Способ определения электрооптического коэффициента оптических кристаллов с высокой электропроводностью

Изобретение относится к области оптоэлектроники и может быть использовано при изготовлении оптических приборов на основе оптических кристаллов, обладающих высокой электропроводностью. Способ осуществляется следующим образом: кристалл с высокой электропроводностью помещают в одно из плеч интерферометра Маха-Цандера, держатели (электроды) электрически изолируют от кристалла и прикладывают к ним переменное импульсное напряжение. При помощи фотоприемника регистрируют изменение интенсивности интерференционной картины и по измеренному изменению интенсивности интерференционной картины рассчитывают электрооптический коэффициент. Техническим результатом является обеспечение измерения электрооптического коэффициента у кристаллов с высокой электропроводностью. 2 ил.

 

Изобретение относится к области оптоэлектроники и может быть использовано при изготовлении оптических приборов на основе оптических кристаллов, обладающих высокой электропроводностью.

Известны способы определения электрооптического коэффициента. Суть первого способа в измерении изменения оптической интенсивности, вызванной приложенным постоянным электрическим полем, которое действует на нелегированный фоторефрактивный (ВТО) кристалл при определенном угле наклона относительно проходящего оптического луча. Электрооптический коэффициент рассчитывают исходя из изменений оптической интенсивности проходящего луча. [1]

Наиболее близким к изобретению (прототипом) является способ, заключающийся в возбуждении кристалла монохроматическим поляризованным светом с последующим расчетом электрооптической константы по измеренному значению сигнала фотоприемника на частоте управляющего напряжения. При этом к кристаллу прикладывают переменное управляющее напряжение и выделяют плоскость поляризации, соответствующую максимуму сигнала фотоприемника на частоте управляющего напряжения. Далее определяют коэффициент модуляции m(T1) при температуре T1 и рассчитывают электрооптический модуль при температуре T1. [2]

Способы измерения электрооптического коэффициента [1-4] позволяют точно определять электрооптический коэффициент в нелинейных кристаллах с низкой электропроводностью, но при этом для кристаллов с высокой электропроводностью не годятся. Кристаллы с высокой электропроводностью, в случае применения выше указанных способов, будут нагреваться, за счет тока проводимости, что приведет к изменению физических параметров кристаллов и даже к их разрушению.

Техническим результатом является измерение электрооптического коэффициента у кристаллов с высокой электропроводностью. Способ осуществляется следующим образом:

1. Кристалл с высокой электропроводностью помещают в одно из плеч интерферометра Маха-Цандера.

2. Держатели (электроды) изолируют от кристалла.

3. К электродам прикладывают переменное импульсное напряжение.

4. При помощи фотоприемника регистрируют изменение интенсивности интерференционной картины.

5. По измеренной интенсивности рассчитывают электрооптический коэффициент.

Способ отличается от прототипа тем, что используют импульсное напряжение и электроды изолируют диэлектриком (слюда).

Данный способ реализован с помощью установки, схема которой показана на фиг. 1, где: 1 - гелий-неоновый лазер (λ=0,6328 мкм); 2 - полупрозрачное зеркало; 3 - непрозрачное зеркало; 4 - полупрозрачное зеркало; 5 - непрозрачное зеркало; 6 - фотоприемник; 7 - осциллограф; 8 - генератор импульсов; 9 - кристалл с высокой электропроводностью; 10 - слюдяные пластины; 11 - интерферометр Маха-Цандера.

На фиг. 2 представлена эквивалентная электрическая схема кристалла, изоляторов и электродов, подключенных к внешнему электрическому полю, где: 12 - емкость изоляции; 13 - емкость кристалла; 14 - сопротивление кристалла; 15 - емкость слюдяной пластины; 16 - держатели-электроды; 17 - кристалл.

Установка работает следующим образом. Система зеркал 2, 3, 4, 5, из которых 3, 4 являются полупрозрачными, образует интерферометр Маха-Цандера. В одно из плеч интерферометра между зеркалами 2 и 4 устанавливают ячейку с образцом (кристаллом) 9. Луч He-Ne лазера (λ=0,6328 мкм) 1 делится на полупрозрачном зеркале 2, интерференционная картина образуется на полупрозрачном зеркале 5. Образец представляет собой прямоугольный параллелепипед. Его ориентируют таким образом, чтобы две грани были перпендикулярны лучу, а к двум другим противолежащим граням подведены электроды. Кристалл изолируют от электродов 10. На электроды подают импульсный электрический сигнал от источника напряжения 8. Изменение интенсивности интерференционной картины, связанной с действием переменного электрического поля на кристалл 9, регистрируют фотоприемником 6. Электрический сигнал с фотоприемника 6 поступает на вход осциллографа 7.

На Фиг. 2 представлена эквивалентная электрическая схема подключения кристалла. Проводимость и емкость кристалла (17) отображены в виде параллельно соединенных резистора (14) и конденсатора (13); изоляторы электродов в виде конденсаторов (15). Постоянный ток через такую схему не идет и оказать влияние на оптические свойства кристалла не может. При использовании импульса напряжения прямоугольной формы на оптические свойства кристалла оказывает действие только передний и задний фронт импульса за счет поляризации.

Электрическую емкость изоляторов, связанную в первую очередь с толщиной слюдяных пластинок (12, 15), делают намного больше емкости самого кристалла (Си>>Скр) для того, чтобы пренебречь падением напряжения на изоляторах.

Электрооптический коэффициент r рассчитывают по формуле [5]:

где:

Δφ - фазовый сдвиг за счет электрооптического эффекта,

n - коэффициент преломления кристалла в выделенном направлении z,

U - амплитуда напряжения приложенного к кристаллу вдоль оси z,

l - длина кристалла вдоль направления лазерного луча (ось x или y),

λ - длина волны излучения лазера,

d - толщина кристалла (вдоль оси z).

Измерив максимальную величину фазового сдвига Δφ, используя известные параметры кристалла и величину приложенного напряжения, определяют электрооптический коэффициент.

Список литературы

1. Moura A.L. Experimental determination of effective electro-optic coefficient and electric screening field factor in the electrically induced birefringent Bi12TiO20 crystal by using an oblique incidence setup / Moura A.L. Canabarro Α.Α., Soares W.C, de Lima Ε., Carvalho J.F., dos Santos P.V. // Optics Communications - 05/2013; 295, P:197-202.

2. Горчаков B.K., Куцаенко B.B., Потапов В.Т. Способ измерения электрооптических констант // Патент России №1586417, 10.08.1999.

3. Luennemann M. Electrooptic properties of lithium niobate crystals for extremely high external electric fields / Luennemann M., Hartwig U., Panotopoulos G., Buse K. // University of Bonn, Bonn, North Rhine-Westphalia, GermanyApplied Physics В (Impact Factor: 1.63). 03/2003; 76(4): 403-406.

4. Паргачев И.А., Краковский B.A. и др. Получение и электрофизические свойства кристаллов GTR-KTP // Доклады ТУСУРа, №2 (24), часть 2, декабрь 2011, с. 119-120.

5. Ярив Α. Оптические волны в кристаллах / А. Ярив, П. Юх // Пер. с англ. - М.: Мир, 1987-616, 261 с.

Способ определения электрооптического коэффициента низкоомных оптических кристаллов методом лазерной интерферометрии, включающий вычисление электрооптического коэффициента по измеренному максимальному фазовому сдвигу, возникающему в сигнальном луче интерферометра Маха-Цандера при подаче напряжения на противоположные грани кристалла, отличающийся тем, что для измерения используется ток поляризации, для чего на электроды держателя кристалла прикладывается переменное импульсное напряжение, а сам кристалл изолируется от электродов.



 

Похожие патенты:

Изобретение относится к микрофлюидной системе и может быть использовано для количественного определения отклика живых клеток на определенные молекулы. Микрофлюидная система для управления картой концентраций молекул, пригодных для возбуждения клеток-мишеней, включает: микрофлюидное устройство (1); камеру (8) или дополнительный микрофлюидный канал, содержащий основание (6), предназначенное для приема клетки-мишени; микропористую мембрану (5), покрывающую сеть отверстий (47, 470); одно или несколько средств снабжения для снабжения одного или каждого из микрофлюидных каналов текучей средой, причем по меньшей мере одна из этих текучих сред содержит стимулирующие молекулы клетки-мишени.
Изобретение относится к области аналитической химии элементного анализа и может быть использовано для лазерно-искрового эмиссионного определения бериллия в металлических сплавах и порошках.

Изобретение относится к области спектрального анализа и касается способа и устройства атомно-эмиссионного анализа нанообъектов. Способ включает в себя испарение нанообъектов лазерным пучком и анализ нанообъектов по их свечению.

Группа изобретений относится к области аналитических исследований и может быть использована в нефтехимической промышленности для качественного и количественного обнаружения полиароматических гетероциклических серосодержащих соединений в нефтепродуктах.

Изобретение относится к количественному анализу образцов с помощью лазерно-индуцированной плазмы. Система для классификации движущихся материалов в реальном времени включает в себя генератор лазерных импульсов, выполненный с возможностью создания по меньшей мере первого и второго лазерных импульсов, которые воздействуют на одно и то же место воздействия на движущихся материалах, причем первый и второй лазерные импульсы отстоят во времени на вплоть до 10 микросекунд, и детектор поглощения, выполненный с возможностью получения спектра поглощения в месте воздействия в течение временного интервала обнаружения, составляющего вплоть до 20 наносекунд, после второго лазерного импульса.

Изобретение относится к медицине, области нанотехнологий, в частности к усилению контраста и глубины зондирования при получении терагерцовых изображений раковых опухолей и патологий кожи с использованием наночастиц и лазерного нагрева.
Изобретение относится к аналитической атомной спектрометрии и может быть использовано в спектральном анализе для экспрессного способа определения элементного состава вещества.
Изобретение относится к области аналитической химии элементного анализа и может быть использовано для лазерно-искрового эмиссионного определения лантана, церия, празеодима, неодима в металлических сплавах и порошках.

Изобретение относится к области химического анализа веществ. В способе анализа химического состава материалов, включающем лазерное испарение или абляцию исследуемых образцов, ионизацию продуктов лазерного испарения или абляции исследуемых образцов и детектирование полученных ионов масс-анализатором, используют дополнительно введенную твердую мишень для генерации лазерной плазмы путем воздействия на нее лазерным излучением, а ионизацию продуктов лазерного испарения или абляции образцов осуществляют с использованием полученной лазерной плазмы.
Изобретение относится к способу определения меди в природных и питьевых водах. Способ включает концентрирование меди на сорбционном материале, помещенном в патрон, путем пропускания через него анализируемой пробы, элюирование меди азотной кислотой и определение меди методами атомной спектроскопии.

Группа изобретений относится к области обнаружения и количественного анализа водорода. Устройство (100) для контролирования сооружения (1) содержит первое измерительное оптическое волокно (10), оптическую систему (20), оптически соединенную с первым измерительным оптическим волокном (10) и подходящую для измерения, по меньшей мере, одного параметра первого оптического волокна. Оптическая система (20) является подходящей для измерения параметра первого оптического волокна (10) вдоль первого измерительного оптического волокна (10) в соответствии с принципом измерения бриллюэновского рассеяния. Способ контроля сооружения включает этапы, на которых: размещают первое измерительное оптическое волокно в сооружении, выполняют измерение параметра вдоль измерительного оптического волокна в соответствии с принципом измерения бриллюэновского рассеяния, обнаруживают и/или выполняют количественный анализ водорода в измерительном оптическом волокне (10). Способ обнаружения и/или количественного анализа водорода, в котором используют устройство (100). Обеспечивается более эффективное обнаружение и количественный анализ водорода. 3 н. и 12 з.п. ф-лы, 11 ил.

Изобретение относится к области измерительной техники, в частности к способам измерения сдвига частоты рассеяния Мандельштама-Бриллюэна. При реализации способа измерения сдвига частоты рассеяния Мандельштама-Бриллюэна на длине оптического волокна непрерывное оптическое излучение задающего лазера разделяют на две части. Первую часть модулируют последовательностью импульсов, затем усиливают и вводят в испытуемое оптическое волокно. Из второй части формируют опорный оптический сигнал одной поляризации, который подают на один вход балансного фотоприемника, а на другой вход балансного приемника подают сигнал обратного рассеяния, поступающий из испытуемого оптического волокна. На выходе балансного фотоприемника с помощью фильтра выделяют низкочастотную компоненту сигнала, которую подают на вход блока управления и обработки. Изменяют частоту опорного оптического сигнала с шагом менее 100 МГц и повторяют измерения для каждого шага при каждом значении частоты, затем изменяют состояние поляризации опорного оптического сигнала одной поляризации на ортогональное и повторяют измерения. Получают распределение сдвига частоты рассеяния Мандельштама-Бриллюэна на длине оптического волокна. Для формирования опорного оптического сигнала вторую часть непрерывного оптического излучения задающего лазера вводят в опорное оптическое волокно, из сигнала обратного рассеяния, поступающего из опорного оптического волокна с помощью оптического фильтра, выделяют сигнал обратного рассеяния Мандельштама-Бриллюэна, усиливают его, а затем модулируют с одной боковой полосой сигналом радиочастоты, которую изменяют с заданным шагом в диапазоне до нескольких сотен мегагерц. Далее выделяют компоненту с одним из двух устанавливаемых переключаемым поляризатором ортогональных состояний поляризации, а сдвиг частоты рассеяния Мандельштама-Бриллюэна определяют как значение суммы сдвига частоты рассеяния Мандельштама-Бриллюэна в оптическом волокне при отсутствии температурных и механических воздействий и частоте модулирующего радиочастотного сигнала, при которой значение суммы амплитуд сигналов биений на входе блока управления и обработки, измеренных при двух ортогональных состояниях опорного сигнала, превышает заданное пороговое значение. Техническим результатом изобретения является расширение области применения. 1 ил.

Изобретение относится к области измерительной техники, в частности к способам измерения сдвига частоты рассеяния Мандельштама-Бриллюэна. При реализации способа измерения сдвига частоты рассеяния Мандельштама-Бриллюэна на длине оптического волокна непрерывное оптическое излучение задающего лазера разделяют на две части. Первую часть модулируют последовательностью импульсов, затем усиливают и вводят в испытуемое оптическое волокно. Из второй части формируют опорный оптический сигнал одной поляризации, который подают на один вход балансного фотоприемника. На другой вход балансного приемника подают сигнал обратного рассеяния, поступающий обратно из испытуемого оптического волокна, причем измерения выполняют при двух ортогональных состояниях поляризации опорного оптического сигнала. Электрический сигнал с выхода балансного фотоприемника подают на один вход смесителя, на другой вход которого подают радиочастотный сигнал. Из комплексного сигнала на выходе смесителя выделяют низкочастотный сигнал биений и подают на вход блока управления и обработки, где результаты измерений запоминают для каждого шага при каждом значении частоты. Затем изменяют состояние поляризации опорного оптического сигнала одной поляризации на ортогональное и повторяют измерения. Сдвиг частоты рассеяния Мандельштама-Бриллюэна определяют как значение суммы сдвига частоты рассеяния Мандельштама-Бриллюэна в оптическом волокне при отсутствии температурных и механических воздействий и частоте радиочастотного сигнала, при которой значение суммы амплитуд сигналов биений на входе блока управления и обработки, измеренных при двух ортогональных состояниях опорного сигнала, превышает заданное пороговое значение. Техническим результатом изобретения является расширение области применения. 1 ил.

Настоящее изобретение относится к области технологий материалов и материаловедческих и аналитических исследований. Композиция, обладающая ГКР-активностью, для определения полиароматических гетероциклических серосодержащих соединений (ПАГС) в углеводородных продуктах представляет собой хемотропный гель, содержащий полимерную матрицу с наночастицами серебра анизотропной формы с размерами 10-90 нм и частицами оксида графена с размерами 1-2 мкм. Способ получения этой композиции включает синтез оксида серебра, растворение полученной суспензии в водном растворе аммиака, смешивание полученного раствора с оксидом графена, последовательное введение в полученную суспензию нитрата серебра и восстанавливающего агента для получения наночастиц серебра в суспензии размерами 10-90 нм и введение полимерного порошка для перевода суспензии в хемотропный гель. Планарный твердофазный оптический сенсор включает размещенную на основе пленку толщиной до 5 мкм, полученную из композиции, обладающей ГКР-активностью, и содержащую на поверхности π-акцепторное соединение. Способ анализа ПАГС включает нанесение на планарный твердофазный оптический сенсор жидкой пробы с исследуемым соединением. Технический результат заключается в создании планарных оптических сенсоров, позволяющих использовать метод спектроскопии гигантского комбинационного рассеяния (ГКР) с высоким коэффициентом чувствительности, высокой селективностью, широким диапазоном определяемых концентраций и высокими воспроизводимостью и прецизионностью. 5 н. и 19 з.п. ф-лы, 6 табл., 17 ил.

Изобретение относится к области масс-спектрометрического анализа газообразных веществ. Технический результат - повышение чувствительности масс-спектрометрического анализа газообразных веществ, а также длительности и устойчивости работы прибора. Способ масс-спектрометрического анализа газообразных веществ включает подачу анализируемой газовой смеси в зону ионизации, ионизацию компонентов смеси путем воздействия потоком фотонов или частиц в газовой среде и подачу образованных ионов путем приложения электростатического поля в масс-анализатор. В качестве газовой среды используют анализируемую смесь, направленную навстречу потоку ионов анализируемых соединений, причем подачу ионов в масс-анализатор осуществляют при значениях напряженности электростатического поля в пределах 0.1 В/см-20 кВ/см. Ионизацию компонентов смеси осуществляют воздействием потоком фотонов, и/или ионов, и/или атомов в метастабильном состоянии, генерируемых лазерной плазмой, потоком электронов, генерируемых радиоактивным источником или ускорителем, потоком фотонов, генерируемых лазером или источником ультрафиолетового излучения, например криптоновой лампой, потоком заряженных частиц и атомов в метастабильном состоянии, генерируемых электрораспылением жидкости, не содержащей анализируемых соединений, потоком заряженных частиц и атомов в метастабильном состоянии, генерируемых коронным разрядом. Подачу анализируемой газовой смеси в зону ионизации выполняют с возможностью фильтрации анализируемой смеси от твердых и жидких частиц со скоростью потока в зоне ионизации не менее 1,4 см/сек, а в качестве масс-анализатора используют масс-спектрометр или спектрометр ионной подвижности.8 з.п. ф-лы, 1 ил., 1 табл.

Изобретение относится к композиционной частице для применения в маркировке, пригодной для идентификации/установления подлинности изделия. Частица содержит по меньшей мере одну суперпарамагнитную часть и по меньшей мере одну термолюминесцентную часть. Суперпарамагнитная часть содержит один или более супермагнитных материалов, выбранных из оксида железа, металлического Fe, металлического Со, металлического Ni и их сплавов. Термолюминесцентная часть содержит керамический материал, легированный одним или более ионами, выбранными из ионов переходных металлов и ионов редкоземельных металлов. Изобретение обеспечивает повышение степени защиты изделий, надежность идентификации и защиты от постороннего вмешательства, фальсификации и подделки. 11 н. и 24 з.п. ф-лы, 2 ил.

Изобретение относится к области оптоэлектроники и может быть использовано при изготовлении оптических приборов на основе оптических кристаллов, обладающих высокой электропроводностью. Способ осуществляется следующим образом: кристалл с высокой электропроводностью помещают в одно из плеч интерферометра Маха-Цандера, держатели электрически изолируют от кристалла и прикладывают к ним переменное импульсное напряжение. При помощи фотоприемника регистрируют изменение интенсивности интерференционной картины и по измеренному изменению интенсивности интерференционной картины рассчитывают электрооптический коэффициент. Техническим результатом является обеспечение измерения электрооптического коэффициента у кристаллов с высокой электропроводностью. 2 ил.

Наверх