости, эксплуатационных расходов и повышении экономичности. 2 н.п. ф-лы, 2 ил.
Изобретение относится к способу изготовления электродно-диафрагменного блока для щелочного электролизера воды, включающему приготовление формующего раствора диафрагмы, нанесение формующего раствора на подложку, изготовление диафрагмы методом фазовой инверсии и формирование электродно-диафрагменного блока прижатием электродов с двух сторон диафрагмы. Способ характеризуется тем, что пористые электроды предварительно вдавливают в формующий раствор диафрагмы, нанесенный на сетчатую подложку, используя текучесть формующего раствора диафрагмы, и затем погружают полученный элемент в воду для проведения фазовой инверсии, приводящей к формированию пористого диафрагменного материала и фиксации электродов материалом диафрагмы и к формированию электродно-диафрагменного блока, в котором электроды и диафрагма представляют собой единый рабочий элемент. Использование настоящего изобретения позволяет упростить процесс сборки ячеек и батарей щелочного электролизера и снизить его энергопотребление. 1 з.п. ф-лы.

Изобретение относится к области химических источников тока, а именно к способам модификации полимерных перфторированных сульфокатионитных мембран, которые используют при изготовлении мембранно-электродных блоков (МЭБ), применяемых в топливных элементах (ТЭ) различного типа, в том числе в портативных электронных устройствах. Технический результат - снижение расхода металлов платиновой группы, улучшение контакта между слоем катализатора и мембраной, повышение стабильности работы ТЭ, уменьшение степени проницаемости по метанолу, повышение механической прочности и химической стойкости полимерной мембраны. Способ плазменной модификации мембраны заключается в переводе мембраны в Н+-форму путем кипячения в серной кислоте с последующей отмывкой в деионизированной воде, после чего проводится плазменная обработка мембраны, а затем - плазмохимическая модификация катодной стороны мембраны в атмосфере инертного газа и фторирующего агента. Используют полимерные перфторированные сульфокатионитные мембраны типа Nafion, МФ-4СК. Плазменная обработка мембраны проводится в условиях непрерывного, или радиочастотного, или импульсного плазменного разряда. Наибольшей эффективностью локализации плазмы вблизи поверхности мембраны обладает магнетрон постоянного тока. Доза облучения поверхности мембраны 1-2 кДж/см2, мощность разряда при плазменной обработке 50-200 Вт. Время плазменной обработки 5-50 мин. Скорость вращения мембраны при плазменной обработке составляет 5-20 об/мин. 14 з.п. ф-лы, 2 ил. Время плазмохимической модификации 2-20 минут, в качестве инертного газа используют аргон, или гелий, или неон, или криптон, или ксенон, в качестве фторирующего агента используют трифторид азота, или бора, или кремния, мощность разряда при плазмохимической модификации составляет 20-100 Вт, давление 1·10-3-5·10-3 Торр, содержание в газовой смеси фторирующего агента 10-50 об. %. При этом концентрация фтора на катодной стороне мембраны составляет 5-15%. 1 з.п., 2 фиг.

Изобретение относится к технологии получения композитных наномодифицированных мембран и может быть использовано при изготовлении мембранно-электродных блоков, применяемых в электрохимических устройствах, в том числе в электролизерах воды низкого и высокого давления, портативных электронных устройствах. Мембрана выполнена из сополимера тетрафторэтилена с функциональными перфторированными сомономерами общей структурной формулы: где R: M-H, Li, K, Na; a=24,75-18,38 мол.%; b=78,62-81,12 мол.%; c=5,0-0,5 мол.%; и имеет толщину от 10 мкм и выше, плотность 1,93-2,10 г/см3, механическую прочность 16-22 МПа и коэффициент газопроницаемости по водороду (К) 1-3,7×10-16 м3м м-2Па-1с-1 при 20-90°С. Способ получения заключается в совмещении пористой пленки политетрафторэтилена с перфторсульфокатионитовым полимером в среде органического или водноорганического растворителя в присутствии модификатора. Модификатором являются углеводородные полимеры, фторполимеры, перфторполимеры или их смеси, неорганические соединения или их смеси. Обеспечиваются высокие перепады давления, высокая плотность тока и эффективность эксплуатации электролизной ячейки. 2 н. и 11 з.п. ф-лы, 3 табл., 28 пр.
Изобретение относится к способу плазмохимической обработки углеродного носителя электрохимического катализатора. Способ заключается в том, что обработку производят в вакуумной камере, снабженной устройством для возбуждения холодной плазмы, держателем углеродного порошка, выполненным с возможностью перемешивания порошка, а также устройством подачи кислородо-аммиачной газовой смеси, установленной с возможностью подачи газовой смеси в полость вакуумной камеры, аммиачно-кислородную газовую смесь подают в вакуумную камеру, где возбуждают холодную плазму, перемешивают порошок углеродного носителя и производят обработку поверхности углеродного носителя холодной плазмой при низком давлении, при этом для размещения порошка углеродного носителя используют установленную в держателе пористую подложку с открытой пористостью, выполненную из инертного материала, пневматически связанную с устройством подачи кислородо-аммиачной газовой смеси, помещают на подложку слои частиц углеродного носителя, через пористую подложку продувают кислородо-аммиачную газовую смесь с образованием над подложкой псевдокипящего слоя частиц углеродного носителя. Техническим результатом является повышение эффективности активации поверхности мелкодисперсных и наноразмерных углеродных носителей электрохимических катализаторов путем повышения равномерности и обеспечения высокой плотности распределения центров химической активации по рабочей поверхности частиц носителя, а также упрощение способа плазмохимической обработки углеродного носителя за счет исключения необходимости механического перемешивания частиц углеродного носителя.
Изобретение относится к области электрохимии и может быть использовано, например, при разработке и производстве катализаторов для электролизеров или топливных элементов с твердополимерным электролитом. Описан способ модификации электрохимических катализаторов на углеродном носителе, заключающийся в том, что модификацию производят в вакуумной камере, снабженной регулируемым источником потока атомов или атомарных ионов модифицирующего материала, устройством подачи инертного газа и держателем обрабатываемого катализатора, модифицируемую поверхность предварительно полученного катализатора на углеродном носителе обрабатывают потоком атомов или атомарных ионов модифицирующего материала, при этом для размещения катализатора, предварительно синтезированного на высокодисперсном углеродном носителе, используют установленную в держателе пористую подложку с открытой пористостью, выполненную из инертного материала, пневматически связанную с устройством автономной подачи газа, через пористую подложку продувают инертный газ с образованием над подложкой псевдокипящего слоя частиц углеродного носителя с модифицируемым катализатором, затем производят обработку катализатора потоком атомов или атомарных ионов модифицирующего материала. Технический эффект - повышение эффективности модификации электрохимических катализаторов и их эксплуатационных характеристик. 1. з.п. ф-лы.
Изобретение относится к области электрохимии и может быть использовано в качестве подготовительного этапа производства электрокатализаторов. Описан способ предварительной обработки углеродного носителя электрохимического катализатора, заключающийся в том, что обработку углеродного носителя электрохимического катализатора производят в вакуумной камере, снабженной источником потока атомных частиц и держателем углеродного порошка, выполненным с возможностью перемешивания порошка, порошок углеродного носителя перемешивают, а поверхность носителя бомбардируют пучком атомных частиц, при этом для размещения порошка углеродного носителя используют установленную в держателе пористую подложку с открытой пористостью, выполненную из инертного материала, пневматически связанную с устройством автономной подачи газа, помещают на подложку слои частиц углеродного носителя, через пористую подложку продувают инертный газ с образованием над подложкой псевдокипящего слоя частиц углеродного носителя, а бомбардировку поверхности частиц углеродного носителя производят с энергией ионов не менее 7,41 эВ/атом. Технический эффект - повышение эффективности активации поверхности мелкодисперсных и наноразмерных носителей электрохимических катализаторов.

 


Наверх