Способ распределения мощности бортовых передатчиков между сигналами в прямых каналах спутниковой системы доступа к информационным ресурсам с неоднократным использованием полос частот

Изобретение относится к области техники связи и может быть использовано в многолучевых спутниковых системах доступа к информационным ресурсам. Техническим результатом изобретения является распределение мощности бортовых передатчиков между сигналами многолучевой спутниковой системы доступа к информационным ресурсам при ограничениях на нижние пороги скоростей передачи информации в пользовательских соглашениях. Распределение мощности бортовых передатчиков позволяет разным пользователям получать информационный ресурс с разной скоростью в зависимости от их потребности. Изобретение раскрывает способ распределения мощности бортовых передатчиков между сигналами многолучевой спутниковой системы доступа к информационным ресурсам, в котором поиск оптимальных мощностей сигналов выполняется по алгоритму динамического распределения мощности. 1 ил.

 

Изобретение относится к области техники связи и может быть использовано в многолучевых спутниковых системах доступа к информационным ресурсам. Известен способ регулирования мощности передачи по информационному каналу прямой линии связи (RU №1232200085, 20.03.2008 г.), в котором мощность передается по прямой линии связи в абонентский терминал в составе системы радиосвязи, содержащей множество лучей, регулируется посредством того, что определяют исходный уровень мощности, Р baseline, по принятому действующему отношению сигнала к шуму (SNR) в контрольном канале определяют пороговое значение мощности, Pmargin, по выявленной чувствительности к помехам определяют поправку уровня мощности, Р correction, по выявленному коэффициенту пакетных ошибок (PER) и устанавливают Ptransmit, по Р baseline, Pmargin и Р correction. Недостатком данного способа является то, что пороговое значение мощности не определяется по минимальному значению из нижних пороговых скоростей передачи информации в пользовательских соглашениях.

Известны также способ и устройство высокоскоростной и низкоскоростной связи через спутники на низких и средних орбитах. В способе многостанционной связи через спутники, согласно которому на абонентских станциях осуществляют модуляцию высокоскоростной и низкоскоростной информацией различных, но сфазированных между собой псевдослучайных кодов, модулирующих несущие, излучение полученных пакетов информации с преамбулами на спутники-ретрансляторы, на которых их принимают, осуществляют оценки рассогласований по задержке кодов и частотам несущих, запоминание этих рассогласований и информационной части пакетов, а далее формируют новые пакеты и переизлучают их вместе с сигналом синхронизации на соответствующие абонентские станции и соседние спутники-ретрансляторы, на которых выделяют принятую информацию, а по принятым рассогласованиям проводят автоподстройку собственных передатчиков с автоподстройкой, обеспечивают регулирование пропускной способности отдельных каналов высокоскоростной (низкоскоростной) передачи, варьируя параметрами кодового и временного уплотнения, обеспечивают синхронизацию приемников и передатчиков с автоподстройкой на абонентских станциях и соседних спутниках-ретрансляторах по низкоскоростным линиям передачи, обеспечивают также возможность передачи высокоскоростной (низкоскоростной) информации через дополнительно установленные на борту прозрачные ретрансляторы (RU №2133555, 20.07.1999). Недостатком является то, что данный способ не применим для спутников, работающих на геостационарных орбитах. Наиболее близким является способ распределения мощности бортовых передатчиков между сигналами многолучевой спутниковой системы доступа к информационным ресурсам [1]. В нем при заданных сведениях о количестве лучей, запрашиваемых скоростях передачи информации, общей мощности бортовых передатчиков, параметрах спектральной плотности мощности шума, нормированных на коэффициент затухания, ширинах рабочих полос частот, коэффициентах помех между сигналами определяются значения мощностей сигналов.

К недостаткам этого способа следует отнести то, что способ не решает проблему распределения мощности бортовых передатчиков между сигналами многолучевой спутниковой системы доступа к информационным ресурсам при ограничении на нижние пороги скоростей передачи информации в пользовательских соглашениях.

Техническим результатом изобретения является распределения мощности бортовых передатчиков между сигналами в прямых каналах спутниковой системы доступа к информационным ресурсам с неоднократным использованием полос частот при ограничениях на нижние пороги скоростей передачи информации в пользовательских соглашениях. Распределение мощности бортовых передатчиков позволяет разным пользователям получать информационный ресурс с разной скоростью в зависимости от их потребности.

Для достижения технического результата предложен способ распределения мощности бортовых передатчиков между сигналами многолучевой спутниковой системы доступа к информационным ресурсам, в котором поиск оптимальных мощностей сигналов выполняется по алгоритму динамического распределения мощности.

Способ распределения мощности бортовых передатчиков между сигналами многолучевой спутниковой системы доступа к информационным ресурсам осуществляется по следующим операциям.

1. Получение сведений о количестве лучей, запрашиваемых скоростях передачи информации, общей мощности бортовых передатчиков, параметрах спектральной плотности мощности шума, нормированных на коэффициент затухания, ширинах рабочих полос частот, коэффициентах помех между сигналами.

2. Получение значений нижних порогов скоростей передачи информации в пользовательских соглашениях.

3. Определение требуемых скоростей передачи информации.

4. Определение минимальных значений мощностей сигналов, достаточных для обеспечения требуемых скоростей передачи информации.

5. Определение превышения значения общей мощности бортовых передатчиков над суммой минимальных значений мощностей сигналов, достаточных для обеспечения требуемых скоростей передачи информации. Если превышение не равно 0 перейти к п. 7.

6. Вывод значения мощностей сигналов для дальнейшей обработки.

Если превышение значений общей мощности бортовых передатчиков над суммой минимальных значений мощностей сигналов не равно 0, то выполнить:

7. Определение значения мощностей сигналов.

8. Определение дополнительных ограничений или их отсутствия. При определении отсутствия дополнительных ограничений перейти к п. 6. При определении ограничений по п. 8 выполнить следующее:

9. Определение значений мощностей сигналов при дополнительных ограничениях, перейти к п. 8. И это производится неоднократно до тех пор, пока не будет получено отсутствие дополнительных ограничений по п. 8.

Способ распределения мощности бортовых передатчиков между сигналами многолучевой спутниковой системы доступа к информационным ресурсам (фиг. 1) содержит:

- блок 1 ввода данных;

- блок 2 ввода нижних порогов скоростей передачи информации в пользовательских соглашениях;

- блок 3 определения требуемых скоростей передачи информации;

- блок 4 определения минимально необходимых мощностей сигналов;

- блок 5 определения достаточности общей мощности бортовых передатчиков;

- блок 6 вывода мощностей сигналов;

- блок 7 определения мощностей сигналов;

- блок 8 определения дополнительных ограничений;

- блок 9 определения мощностей сигналов при дополнительных ограничениях.

Блок 1 ввода данных получает сведения о количестве лучей, запрашиваемых скоростях передачи информации, общей мощности бортовых передатчиков, параметрах спектральной плотности мощности шума, нормированных на коэффициент затухания, ширинах рабочих полос частот, коэффициентах помех между сигналами, где

- N количество лучей;

- Di запрашиваемая скорость передачи информации в i-го абонента;

- Ptot - общая мощность бортовых передатчиков;

- γN0 - параметр спектральной плотности мощности шума, нормированный на коэффициент затухания;

- W - ширина рабочей полосы частот;

- hij - коэффициент помех между сигналами.

Блок 2 ввода нижних порогов скоростей передачи информации в пользовательских соглашениях получает значения нижних порогов скоростей передачи информации в пользовательских соглашениях, где

- Dimin - нижняя пороговая скорость передачи информации в пользовательских соглашениях i-го абонента.

Блок 3 определения требуемых скоростей передачи информации определяет требуемые скорости передачи информации как минимум из запрашиваемой и нижней пороговой

где Di* - требуемая скорость передачи информации i-го абонента.

Блок 4 определения минимально необходимых мощностей сигналов определяет минимальные значения мощностей сигналов (Pi*), достаточных для обеспечения требуемых скоростей передачи информации, по

Блок 5 определения достаточности общей мощности бортовых передатчиков определяет достаточность общей мощности передатчиков для обеспечения требуемых скоростей передачи информации.

Здесь U является значением знак определяющей функции sgn. Если U равно 1, то это значит, что общей мощности передатчиков хватает с излишком на обеспечение требуемых скоростей передачи информации. Если U равно -1, то это значит, что общей мощности передатчиков не хватит для того, чтобы обеспечить абонентов требуемой скоростью передачи. Следовательно, если U равно 0, то общей мощности бортовых передатчиков хватит только на обеспечение требуемых скоростей передачи информации.

Через блок 6 вывода мощностей сигналов значения мощностей сигналов передаются для дальнейшей обработки.

Блок 7 определения мощностей сигналов определяет оптимальные значения мощностей сигналов по заданному критерию.

Получим оптимальные значения мощностей сигналов (Pi) по (4)

где критерий задается как (5)

и предоставляемая скорость передачи информации выражается как

Блок 8 определения дополнительных ограничений проверяет, удовлетворяют ли предоставленные скорости передачи информации, соответствующие определенным значениям мощностей сигналов, условию

и определяет дополнительные ограничения или их отсутствие. Если есть предоставляемые скорости передачи информации, которые не удовлетворяют условию в блоке 8, то они запоминаются как C* (Pi), а их количество как m.

Блок 9 определения мощностей сигналов при дополнительных ограничениях определяет оптимальные значения мощностей сигналов по заданному критерию при дополнительных ограничениях на С* (Pi)

где переменная n первоначально равна нулю.

Предлагаемый способ осуществляется следующим образом.

Сведения о количестве лучей, запрашиваемых скоростях передачи информации, общей мощности бортовых передатчиков, параметрах спектральной плотности мощности шума, нормированных на коэффициент затухания, ширинах рабочих полос частот, коэффициентах помех между сигналами поступают на блок 1 входных данных.

Нижние пороговые значения скоростей передачи информации в пользовательских соглашениях поступают на блок 2 ввода нижних порогов скоростей передачи информации в пользовательских соглашениях.

Основываясь на поступивших значениях нижних пороговых скоростей передачи информации в пользовательских соглашениях и запрашиваемых скоростях передачи информации, определяются требуемые скорости передачи информации в блоке 3 определения требуемых скоростей передачи информации.

Основываясь на определенных значениях требуемых скоростей передачи информации и поступивших сведениях о параметрах спектральной плотности мощности шума, нормированных на коэффициент затухания, ширинах рабочих полос частот, коэффициентах помех между сигналами, определяются минимальные значения мощностей сигналов, достаточных для обеспечения требуемых скоростей передачи информации в блоке 4 определения минимально необходимых мощностей сигналов.

В блоке 5 определения достаточности общей мощности бортовых передатчиков сравнивается сумма минимальных значений мощностей сигналов, достаточных для обеспечения требуемых скоростей передачи информации, и общая мощность бортовых передатчиков. Если сумма минимальных значений мощностей сигналов равна общей мощности бортовых передатчиков, то минимальные значения мощностей сигналов, достаточных для обеспечения требуемых скоростей передачи информации, выводятся из блока 6 вывода мощностей сигналов для дальнейшей обработки. Если соответствующая сумма не равна общей мощности бортовых передатчиков, то определяются оптимальные значения мощностей сигналов в блоке 7 определения мощностей сигналов.

Скорости передачи информации, соответствующие определенным значениям мощностей сигналов, проверяются в блоке 8 определения дополнительных ограничений. Если все эти скорости передачи информации удовлетворяют условию в блоке 8, то определенные мощности сигналов выводятся из блока 6 вывода мощностей сигналов для дальнейшей обработки.

При скоростях передачи информации, которые не удовлетворяют условию в блоке 8, на их основе формируются дополнительные ограничения. После чего определяются мощности сигналов при дополнительных ограничениях в блоке 9 определения мощностей сигналов при дополнительных ограничениях, и соответствующие этим мощностям скорости передачи информации также проверяются в блоке 8.

Операции в блоках 8 и 9 продолжаются до тех пор, пока все скорости передачи информации не будут удовлетворять условию в блоке 8.

Таким образом, мы получаем распределение мощности бортовых передатчиков между сигналами в прямых каналах многолучевой спутниковой системы доступа к информационным ресурсам с неоднократным использованием полос частот.

Достигаемым техническим результатом предложенного способа распределения мощности бортовых передатчиков между сигналами в прямых каналах многолучевой спутниковой системы доступа к информационным ресурсам является получение этого распределения при ограничениях на нижние пороги скоростей передачи информации в пользовательских соглашениях. Кроме того, предлагаемый способ дает возможность оптимально распределить мощность бортовых передатчиков при ограничениях на нижние пороги скоростей передачи информации в пользовательских соглашениях, если общей мощности бортовых передатчиков недостаточно для обеспечения требуемых скоростей передачи информации.

Список литературы

1. Heng Wang, Aijun Liu, Xiaofei Pan, Jiong Li, Optimization of Power Allocation for a Multibeam Satellite Communication System with Interbeam Interference, - Journal of Applied Mathematics - Volume 2014 (2014), Article ID 469437, 8 pages.

Способ распределения мощности бортовых передатчиков между сигналами многолучевой спутниковой системы доступа к информационным ресурсам, заключающийся в том, что поступают сведения на блок ввода данных о количестве лучей, запрашиваемых скоростях передачи информации, общей мощности бортовых передатчиков, параметрах спектральной плотности мощности шума, нормированных на коэффициент затухания, ширине рабочих полос частот, коэффициентах помех между сигналами, после чего определяются значения мощностей сигналов в блоке определения мощностей сигналов, после чего передают значения мощностей сигналов в блок вывода мощностей сигналов, отличающийся тем, что после поступления сведений в блок ввода данных поступают значения нижних порогов скоростей передачи информации в пользовательских соглашениях в блок ввода нижних порогов скоростей передачи информации в пользовательских соглашениях, после чего определяются значения требуемых скоростей передачи информации в блоке определения требуемых скоростей передачи информации, после чего определяются минимальные значения мощностей сигналов, достаточных для обеспечения требуемых скоростей передачи информации, в блоке определения минимально необходимых мощностей сигналов, после чего определяется превышение значения общей мощности бортовых передатчиков над суммой минимальных значений мощностей сигналов, достаточных для обеспечения требуемых скоростей передачи информации, в блоке определения достаточности общей мощности бортовых передатчиков, после чего сравнивается превышение значения общей мощности бортовых передатчиков над суммой минимальных значений мощностей сигналов с нулем, после чего, при равенстве нулю превышения, передают минимальные значения мощностей сигналов, достаточных для обеспечения требуемых скоростей передачи, в блок вывода мощностей сигналов, при этом, если превышение не равно нулю, определяются значения мощностей сигналов в блоке определения мощностей сигналов, после чего определяются дополнительные ограничения или их отсутствие в блоке определения дополнительных ограничений, после чего при определении отсутствия дополнительных ограничений передают значения мощностей сигналов в блок вывода мощностей сигналов, при этом при определении одного или более дополнительных ограничений определяются значения мощностей сигналов при дополнительных ограничениях в блоке определения мощностей сигналов при дополнительных ограничениях, после чего определяются дополнительные ограничения или их отсутствие в блоке определения дополнительных ограничений и последующее определение значений мощностей сигналов при дополнительных ограничениях в блоке определения мощностей сигналов при дополнительных ограничениях, и так, пока не определится отсутствие дополнительных ограничений в блоке определения дополнительных ограничений, после чего передают значения мощностей сигналов в блок вывода мощностей сигналов, и далее значения мощностей передаются на устройство распределения мощности на борту спутника для последующего распределения мощности между сигналами.



 

Похожие патенты:

Изобретение относится к радиосвязи и может быть использовано в радиосетях декаметрового диапазона широкого применения. Технический результат состоит в повышении помехоустойчивости приема данных при мешающем воздействии сосредоточенных по спектру синусоидальных и флуктуационных помех.

Изобретение относится к радиосвязи и может быть использовано в радиосетях декаметрового диапазона широкого применения. Технический результат состоит в повышении помехоустойчивости приема данных при мешающем воздействии сосредоточенных по спектру синусоидальных и флуктуационных помех.

Изобретение относится к способу связи между клиентским устройством и беспроводным периферийным устройством в системе связи. Технический результат заключается в обеспечении связи между клиентским устройством и периферийным устройством и ее защиты.

Изобретение относится к технике связи и может использоваться в системах спутниковой связи. Технический результат состоит в повышении надежности управления группой спутников.

Изобретение относится к технике связи и может использоваться для демодуляции сигнала, несущего сообщение, переданное наземным радиомаяком. Технический результат состоит в повышении точности определения местоположения аварийных радиомаяков спутниковой системой.

Изобретение относится к области радиосвязи. Техническим результатом является повышение надежности работы и качества передаваемой информации по радиоканалам в условиях воздействия на передачу радиопомех.
Изобретение относится к области дистанционного радиоуправления системами сигнализации или системами контроля доступа с многоканальной двусторонней радиосвязью на переключаемых узкополосных ЧМ-радиоканалах.

Изобретение относится к радиотехнике и используется для определения координат и передачи аварийного сообщения о ситуации «человек за бортом» через автоматическую идентификационную систему (АИС) на ближайшие суда и станции приема сигналов АИС.

Изобретение относится к электросвязи, в частности к устройствам оценки информационного обмена в системах связи. Техническим результатом предлагаемого устройства является повышение точности оценки КПД передачи информации за счет учета при ее определении воздействия на систему связи помех путем дополнительной оценки параметра помехоустойчивости и уточнения с ее помощью оценки КПД передачи информации.

Изобретение относится к области радиосвязи, а именно к системам сеансовой связи, обеспечивающим выполнение высоких требований к достоверности передачи сообщений.

Изобретение относится к области техники связи и может быть использовано в системах спутниковой и радиорелейной связи, а также в радиолиниях типа «точка-точка». Технический результат состоит в увеличении эффективности использования спектра радиосистемой, использующей одну поляризацию за счет одновременной передачи в точку приема q радиосигналов с одинаковой несущей частотой, но различными поляризациями. Для этого используют поляризационное уплотнение радиосистемы, при одновременной передаче радиосигналов с одной несущей частотой, но с различными поляризациями, при этом количество одновременно передаваемых сигналов q превышает 2 или более при использовании на передающей стороне трех и более передатчиков, излучающих радиосигналы посредством индивидуальных для каждого передатчика антенн с выбранными при проектировании радиосистемы поляризациями радиосигналов, отличающимися от поляризаций соседних радиосигналов не менее чем на 25-30 градусов и устанавливаемыми посредством необходимой для их получения ориентации в пространстве облучателей апертурных антенн или излучателей щелевых антенн каждого передатчика при работе в СВЧ диапазоне, либо необходимой ориентации антенных вибраторов при использовании более низкочастотных диапазонов и при этом на приемной стороне используются q приемников, антенны каждого из которых предназначены для приема радиосигналов одной из q поляризаций, с выделением на приемной стороне каждого из q передаваемых радиосигналов в результате подачи каждого из результирующих напряжений с выходов высокочастотных трактов каждого из q приемников с их индивидуальными коэффициентами передачи, зависящими от q, на соответствующие номерам этих радиосигналов входы каждого из q сумматоров, причем на выходе каждого сумматора выделяется один из q принимаемых сигналов. 4 ил.

Изобретение относится к технике связи и может использоваться в автоматической адаптивной пакетной ВЧ радиосвязи. Технический результат состоит в расширении функциональных возможностей системы за счет введения операций: обхода выведенного из строя сегмента подсистемы наземной связи с помощью трансляции по ВЧ радиоканалу «Земля-Земля» от ближайшей к обрыву подсистемы наземной связи доступной ВЧ наземной станции по ВЧ радиоканалам «Земля-Земля» к другой доступной ВЧ наземной станции, находящейся на другой стороне обрыва, дублирования функций планирования связи и динамического управления ресурсами связи центра управления ВЧ системы обмена пакетными данными в ведущих зональных ВЧ наземных станциях. Для передачи срочной информации используют трансляцию по ВЧ радиоканалам «Воздух-Земля» со всех доступных для выбранной ВЧ бортовой станции ВЧ наземных станций, причем для ретрансляции срочной информации используют соответствующие ВЧ наземные станции и радиоканалы «Земля-Земля», а также доступные ВЧ бортовые станции и соответствующие радиоканалы «Воздух-Воздух». 2 н. и 2 з.п. ф-лы, 6 ил., 2 табл.

Изобретение относится к системам радиосвязи и может быть использовано при выборе частот излучения, которые обеспечивают электромагнитную совместимость (ЭМС) и малый уровень помех. Технический результат состоит в расширении функциональных возможностей, а именно в выборе рабочих частот в динамике не только с учетом минимальных частотных разносов, как в прототипе, но и с учетом наличия комбинационных составляющих и текущей помеховой обстановки, что обеспечивает планирование связи. Это достигается за счет введения в устройство узлов: вычислителя, блока расчета комбинационных составляющих, сканирующего приемника с антенной, синтезатора частот, аналого-цифрового преобразователя, блока хранения планов связи с внешним входом, магистральной (межблочной) шины со связями. 1ил.

Предлагаемое устройство относится к области радиосвязи и может быть использовано для передачи сигналов управления с диспетчерского пункта на системы жизнеобеспечения (теплоснабжения, водоснабжения, газоснабжения, электроснабжения, канализации, вентиляции и т.д.) сложных объектов, а также для сбора информации с указанных систем для централизованного контроля и управления технологическими процессами на них.Технической задачей изобретения является повышение помехоустойчивости и достоверности обмена аналоговой и дискретной информацией между диспетчерским пунктом и системами жизнеобеспечения сложных объектов путем подавления ложных сигналов (помех), принимаемых по дополнительным каналам.Устройство дистанционного мониторинга систем жизнеобеспечения сложных объектов содержит диспетчерский пункт и системы жизнеобеспечения сложных объектов.Диспетчерский пункт (каждая система жизнеобеспечения сложных объектов) содержит источник 1.1 (1.2) аналоговых сообщений, модулятор 2.1 (2.2) с двойным видом модуляции, генератор 3.1 (3.2) несущей частоты, амплитудный модулятор 4.1 (4.2), фазовый манипулятор 5.1 (5.2), источник 6.1 (6.2) дискретных сообщений, передатчик 7.1 (7.2), первый гетеродин 8.1 (8.2), первый смеситель 9.1 (9.2), усилитель 10.1 (10.2) первой промежуточной частоты, первый усилитель 11.1 (11.2) мощности, дуплексер 12.1 (12.2), приемопередающую антенну 13.1 (13.2), приемник 14.1 (14.2), второй усилитель 5.1 (15.2) мощности, второй гетеродин 16.1 (16.2), второй смеситель 17.1 (17.2), усилитель 18.1 (18.2) второй промежуточной частоты, амплитудный ограничитель 19.1 (19.2), синхронный детектор 20.1 (20.2), перемножитель 21.1 (21.2), полосовой фильтр 22.1 (22.2), фазовый детектор 23.1 (23.2), блок 24.1 регистрации и анализа (исполнительный блок 24.2), усилитель 25.1 (25.2) суммарной частоты, амплитудный детектор 26.1 (26.2) и ключ 27.1 (27.2). 3 ил.

Изобретение относится к области слежения за полетом космических аппаратов (КА) и может быть использовано в командно-измерительной системе (КИС) спутниковой связи. Способ включает передачу с наземного сегмента управления КИС по линии «Земля - КА» сигналов, содержащих команды управления КА. На входе приемного устройства КА оценивают отношение сигнал/шум принятого сигнала. Это отношение переводят в отношение энергии бита к спектральной плотности мощности шума и далее рассчитывают вероятность ошибки на бит информации. Рассчитанное её значение включают в телеметрический кадр, который передают по линии «Земля - КА» в наземный комплекс управления. Там сравнивают рассчитанное и требуемое значения вероятности. Если первое меньше второго, то увеличивают мощность передающего наземного устройства до обеспечения требуемой вероятности ошибки на бит информации. Технический результат изобретения состоит в предотвращении сбоев при выдаче командно-программной информации и обеспечении непрерывных сеансов связи с космическим аппаратом на всех этапах его жизненного цикла. 1 ил.

Изобретение относится к крупномасштабным сетям и узлам радиодоступа диапазона ДКМВ и может быть использовано для создания национальных или континентальных сетей радиодоступа со сплошной зоной обслуживания. Технический результат состоит в увеличении радиуса зоны обслуживания территориального узла радиодоступа до 3000 км, исключении замираний сигнала. Для этого сеть ДКМВ содержит многоканальные стационарные узлы территориального радиодоступа, состоящие из разнесенных приемных и передающих радиоцентров, программно-определяемые абонентские радиотерминалы, связанные с узлами сети адаптивными линиями радиодоступа, стационарные узлы зенитного радиодоступа с радиусом зоны обслуживания до 500 км, основной и запасной центры управления сетью, причем соседние стационарные опорные узлы территориального радиодоступа расположены в вершинах смежных равносторонних сферических треугольников с длиной стороны не более 3000 км по дуге большого круга и имеют зону радиодоступа радиусом до 3000 км каждый; адаптивные линии абонентского радиодоступа из сплошной зоны к стационарным опорным узлам территориального радиодоступа, магистральные линии межузловой связи организованы с применением ионосферной моды 1F2, программно-определяемые сетевые абонентские радиотерминалы содержат встроенный навигационный приемник для определения местоположения, а узел содержит в своем составе комплекты приемных и передающих антенн радиодоступа, а также программно-аппаратные комплексы зондирования ионосферы, определения пространственных параметров радиолиний и определения рабочих диапазонов частот, обеспечивающих ведение сеансов модой 1F2. 5 ил.

Изобретение относится к спутниковой системе связи, в частности к системе управления космическим аппаратом (КА ) и предназначено для исключения искажения команд управления, передаваемых с наземного комплекса управления (НКУ) на борт КА, вызванного узкополосной помехой. Для обеспечения технического результата в бортовую аппаратуру командно-телеметрической системы КА введены узел вычитания, формирователь компенсирующего сигнала, блок определения модуля, блок синхронизации, блок оперативной памяти и блок формирователя командного сигнала. В случае появления помехи принятая команда, искаженная помехой, также записывается в блок оперативной памяти, в блоке определения модуля, в паузе командного сигнала, выявляется наличие сигнала помехи по ненулевому значению напряжения на выходе блока определения модуля. В результате этого с выхода блока определения модуля поступает сигнал, по которому запрещается передача искаженного командного сигнала, записанного в блок оперативной памяти, в дешифратор команд. 4 ил.

Изобретение относится к технике связи и может использоваться в системах космической связи. Технический результат состоит в повышении надежности связи и точности определения координат радиобуев. Для этого станция приёма информации от аварийных радиобуев космической системы поиска и спасания включает единый комплекс обработки и выдачи информации, содержащий аппаратно-программные средства определения координат и вектора скорости радиобуя и управления наведением антенн, выполненных полноповоротными, на среднеорбитальные ИСЗ спутниковых навигационных систем, а также средства отображения информации. Комплекс обработки и выдачи информации подключён к средствам обработки информации упомянутого информационно-измерительного комплекса через коммутатор-маршрутизатор и сеть типа Ethernet и обеспечивает управление оборудованием данного комплекса. Способ управления наведением антенн предусматривает наведение антенн станции (системы) приёма и обработки информации в течение заданного временного интервала на созвездие из среднеорбитальных космических аппаратов с наибольшей площадью зоны обслуживания, в которой обеспечивается заданная точность определения координат радиобуев. 2 н. и 7 з.п. ф-лы, 3 ил.

Изобретение относится к авиационной радиосвязи и может быть использовано для организации декаметровой (ДКМ) радиосвязи в каналах «борт летательного аппарата (ЛА) - наземный опорный радиоцентр (ОпРЦ)» на незакрепленных частотах без частотного планирования. Технический результат заключается в обеспечении автоматической бесперебойной ДКМ-радиосвязи с надежностью информационного обмена 0,95-0,99, крипто- и помехозащищенностями каналов связи и экономией частотного ресурса. Для этого в радиоканал «борт ЛА - наземный ОпРЦ» вводится технология ионосферного мониторинга (ИМ), реализуемая с помощью линейно-частотно-модулированных (ЛЧМ) сигналов и позволяющая определять радиопрогностические параметры ионосферного канала, включая основной параметр - оптимальную рабочую частоту (ОРЧ) в реальном масштабе времени. При этом наземные ОпРЦ оснащаются аппаратно-программными комплексами ионосферного мониторинга, а борт ЛА - четырехканальным приемником-анализатором ЛЧМ-сигналов, способным одновременно принимать и анализировать сигналы от четырех пространственно-разнесенных наземных ОпРЦ. В результате обеспечивается адаптация по частоте и пространству, что дает возможность работы на одной ОРЧ, определенной для данного времени для одного из четырех ОпРЦ, наиболее подходящего по условиям распространения ДКМ-радиоволн и помеховой обстановке. При деградации параметров работающего канала ниже допустимых значений передача управления каналом «борт ЛА - наземный ОпРЦ» новому ОпРЦ осуществляется по сети магистральных линий, связывающих между собой все ОпРЦ и выполняющих роль так называемого «обратного канала». Каждый ЛА, выходящий в эфир, использует свободную частоту на основе собственного анализа занятости этой частоты по данным ИМ, тем самым исключается создание взаимных помех. 2 ил.

Изобретение относится к области радиосвязи и предназначено для использования в радиосетях широкого применения, в частности радиосетях адаптивной КВ-радиосвязи. Технический результат заключается в организации системы коротковолновой радиосвязи, состоящей из N взаимосвязанных через радиоэфир узлов связи, автоматическом управлении работой коммутатора приемного центра с помощью вычислителя, выборе вероятностно-оптимальной частоты с помощью сканирующего по частоте одного из n приемных трактов, управляемого вычислителем, для адаптации системы. Изобретение заключается в том, что в каждый приемный центр системы коротковолновой радиосвязи введен вычислитель, соединенный двухсторонними связями с базой данных с внешним входом, формирователем сигналов управления всех приемных трактов, многотрактовой аппаратурой приема и обработки КВ сигналов с приемными антеннами и с блоком управления и отображения, k входов вычислителя соединены с k выходами многотрактовой аппаратуры приема и обработки КВ сигналов с приемными антеннами, а его k выходов - с k входами соответствующего формирователя сигналов управления всех приемных трактов, (k+1)-й выход вычислителя соединен с управляющим входом коммутатора приемного тракта. 1 ил.

Изобретение относится к области техники связи и может быть использовано в многолучевых спутниковых системах доступа к информационным ресурсам. Техническим результатом изобретения является распределение мощности бортовых передатчиков между сигналами многолучевой спутниковой системы доступа к информационным ресурсам при ограничениях на нижние пороги скоростей передачи информации в пользовательских соглашениях. Распределение мощности бортовых передатчиков позволяет разным пользователям получать информационный ресурс с разной скоростью в зависимости от их потребности. Изобретение раскрывает способ распределения мощности бортовых передатчиков между сигналами многолучевой спутниковой системы доступа к информационным ресурсам, в котором поиск оптимальных мощностей сигналов выполняется по алгоритму динамического распределения мощности. 1 ил.

Наверх