Способ полуавтоматического управления причаливанием


 


Владельцы патента RU 2605231:

Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" (RU)

Изобретение относится к управлению движением стыкуемых космических аппаратов (КА). Способ обеспечивает касание активного (АК) и пассивного (ПА) КА с требуемыми значениями скорости, для чего регулируют скорость причаливания в зависимости от дальности. По внешней команде автоматическую ориентацию АК производят относительно той же системы координат, в которой ориентирован стыковочный узел ПК. Управление движением центра масс АК в плоскости, перпендикулярной продольной оси АК, осуществляют по углу отклонения стыковочной мишени относительно поддерживаемой системы координат. Этот угол определяют визуально по отклонению выносного креста мишени относительно перекрестия оптического средства наблюдения внешней обстановки. Техническим результатом изобретения являются повышение качества управления причаливанием при наличии взаимосвязи каналов управления, запаздываний в каналах передачи изображения мишени и при передаче команд от ручек управления на АК.

 

Изобретение относится к космической технике и может быть использовано для управления космическим кораблем при причаливании.

Известна автоматическая система управления причаливанием (патент 2482033), в которой активный корабль (АК) вокруг центра масс ориентирован относительно той же системы координат, в которой ориентирован стыковочный узел пассивного корабля (ПК). По измеренным относительно корпуса АК углам рассогласования, с учетом положения связанных с АК осей относительно поддерживаемого положения, корректируют движение центра масс в плоскости, перпендикулярной линии визирования. В продольном канале управления поддерживается заданная зависимость скорости причаливания от дальности.

Известна система полуавтоматического управления причаливанием корабля «Союз», описание которой приведено в книге А.А. Лебедев, В.Б. Соколов «Встречи на орбите» (Глава 4. Причаливание и стыковка).

В этой системе управления космонавт осуществляет регулирование скорости причаливания в зависимости от дальности.

Наблюдение ПК космонавт ведет по оптическому прибору, установленному на АК. На ПК соосно с оптическим прибором установлена стыковочная мишень, которая состоит из выносного креста, отстоящего от основания мишени на 400 мм, и креста, нарисованного на основании стыковочной мишени. Номинальное положение к моменту касания - выносной крест должен накладываться на крест основания мишени и совпадать с перекрестием оптического прибора.

Управление движением вокруг центра масс космонавт осуществляет по углу рассогласования относительно линии визирования, который определяет визуально по отклонению изображения выносного креста стыковочной мишени относительно перекрестия оптического прибора наблюдения внешней обстановки. Управление движением центра масс в плоскости, перпендикулярной линии визирования, космонавт производит по углу рассогласования, который определяет визуально по отклонению выносного креста стыковочной мишени относительно креста на ее основании.

При наличии рассогласований космонавт отклонениями ручек управления корректирует угловое положение вокруг центра масс и положение центра масс АК относительно линии визирования.

В процессе причаливания при отклонении ручки управления движением вокруг центра масс (РУО) контур управления АК автоматически обеспечивает набор скорости вращения вокруг центра масс, пропорциональной сигналу РУО. При постановке РУО в нейтральное положение выполняется автоматическое гашение угловой скорости вращения и в дальнейшем автоматическое поддержание угловой скорости вокруг центра масс в заданных пределах. Пассивный корабль автоматически стабилизируется относительно инерциальной системы координат.

Вследствие того что и стыковочная мишень на ПК и оптический прибор на АК достаточно далеко расположены от центров масс, то любое отклонение АК или ПК вокруг центра масс от линии визирования вызывает отклонение выносного креста относительно креста основания мишени и перекрестия оптического прибора. Равно как и смещение центра масс АК относительно линии визирования вызывает смещение выносного креста относительно перекрестия прибора наблюдения внешней обстановки и отклонение выносного креста относительно креста основания мишени.

Поэтому после каждого регулирования движения центра масс или вокруг центра масс неизбежно появляется рассогласование во взаимном положении крестов, что затрудняет выполнение ручного причаливания.

Этот недостаток усиливается при наличии запаздывания в тракте формирования изображения стыковочной мишени и запаздывания при передаче команд от ручек управления на исполнительные органы АК.

При управлении ориентацией угловая скорость вращения АК задается пропорционально углу отклонения РУО. И эта скорость поддерживается до возврата РУО в нейтральное положение. Запаздывание при представлении изображения стыковочной мишени космонавту, равно как и запаздывание при наборе и сбросе угловой скорости АК, неизбежно ведет к ошибкам управления - перерегулированию или недорегулированию. Как результат - дополнительные отклонения РУО уже для компенсации ошибок регулирования.

Техническим результатом изобретения являются повышение качества полуавтоматического управления причаливанием в условиях взаимосвязи каналов управления, наличия запаздываний в каналах передачи изображения стыковочной мишени и при передаче команд от ручек управления на АК.

Технический результат достигается тем, что в способ ручного управления причаливанием, включающий регулирование скорости причаливания в зависимости от дальности, автоматическую ориентацию активного и пассивного кораблей, визуальное определение угла по отклонению выносного креста стыковочной мишени относительно перекрестия оптического средства наблюдения внешней обстановки, в отличие от известного автоматическую ориентацию активного корабля производят относительно той же системы координат, в которой ориентирован стыковочный узел пассивного корабля, а управление движением центра масс активного корабля выполняют по углу отклонения активного корабля относительно поддерживаемой системы координат, который определяют визуально.

Технический результат достигается тем, что при ориентации активного корабля относительно той же системы координат, в которой ориентирован стыковочный узел, исключается необходимость управления ориентацией активного корабля в процессе причаливания, что уменьшает влияние взаимосвязи каналов управления движениями центра масс и вокруг центра масс. Отклонение выносного креста стыковочной мишени, а также любое расхождение крестов стыковочной мишени устраняется только движением центра масс АК в плоскости, перпендикулярной продольной оси АК.

Наличие запаздывания при передаче изображения может существенно затруднить, а в принципе сделать невозможным выполнения причаливания в телеоператорном режиме. Ситуация усугубляется при наличии запаздывания при передаче команд от ручек управления, поэтому исключение необходимости регулировать ориентацию АК при причаливании уменьшает вероятность ошибочных действий космонавта.

Перевод АК в ориентацию относительно заданной системы координат должен выполняться по внешней команде (например, с пульта управления) после зависания (автоматического или ручного) напротив требуемого стыковочного узла ПК.

Поскольку движение АК вокруг центра масс вызывает расхождение крестов, то это влияние может быть сведено к минимуму выбором порогов срабатывания в системе ориентации АК. Например, пороговое значение по углам в системе ориентации АК при причаливании можно задать ±0.2 градуса, что не окажет принципиального влияния на промах в момент касания.

Поскольку величины управляющих ускорений в каналах управления в плоскости, перпендикулярной продольной оси АК, меньше, чем в каналах ориентации, то и запаздывание при передаче команд для регулирования движения центра масс сказывается в меньшей степени. Эффективность ускорений, используемых для коррекции бокового движения центра масс, увеличивается по мере уменьшения расстояния между АК и ПК и становится сравнимой с эффективностью ускорений вокруг центра масс с дальности 30-20 метров до касания. Введением импульсного включения исполнительных органов при коррекции движения центра масс можно снижать их эффективность на небольших расстояниях и, тем самым, уменьшать влияние запаздывания в канале передачи команд на АК.

Предлагаемый способ управления можно реализовать системой управления, используемой на модернизированных пилотируемых кораблях «Союз», оснащенных бортовой вычислительной машиной. Цифровая система управления этих кораблей обеспечивает автоматическую выставку и поддержание ориентированного положения АК в той же системе координат, например орбитальной, в которой ориентирован требуемый узел МКС. А по визуальному наблюдению МКС через оптический прибор ВСК космонавт может регулировать движение центра масс АК в плоскости, перпендикулярной продольной оси АК. Отклонение от номинального положения космонавт определяет визуально по положению изображения выносного креста стыковочной мишени относительно перекрестия прибора.

Использование предлагаемого способа управления на пилотируемых кораблях упростит работу космонавта и, тем самым, повысит точность выполнения ручного причаливания.

Предлагаемый способ ручного управления может быть реализован и в телеоператорном режиме управления (ТОРУ) на беспилотных грузовых кораблях «Прогресс», оснащенных бортовой вычислительной машиной. Ручное управление кораблем «Прогресс» в ТОРУ также должно выполняться через ботовую вычислительную машину, в программном обеспечении которой должны быть такие же алгоритмы ручного управления, которые применяются на модернизированных пилотируемых кораблях «Союз».

В телеоператорном режиме управления грузовыми кораблями «Прогресс» (АК) телевизионная камера устанавливается на грузовом корабле, а получаемое изображение МКС и стыковочной мишени передается на МКС (ПК). Рабочее место космонавта оборудовано на МКС, и команды от ручки управления ориентацией (РУО) и ручки управления движением (РУД) передаются на исполнительные органы АК.

Влияние запаздывания в канале передачи изображения с АК на ПК можно исключить, установив телевизионную камеру на ПК, а на АК соосно с ней - стыковочную мишень. От варианта размещения визуальных средств действия космонавта не изменяются - при наличии отклонения изображения выносного креста стыковочной мишени от перекрестия телевизионной камеры отклонениями РУД, то есть, задавая движение центра масс АК в плоскости, перпендикулярной продольной оси АК, устранить рассогласования.

Телевизионная камера, устанавливаемая на пассивном корабле, будет служить весь срок полета пассивного корабля. Поскольку установка телевизионной камеры на АК необходима для контроля дальнего участка сближения и облета, то установка телевизионной камеры и на ПК обеспечит резервирование средств визуального наблюдения на наиболее опасном участке - при причаливании. Одновременно, манипулируя переключением телевизионных камер, можно улучшать наблюдаемость стыковочной мишени при засветке их Солнцем.

Способ полуавтоматического управления причаливанием, включающий регулирование скорости причаливания в зависимости от дальности, автоматическую ориентацию активного и пассивного кораблей, визуальное определение угла по отклонению выносного креста стыковочной мишени относительно перекрестия оптического средства наблюдения внешней обстановки, отличающийся тем, что автоматическую ориентацию активного корабля производят относительно той же системы координат, в которой ориентирован стыковочный узел пассивного корабля, а управление движением центра масс активного корабля выполняют по углу отклонения активного корабля относительно поддерживаемой системы координат, который определяют визуально.



 

Похожие патенты:

Группа изобретений относится к способу и устройствам ориентации транспортных средств по лазерному лучу. Для ориентации транспортного средства направляют лазерный луч в сторону транспортного средства параллельно или под небольшим углом к траектории его движения, формируют линейную поляризацию излучения, устанавливают положение плоскости поляризации перпендикулярно плоскости, проходящей через лазерный луч и траекторию движения, определяют отклонение от заданной траектории движения.

Группа изобретений относится к способу и системе стабилизации углового положения беспилотного летательного аппарата. Для формирования нелинейного адаптивного цифроаналогового сигнала стабилизации углового положения задают и измеряют цифровой сигнал углового положения, измеряют аналоговый сигнал угловой скорости, формируют цифровой сигнал рассогласования и преобразуют его в аналоговый, измеряют сигнал скоростного напора, формируют ограничения сигнала запаздывания в адаптивной функции и заданного сигнала углового положения в адаптивной функции в зависимости от сигнала скоростного напора, формируют сигнал рассогласования, как разность между сформированными ограниченными сигналами, формируют выходной сигнал определенным образом.

Группа изобретений относится к способу управления самолетом, способу для обозначения потенциального состояния сваливания, системе управления сваливанием. Для управления самолетом идентифицируют угол атаки, коэффициент подъемной силы, воздушную скорость аварийного оповещения для самолета определенным образом.

Группа изобретений относится к способу и устройству формирования сигнала угловой стабилизации по крену летательного аппарата. Для формирования сигнала угловой стабилизации по крену измеряют текущий сигнал углового положения летательного аппарата, сигнал угловой скорости и углового положения элеронов, формируют сигналы оценок динамических параметров, формируют выходной сигнал определенным образом с учетом дополнительно сформированного определенным образом сигнала оценки внешнего возмущения.

Техническое решение относится к области железнодорожной автоматики и телемеханики. Система датчиков цистерны содержит акселерометр для определения ориентации люка, датчик положения для определения глобального местоположения цистерны и блок обработки данных с модулем события.

Изобретение относится к способу адаптивного управления самолетом по крену. Для адаптивного управления самолетом по крену оценивают текущие аэродинамические параметры поперечного движения самолета, формируют сигналы управления, отслеживают изменения количества и расположения внешних подвесок, сравнивают их с исходным расположением, вычисляют осевые и центробежные моменты инерции самолета, корректируют команды управления самолетом.

Изобретение относится к области приборостроения. Сущность изобретения заключается в том, что осуществляют измерение номинальных угловых скоростей по каждой измерительной оси посредством датчиков угловых скоростей и выдачу полученных параметров в виде аналоговых сигналов, при этом измерение номинальных угловых скоростей осуществляют посредством датчиков угловых скоростей, обеспечивающих формирование выходной информации в оцифрованном виде, затем осуществляют обработку полученной информации с использованием заданных коэффициентов для каждой измерительной оси, которые определяются как отношение заданного номинального выходного напряжения к заданной номинальной угловой скорости, а затем преобразуют полученные данные в аналоговые сигналы, представляющие собой одинаковые величины номинального напряжения для всех измерительных осей.

Интеллектуальная система поддержки экипажа содержит датчики состояния двигателей, топливной системы, гидросистемы, системы электроснабжения, системы выпуска шасси и торможения, противообледенительной системы, противопожарной системы, системы воздушных сигналов, спутниковую навигационную систему, инерциальную навигационную систему, радиовысотомер, приборную систему посадки, систему штурвального управления, систему сбора бортовой информации, систему отображения информации, блок распознавания аварийных ситуаций, систему контроля разбега, систему предупреждения об опасной близости земли, систему предупреждения о выходе на опасные значения угла атаки и перегрузки, систему контроля захода на посадку и посадки, систему предупреждения о попадании в сдвиг ветра, систему выбора режима торможения с возможностью определения прогнозируемого тормозного пути.

Изобретение относится к способу управления летательным аппаратом (ЛА) при заходе на посадку. Для управления ЛА при заходе на посадку измеряют с помощью инерциальной навигационной системы (ИНС), систем воздушных сигналов (СВС), спутниковой навигационной системы (СНС) курс, крен и тангаж ЛА, угловую, горизонтальную и вертикальную скорости ЛА, координаты и высоту ЛА, формируют курс взлетно-посадочной полосы (ВПП) на основе уточненных координат высоты ЛА и координат высоты ВПП, формируют сигналы управления угловым положением ЛА по крену и тангажу, измеряют в автоматическом или ручном режиме угловое положение ЛА в соответствии со сформированными сигналами управления, формируют траекторию посадки с заданным экипажем углом наклона, совпадающую по направлению с курсом ВПП, с помощью курсового, глиссадного и дальномерного радиомаяков (КРМ, ГРМ и ДРМ).

Изобретение относится к области автоматического управления и может быть использовано при построении высоконадежных резервированных устройств и систем, содержащих измерители с числоимпульсным выходом (датчики угловой скорости, акселерометры и т.д.), где наряду с достижением высокой надежности требуется достижение высокой точности.
Изобретение относится к области управления движением космических аппаратов (КА) и может быть использовано, в частности, для стыковки активного КА с пассивным КА. Способ включает управление угловыми скоростями активного КА по данным наблюдения с его борта пассивного КА.

Группа изобретений относится к методам и средствам соединения и разделения космических объектов. При запуске двух спутников один из них прикрепляют к подвижной части (4В), а другой помещают в неподвижную часть (4А) камеры (4).

Изобретение относится к обслуживанию на околоземной орбите группировки автоматических космических аппаратов (КА). Способ включает выведение КА обслуживания (КАО) в орбитальную плоскость группировки КА, стыковку КАО и КА, техническое обслуживание КА, расстыковку КАО и КА.

Изобретение относится к ракетно-космической технике и может быть использовано в системах отделения космических аппаратов (КА). Система отделения КА, установленная между несущей конструкцией ракеты-носителя (РН) и КА, содержит корпус, состоящий из силовых опор и стенок с замками и толкателями, болтовые соединения, дискретно размещенные по периметру корпуса демпфирующие узлы, состоящие из резиновых прокладок и пластинчатых упоров с резьбовыми отверстиями, промежуточную раму, элементы крепления, резьбовые стыковочные элементы.

Изобретение относится к космической технике и предназначено для обеспечения автоматической стыковки космических аппаратов. Стыковочное устройство для космических аппаратов содержит стыковочный агрегат со шпангоутом, закрепленным на корпусе космического аппарата, и крышку люка, на внешней стороне которой закреплен приемный конус, заканчивающийся гнездом в форме стакана с продольными прорезями.

Изобретение относится к средствам и инструментам внекорабельной деятельности. Предлагаемое активное устройство фиксации использует привод инструмента манипулятора.

Изобретение относится к стыковочным средствам и инструментам внекорабельной деятельности. Устройство содержит корпус (1), закрепленный на внешней поверхности космического корабля, с кольцом (2), имеющим направляющие выступы (3) и датчики касания (4) с взаимодействующим активным устройством (АУ).

Изобретение относится к способам создания в космосе связки космического аппарата (КА) с космическим объектом (КО). Контролируют положение в пространстве троса (2), развернутого с борта КА (1), используя датчики видеонаблюдения (4) на КА и/или датчики положения (5) на тросе.

Изобретение относится к ракетно-космической технике и может быть использовано в головных обтекателях (ГО) ракет космического назначения (РКН). ГО для РКН представляет собой трехслойную конструкцию из полимерных композиционных материалов в виде двухстворчатой оболочки переменной кривизны, содержит внешний несущий слой из углепластика, внутренний несущий слой, металлический сотовый заполнитель в виде одинаковых по массе и размеру пластин с термитно-зажигающей смесью (ТЗС) с окислителем, которым является хлорат калия или перхлорат калия, порошкообразным металлом, которым является магний, или алюминий, или титан, или сплав, и связующим, которым является коллоксилин.

Группа изобретений относится к способу и системе проведения испытаний беспилотной авиационной системы (БАС), а также испытательной системе для БАС с внешней подвеской. Система для проведения испытаний БАС содержит систему управления полетом БАС, опционально пилотируемый летательный аппарат (OPV) с собственной системой управления, интерпретатор управления полетом. Для проведения испытаний БАС прикрепляют фюзеляж БАС к OPV, соединяют систему управления полетом БАС с интерпретатором управления полетом, соединяют последний с системой управления полетом OPV, инициируют профиль полета БАС, подают управляющие параметры от системы управления полетом БАС в интерпретатор управления полетом для их интерпретации, определяют завершенность профиля, в противном случае подают команды текущего состояния от интерпретатора полета в систему управления OPV, определяют наличие вмешательства пилота, управляют OPV на основании команд текущего состояния. Испытательная система для БАС с внешней подвеской содержит систему управления полетом БАС, OPV с собственной системой управления, наземную систему слежения за OPV. OPV несет фюзеляж БАС и интерпретатор управления полетом. Обеспечивается проведение испытаний БАС в соответствии с определенным профилем полета. 3 н. и 9 з.п. ф-лы, 8 ил.
Наверх